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Abstract—Self-organizing systems are focused on to realize
novel network control systems that are highly scalable, adapt-
able, and robust. However, the uncertainty of information
makes it difficult for self-organizing systems to work appro-
priately, thereby degrading their performance. It is necessary
to improve the performance of self-organizing systems while
retaining their advantages. Therefore, we apply the concept of
flexible leadership of the collective decision-making in human
groups to self-organizing control mechanisms. By incorpo-
rating this concept, agents dynamically and flexibly change
their role (leader or follower) according to the confidence
of their own information, which increases decision accuracy
under information uncertainty. We propose a channel-selection
mechanism based on collective decision-making in accordance
with information confidence. Simulation experiments show that
the proposed mechanism improves the performance of network
systems while retaining the high adaptability.

1. Introduction

Self-organizing systems are known to have high scala-
bility, adaptability, and robustness [1], whereby they are ap-
plied to control large-scale and complex networks. The com-
ponents of a self-organizing system behave automatically
and autonomously on the basis of simple rules and local
interactions among components, leading to the macroscopic
emergence of global patterns or behavior. This bottom-up
mechanism contributes to low communication and computa-
tional costs for such emergence. In practice, however, there
are challenges to using self-organizing control systems in
industrial and business systems [2].

In most actual self-organizing systems, the information
available to components is uncertain (incomplete, vague, and
dynamic) [3]. Generally, components have access to only lo-
cal information (information incompleteness). Components
often cannot access true information because of aspects such
as noise or fluctuations (information vagueness). Previously
collected information in dynamic systems can quickly be-

come outdated (information dynamicity). Such uncertainty
of information can lead components to sub-optimal or in-
correct solutions, thereby degrading the performance of the
systems. However, it still be a challenging task to improve
the performance of self-organizing systems retaining their
high scalability, adaptability, and robustness.

To tackle the challenge, we apply the collective decision-
making of animal groups [4] to self-organizing systems.
In groups of animals, perceivable information of individ-
uals usually be uncertain. Despite the uncertainty of the
perceived information, convergence to a state in which all
individuals make an identically correct decision according to
their conditions and surrounding environments is achieved
through local interactions among individuals. Therefore, in
the previous study [5], we have proposed a self-organizing
channel-selection mechanism (CSM) based on collective
decision-making according to information confidence in or-
der to overcome the problem of information uncertainty.

In our proposal, we introduce the concept of flexible
leadership [6] for collective decision-making in human
groups. Human agents behave flexibly as leaders or fol-
lowers in accordance with the confidence of their own
information, which increases decision-making accuracy. Hu-
man agents with high confidence make decisions based on
their own information, whereas human agents with low
confidence attempt to follow the decisions of agents with
high confidence. As a result, in a human group, agents with
higher confidence act as leaders and guide the others.

To realize decision-making in accordance with infor-
mation confidence, we also apply a method for integrating
individual information (i.e., personal information based on
aspects such as knowledge, experiences, and perceptive in-
formation) and social information (i.e., information obtained
from other agents) according to information confidence [7].
Individual and social information are assumed to follow
Gaussian distributions (i.e., N(µ, σ2)). The mean (µ) of
a distribution is viewed as a judgment whereas the vari-
ance (σ2) is viewed as the uncertainty of that judgment; in
other words, lower variance indicates higher confidence of
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Figure 1. Integration of individual and social information

the judgment. Individual information and social information
are then integrated according to their variables (see Fig-
ure 1). In a group, agents with lower confidence attempt to
follow ones with higher confidence.

In our proposal, each node monitors a partial set of chan-
nels, estimates their quality, and calculates their confidence.
The node shares this information with neighboring nodes
and then integrate its own information and its neighbors’
information considering their confidence. Finally, it selects
a channel with high quality based on the integrated infor-
mation. However, in the previous paper [5], we have not
conducted simulation experiments for viewpoints of the per-
formance of network systems under information uncertainty.

