
Master’s Thesis

Title

BotProfiler++: Detecting Malware-Infected Hosts using

Templates of Time-Series HTTP Request Patterns

Supervisor

Professor Masayuki Murata

Author

Taiga Hokaguchi

February 8th, 2019

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

BotProfiler++: Detecting Malware-Infected Hosts using Templates of Time-Series

HTTP Request Patterns

Taiga Hokaguchi

Abstract

Malware-infected hosts are one of the most serious threats in network services. An

attacker controls many malware-infected hosts via command and control (C&C) servers

to carry out cyber attacks. The victim of the attack observes only the packets from the

malware-infected hosts. Thus, it is difficult to identify the attacker.

One approach to mitigating such attacks is to detect malware-infected hosts. Bot-

Profiler is one of the methods that detect malware-infected hosts. BotProfiler focuses

on the communications between malware-infected hosts and C&C servers. Most malware

use HTTP as their C&C protocol. Thus, BotProfiler generates the templates of HTTP

requests sent by malware-infected hosts and detects malware-infected hosts by comparing

the monitored HTTP requests and the templates. BotProfiler avoids misdetections by in-

troducing the rarity which is calculated by the frequency of the HTTP requests monitored

at the deployment network. However, BotProfiler may cause a large number of misde-

tections before a sufficient amount of benign traffic are monitored. Moreover, even if a

sufficient amount of benign traffic to calculate rarity are monitored, the rarity may cause

the undetected C&C communications; the C&C communications whose rarity scores are

low are not detected even if they exactly match the templates of the C&C communications.

In this thesis, we propose a method that detects malware-infected hosts with high de-

tection rate and low false detection rate without using the data on benign communications.

Based on the fact that many malware-infected hosts generate multiple HTTP requests,

we propose a method using the templates of the sets of the HTTP requests. This method

generates a template called group template for each malware that is constructed of the set

of templates of HTTP requests the malware generates. Then, it detects malware-infected

1

hosts by comparing the set of monitored HTTP requests with the group templates. Be-

cause the probability that the set of benign traffic matches the group templates is low,

our method rarely misdetects the benign traffic even though our method does not use the

data on the monitored benign traffic.

We implement our method and evaluate it using real traffic data. The results show

that our method detects 93.22% of malware-infected hosts with only 3% of false positive

ratio even when we do not use the data on benign traffic monitored in advance.

Keywords

Cyber Security

Malware

Detection

Bot

Template

2

Contents

1 Introduction 7

2 BotProfiler: Existing Method to Detect Malware-Infected Hosts using

Templates of an HTTP Request 9

2.1 System Overview . 9

2.2 Template Generation . 9

2.2.1 Step 1: Variability Profiling . 9

2.2.2 Step2: Template Generation . 9

2.3 Template Matching . 11

2.3.1 Step3: Rarity Profiling . 11

2.3.2 Step4: Template Matching . 11

3 Analysis of Malicious Traffic 13

4 BotProfiler++: New Method to Detect Malware-Infected Hosts using

Templates of Time-Series Access Patterns 15

4.1 System Overview . 15

4.2 Group Template Generation . 16

4.3 Detection . 16

4.3.1 HTTP Requests Group Generation 16

4.3.2 Single Template Matching . 17

4.3.3 Group Template Matching . 17

5 Evaluation 19

5.1 Data . 19

5.2 Results . 19

6 Discussion 23

7 Related Work 24

8 Conclusion 26

3

Acknowledgments 27

References 28

4

List of Figures

1 Overview of BotProfiler. 10

2 Distribution of the number of HTTP requests sent by each malware. 14

3 Distribution of the time between first and last packets sent by each malware. 14

4 Overview of our system. 16

5 Relationship between TPR and FPR of BotProfiler without RP and our

method. 21

6 Relationship between TPR and FPR of BotProfiler and our method. 22

5

List of Tables

1 Example of patterns in regular expressions. 10

2 Dataset. 20

3 The number of malware-infected hosts and the number of benign HTTP

request groups in test data. 20

4 TPR and FPR of our method when θG is changed with θH = 0.90 and

θL = 0.80. 21

5 TPR and FPR when changing θH and θL by the our method. 22

6 TPR when parameters are set so as to make FPR less than 3%. 22

6

1 Introduction

Malware-infected hosts are one of the most serious threats in network services. An attacker

controls many malware-infected hosts via command and control (C&C) servers to carry

out cyber attacks [1,2]. An infected host controlled by C&C is called a bot, and a group of

bots connected via C&C is called a botnet. An Attacker sends attack instructions to bots

to carry out attacks and receives the results of attacks by bots via C&C. The victim of

the attack observes only the packets from the malware-infected hosts. Thus, it is difficult

to identify the attacker.

One approach to stopping such attacks is to defeat the botnets [3]. Defeating the

botnets prevents cyber attacks. However, it is difficult to defeat the botnets, because the

precise track of the C&C servers and the cooperation among the relevant organizations

are necessary.

Another approach is to detect malware-infected hosts. There are two types of methods

to detect malware-infected hosts: host-based and network-based methods. A host-based

method monitors the processes and detects malware by installing programs such as an-

tivirus software. However, such programs may be disabled by the attackers if the host

is controlled by attackers. Thus, network-based approach is effective to detect malware

infected hosts, and many network-based methods have been proposed [4–6].