Therefore, we conduct simulation experiments for show-
ing that introducing the concept of flexible leadership im-
proves the performance under information uncertainty while
retaining inherent advantages of self-organizing mecha-
nisms. Specifically, in this paper, we focus on the adapt-
ability, which is a significant feature of self-organizing
mechanisms. The contributions of this paper are as follows:

1) We evaluate the performance of our proposal under
information uncertainty. Especially, for investigat-
ing the influence of information vagueness, we
evaluate our proposal in the case where nodes
differ in the reliability of their own information.
In this evaluation, we conduct simulation experi-
ments in the environment assuming wireless sensor
networks.

2) For clarifying the properties of our proposal, we
investigate the influence of parameters in our pro-
posal.

In Section 2, we propose and explain a CSM based on

collective decision-making according to information confi-
dence. In Section 3, we conduct simulation experiments to
demonstrate the advantages and properties of our proposal.
Finally, we conclude this study and mention possible future
work in Section 4.

2. Channel Selection Mechanism According to
Information Confidence

Each node estimates channel qualities based on collec-
tive decision-making and then selects a high-quality channel
for data-packet forwarding. We here consider a channel to
be of higher quality if its channel utilization is low.

Our proposal involves the following three steps: (1) Each
node estimates channel qualities based on observable in-
formation. We refer to these estimated channel qualities as
individual information (Section 2.1). (2) Each node obtains
the individual information of neighboring nodes and then es-
timates channel qualities based on that information. We refer
to these estimated channel qualities as social information
(Section 2.2). (3) Each node integrates the individual and
social information according to its confidence in its own in-
formation for selecting a high-quality channel (Section 2.3).

2.1. Channel Quality Estimation Based on Observ-
able Information

Each node observes the channel states and then estimates
the channel qualities based on the observed information.
Node i (∈ N = {1, · · · , N}) observes the partial set ci(t)
(⊂ M = {1, · · · ,M}) of channels at interval ∆tobs and
checks their states, that is, whether each channel is busy or
idle. By observing the channels, node i measures the idle-
state ratio v(i,j) of channel j, measured as its time being
idle in a time slot (∆t) relative to total time.

Node i estimates the quality of channel j based on
the observed idle-state ratio v(i,j) of channel j. We define
individual information as p(Dv|D), where Dv corresponds
to the estimated channel quality based on the observable
information v and D corresponds to the true quality of
the channel. We assume that the individual information for
node i regarding channel j follows a Gaussian distribution
with mean ν(i,j) and variance τ2(i,j). In other words, indi-

vidual information p(D
(i,j)
v |D(i,j)) satisfies

p(D(i,j)
v |D(i,j)) ∼ N(ν(i,j), τ

2
(i,j)). (1)

The higher the distribution mean ν(i,j), the higher the quality
of channel j estimated by node i from the observable
information. We consider the distribution variance τ2(i,j) as
the uncertainty of the estimation. Note that the uncertainty
of individual information depends on its confidence: higher
uncertainty is reflected in lower confidence.

The distribution in (1) is updated in accordance with the
observed information v(i,j) by the equations below:

ν(i,j) ← (1− α)ν(i,j) + αv(i,j), (2)
τ2(i,j) ← (1− α)τ2(i,j) + α(1− α)(ν(i,j) − v(i,j))

2. (3)



2.2. Channel-quality Estimation Based on Informa-
tion Obtained from Neighboring Nodes

Each node obtains the individual information of its
neighboring nodes through local interactions among nodes.
It then estimates the channel qualities based on infor-
mation obtained from its neighboring nodes. For node i,
s(i,j) corresponds to the information about channel j ob-
tained from its neighboring nodes Nb(i). That is, s(i,j) =
{(ν(i,j), τ2(i,j))|i ∈ Nb(i), j ∈M}.

Node i estimates the quality of channel j based on the
information obtained from its neighboring nodes. We define
social information as p(D(i,j)

s |D), where D
(i,j)
s corresponds

to the estimated channel quality based on the information
from its neighboring nodes. We also assume that the social
information for node i regarding channel j follows a Gaus-
sian distribution with mean µ(i,j) and variance σ2

(i,j). That

is, social information p(D
(i,j)
s |D(i,j)) satisfies

p(D(i,j)
s |D(i,j)) ∼ N(µ(i,j), σ

2
(i,j)). (4)

The higher the distribution mean µ(i,j), the higher the qual-
ity of channel j estimated by node i based on the informa-
tion obtained from the neighboring nodes. The distribution
mean µ(i,j) is updated as

µ(i,j) ←
∑

k∈Nconf (i)
ν(i,j)

|Nconf (i)|
, (5)

where Nconf (i) (⊂ Nb(i)) corresponds to the set of node i’s
neighboring nodes whose variance of individual information
for channel i is lower than the threshold Tτ2 . In other
words, the average social information is equal to the average
channel qualities as estimated by the neighboring nodes with
high confidence. For simplicity, we set σ2

(i,j) to a constant
value σ2

0 for all nodes and channels.

2.3. Integration of Individual and Social Informa-
tion for Channel Selection

Each node integrates individual and social information
according to information confidence, and selects a channel
with high quality for data-packet forwarding.

By integrating individual information p(D
(i,j)
v |D(i,j))

and social information p(D
(i,j)
s |D(i,j)) according to their

variances, node i estimates the quality of channel j.
Then, integrated information p(D(i,j)|D(i,j)

v , D
(i,j)
s ) is

estimated to follow a normal distribution:

p(D(i,j)|D(i,j)
v , D(i,j)

s ) ∼ N
(
ϕ(i,j), ρ

2
(i,j)

)
. (6)

The mean ϕ(i,j) and variance ρ2(i,j) are calculated by

ϕ(i,j) ←
τ2(i,j)µ(i,j) + σ2

(i,j)ν(i,j)

τ2(i,j) + σ2
(i,j)

, (7)

ρ2(i,j) ←
τ2(i,j)σ

2
(i,j)

τ2(i,j) + σ2
(i,j)

. (8)

Node i selects the channel j with the largest ϕ(i,j) among
available channels for the data-packet forwarding.

3. Simulation Evaluation

We evaluate our proposal for clarifying the advantages
and properties of our proposal. In this evaluation, the observ-
able information for each node is uncertain (Section 3.1).
In Section 3.2, we first evaluate the performance of our
proposal in the case where there are nodes with unreliable
information for showing that our proposal can overcome
the problem of information uncertainty. We then investigate
influences of parameters of our proposal in Section 3.3, for
clarifying the properties of our proposal.

We use an event-driven packet-level simulator (devel-
oped by us) running in Visual C++ on a 64-bit PC with a
2.70-GHz Intel Xeon CPU and 64.0 GB of memory. Nodes
are not synchronized in the simulator.

3.1. Simulation Settings

We use the network including 100 nodes (96 sensor
nodes and 4 sink nodes). The sensor nodes are deployed
randomly in a 550 m × 550 m field, and the sink nodes
are deployed at (137.5 m, 137.5 m), (137.5 m, 412.5 m),
(412.5 m, 137.5 m), and (412.5 m, 412.5 m).

Nodes select a channel for data-packet forwarding
among 5 channels (M = 5). The set ci(t) of observable
channels for node i at time t includes the channel cusei (t)
that node i uses for data-packet forwarding at time t and
a fixed set c′i of observable channels of node i, that is,
ci(t) = {cusei (t)} ∪ c′i. Among available channels, one is
selected randomly per node as a fixed set c′i of observable
channels of each node i. That is, each node observes at
most two channels (observable information for nodes is
incomplete). For simplicity and to clarify the advantages
and properties of our proposed mechanism, we assume
that there is not communication delay in sharing individual
information between neighboring nodes.

We artificially define the channel states at each node by
setting the probability that channels are observed to be busy.
At the beginning of the simulation, the probabilities that
channels {1, 2, 3, 4, 5} are busy in the channel observation
phase of each node are set to {0.01, 0.02, 0.03, 0.04, 0.05},
respectively. That is, channel 1 has the best quality and
channel 5 has the worst. At 10, 000 s after the simulation
starts, the busy rate of channel 1 increases to 0.04 in nodes
included in the bottom half of the network (observable
information for nodes is dynamic). Moreover, at the same
time, the reliability of observed information decreases in
randomly-selected q nodes included in the bottom half of
the network (observable information for nodes is vague). In
this evaluation, we set the observable information v in these
nodes with unreliable information to a random value. We
evaluate changes in the selected channels and performances
in nodes included in the bottom half of the network after
these state changes.



TABLE 1. NETWORK SETTINGS

Parameter Value
Data-packet genration rate 0.005 packet/s

Buffur size 1 packet
Communication range 100 m

Carrier sense range 100 m
Transmission speed 100 kbps

Back-off time 10−4×rand(2p)
p 3∼5

Maximum of back-offs 5
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Figure 2. The number of nodes that select accurate channels

For comparison, we adopt channel selection based on
collective decision-making with no information confidence
(the no-confidence CSM), in which the weights of individ-
ual information and social information are fixed (i.e., the
variances τ2 and σ2 are set to constant values). Moreover,
we also adopt the optimal CSM in which each node selects
the channel with the highest quality.

In our proposal, each node calculates individual and
social information, integrates them, and selects a channel for
data-packet forwarding at interval ∆t. The interval ∆tobs is
set to 1.0 s and the time slot ∆t is set to 10 s.

We conduct simulation experiments in an environment
assuming wireless sensor networks. Nodes forward data
packets based on potential-based routing [8]. In the MAC
layer, we use intermittent receiver-driven data transmis-
sion [9], which is an asynchronous receiver-driven data
transmission protocol. As the physical layer model, we use a
disk model in which colliding data packets are dropped. The
other settings are summarized in Table 1. The results shown
below are the averages of 3 simulation runs for different
parameter settings.

3.2. Performance Evaluation

For demonstrating that our proposal is advantageous for
information uncertainty, we first compare our proposal with
the no-confidence CSM and the optimal CSM in the case
where there are nodes with unreliable information. In our
proposal, the variance σ2

0 is set to 0.30 and the threshold Tτ2

is set to 5.0. In the no-confidence CSM, variances τ20 and
σ2
0 for individual and social information are set to 0.50.

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50

D
at

a-
p

ac
k

et
 a

rr
iv

al
 r

at
e

# of nodes with unreliable information

Proposal (σ0
2
=0.30, T

τ
2=5.0)

No confidence (τ0
2
=0.50, σ0

2
=0.50)

Optimal

Figure 3. The data-packet arrival rate

Figure 2 shows that the ratio of nodes that select the
accurate channel (i.e., channel 2, which is one with the
highest quality) against the number of nodes with unreliable
information. Figure 3 shows that the data-packet arrival rate
against the number of nodes with unreliable information.

From Figure 2, with the no-confidence CSM, as the
number of nodes with unreliable information increases, the
ratio of nodes that select the accurate channel decreases.
This means that more nodes select low-quality channels with
a larger number of nodes with unreliable information. With
the no-confidence CSM, nodes integrate individual informa-
tion and social information not considering their confidence,
whereby some nodes follow other nodes with unreliable
information. This is the cause of the decrease in the ratio of
nodes that select the accurate channel. When nodes select
wrong channels, the number of the data-packet collisions
becomes larger. This leads to low data-packet arrival rates
with the no-confidence CSM as shown in Figure 3.

On the contrary, with our proposal, the ratio of nodes that
select the accurate channel is higher than that with the no-
confidence CSM when the number of nodes with unreliable
information is 10 ∼ 50. Even when the number of nodes
with unreliable information is 40, the ratio of nodes select
the accurate channel is above 0.7. With our proposal, the
uncertainty of the observable information is quantified as
the variance τ2 of the individual information. Variances of
individual information in nodes with unreliable nodes are
larger than those in nodes with reliable information, whereby
the importance of individual information of nodes with re-
liable information is relatively large. Therefore, most nodes
attempt to follow other nodes with reliable information.
Figure 4 shows the state of channel-selection in the network
in the case where the number of nodes with unreliable
information is 20. This figure indicates that most nodes
select the accurate channel with our proposal. Because the
number of data-packet collisions with high-quality channels
is lower, the data-packet arrival rate is higher with our
proposal as shown in Figure 3. When there is no node with
unreliable information, the ratio of nodes selected the accu-
rate channel is lower with our proposal than that with the no-
confidence CSM. This is because, with our proposal, some
nodes near the boundary may follow high-confidence nodes
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Figure 4. Channel-selection in the network (q = 20)
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with different accurate channels. However, most nodes select
the accurate channel, whereby such incorrect decisions have
little effect on the performance (the data-packet arrival rate
is approximately equal to that with the no-confidence CSM
as shown in Figure 3).

Figure 5 shows the changes in the ratio of nodes that
select the accurate channel. This figure also indicate that
the ratio of nodes that select the accurate channel with our
proposal is higher than that with the no-confidence CSM.
Moreover, the adaptation speed of channel-selection with
our proposal is higher than that with the no-confidence
mechanism. Figure 5 indicates that it takes about 200 s for
the ratio of nodes that select the accurate channel to become
larger than 0.7. In contrast, with the no-confidence channel-
selection mechanism, it takes about 500 s. The faster speed
of the adaptation to environmental changes of our proposal
also contribute to its higher data-packet arrival rate.

Consequently, our proposal can improve the data-arrival
rate while retaining the high adaptability to environmental
changes although information of nodes is uncertain.

3.3. Influences of Parameters

We next investigate the influences of parameters in our
proposal for clarifying the properties of our proposal.

Firstly, we investigate the influences of the variance σ2
0

of social information. We change σ2
0 within 0.10 ∼ 1.0
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Figure 6. The ratio of nodes that select the accurate channel (Tτ2 = 5.0)
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Figure 7. The data-packet arrival rate (Tτ2 = 5.0)

while setting Tτ2 to 5.0. Figures 6 and 7 show the ratio of
nodes that select the accurate channel and the data-packet
arrival rate for different variances σ2

0 . From Figures 6 and 7,
with a higher σ2

0 (in this experiments, σ2
0 = 0.80 and 1.0),

the ratio of nodes that select accurate channel is lower than
the case with a lower σ2

0 . When σ2
0 is high, the weight of

social information is relatively lower than that of individual
information. This leads nodes to make a decision according
individual information regardless of its confidence. As a
result, some nodes select wrong channels in accordance with
their unreliable information even when there are nodes with
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0 = 0.30)
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Figure 9. The data-packet arrival rate (σ2
0 = 0.30)

reliable information near them. Therefore, too large σ2
0 is

not appropriate for our proposal.
Nextly, we investigate the influences of the threshold Tτ2

for calculating social information. For that purpose, we
change Tτ2 within 1.0 ∼ 10 while setting σ2

0 to 0.30.
Figures 8 and 9 show the ratio of nodes that select the
accurate channel and the data-packet arrival rate for different
thresholds Tτ2 . Figures 8 and 9 indicate that the ratio
of nodes that select the accurate channel is lower with a
lower Tτ2 (in this experiments, Tτ2 = 1.0). With a too
low Tτ2 , individual information obtained from almost of all
neighboring nodes is considered as being unreliable when
calculating social information by (5). That is, most nodes
make decisions only with their own information. As a result,
nodes that select wrong channels increase, which lowers the
data-packet arrival rate in the network. Moreover, Figures 8
and 9 indicate that the ratio of nodes that select the accurate
channel decreases rapidly with a higher Tτ2 (in this experi-
ments, Tτ2 = 10), when the number of nodes with unreliable
information increases. This is because with a too high Tτ2 ,
individual information obtained from almost all neighboring
nodes is considered as being reliable when calculating social
information. That is, most nodes attempt to follow their
neighbors’ decisions regardless of the confidence of their in-

formation. As a result, the accuracy of the decision-making
decreases, thereby lowering the performance of the system.
In conclusion, parameter Tτ2 needs to be set properly.

4. Conclusion

For overcoming the problem of information uncertainty,
we propose a channel-selection mechanism according to
information confidence inspired by the concept of flexible
leadership of decision making in human groups. Through
simulation experiments, we show that, by introducing our
proposal, the decision accuracy and speed are improved
while retaining the high adaptability. Moreover, we demon-
strate the influences of parameters to the performance of our
proposal.

In future work, we will consider the scalability and
robustness of our proposal. Moreover, we will consider
the scheme for determining the confidence of each node’s
information considering the outcome of the previous deci-
sion. For realizing such mechanism, we will introduce the
learning mechanism of feedbacks in human’s brain.
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