Kuhrer et al. proposed a blacklist system that detects C&C communication by black-

listing the known domains including C&C servers [7]. This method detects the packets to

the blacklisted domains. However, attackers frequently change the domains of the C&C

servers to avoid detection by the blacklist [8]. Thus, the blacklist is not always successful.

Methods using the template of the C&C communication instead of the blacklists have

also been proposed [9, 10]. Many botnets use HTTP as their C&C protocol. Thus, these

methods generate the template of HTTP requests that malware-infected hosts generate.

These methods monitor the HTTP requests sent from the monitored network and detect

the C&C communication based on the similarity from the template. There may be the

benign traffic similar to the template of the C&C communications. Considering such

benign traffic, they introduce a metric called rarity that indicates the infrequency of the

HTTP requests in the monitored network. That is, they calculate the similarity score

7

considering both of the rarity of the current request and the similarity between the current

request and template, and detect C&C communications if the score exceeds a predefined

threshold. Another method to avoiding misdetection of the benign traffic similar to the

template is to generate the template considering the legitimate traffic. Mizuno et al.

proposed a method to generate the template by machine learning using both of the C&C

communications and the monitored benign traffic as training data [11].

The methods to avoid the misdetection of benign traffic requires a sufficient amount

of monitored benign traffic. They may cause a large number of misdetections before a

sufficient amount of benign traffic are monitored. Moreover, even if a sufficient amount of

benign traffic to calculate rarity are monitored, the rarity may cause the undetected C&C

communications; the C&C communications whose rarity scores are low are not detected

even if they exactly match the templates of the C&C communications.

In this thesis, we propose a method that detects malware-infected hosts with high de-

tection rate and low false detection rate without using the data on benign communications.

Based on the fact that many malware-infected hosts generate multiple HTTP requests,

we propose a method using the templates of the sets of the HTTP requests. This method

generates a template called group template for each malware that is constructed of the set

of templates of HTTP requests the malware generates. Then, it detects malware-infected

hosts by comparing the set of monitored HTTP requests with the group templates. Be-

cause the probability that the set of benign traffic matches the group templates is low, our

method rarely misdetects the benign traffic even though our method does not use the data

on the monitored benign traffic. In this thesis, we implement our method and evaluate its

detection performance.

The rest of this thesis is organized as follows. Section 2 introduces an existing method

to detect malware-infected hosts based on the templates of HTTP requests. In Section 3,

we analyze the HTTP requests generated by the malware-infected hosts. We propose a

method to detect malware-infected hosts based on the group template in Section 4. We

evaluate our method in Section 5. Section 6 discusses the advantages and limitations of

our method. Section 7 reviews related work. Finally, Section 8 concludes the thesis.

8

2 BotProfiler: Existing Method to Detect Malware-Infected

Hosts using Templates of an HTTP Request

Chiba et al. proposed a system called BotProfiler [10]. BotProfiler generates templates to

detect infected hosts in a network. In this section, we first describe overview of BotProfiler,

and then explain the template generation method and template matching method.

2.1 System Overview

BotProfiler generates templates based on HTTP requests sent by the previously monitored

malware-infected hosts, and detects infected hosts by comparing the newly observed HTTP

requests with the templates. Figure 1 shows an overview of BotProfiler. It involves four

steps; step 1: variability profiling, step 2: template generation, step 3: rarity profiling,

and step 4: template matching. Steps 1 and 2 generate templates from outbound traffic

captured in sandbox system running malware samples. Steps 3 and 4 are performed at

the deployment network to detect malware-infected hosts.

2.2 Template Generation

2.2.1 Step 1: Variability Profiling

BotProfiler generates templates of an HTTP request sent by the malware-infected hosts.

Malicious infrastructures, such as malware and C&C, tend to be reused instead of created

from scratch. As a result, some substrings in HTTP requests are common to multiple

malwares. Therefore, BotProfiler extracts such a common substrings as invariable key-

words. First, substrings composed of two or more characters in URL paths, URL queries,

and user agents in HTTP requests captured in sandbox system running malware-infected

hosts are extracted as candidate keywords. From candidate keywords, invariable keywords

are then identified based on the number of malware samples using the keywords.

2.2.2 Step2: Template Generation

Step 2 generates templates using invariable keywords produced in Step 1. First, HTTP

requests are segmented into substrings with symbols (e.g., ‘/’，‘?’，‘=’，‘-’，‘.’) and

9

Honeyclient Sandbox Malware
traffic

Template generation environment

Deployment network

Web proxy

C&C server

Network
traffic

Malware
infected

hosts
report

Template

Malware samples

BotProfiler
Step 1: Variability profiling
Step 2: Template generation

BotProfiler
Step 3: Rarity profiling
Step 4: Template matching

Figure 1: Overview of BotProfiler.

Table 1: Example of patterns in regular expressions.

Data type Regular expression

String <str; length>

Integer <int; length>

Hexadecimal <hex; length>

Base64 <base64; length>

replaced with regular expressions (e.g., <str; length>) containing the data type (e.g., string

(str), integer (int), hexadecimal(hex), base64) and length indicated in Table 1.

After the replacement, similar HTTP requests are aggregated into one template.

Specifically, it runs two stage of clustering of HTTP requests, and extracts represent

one in each cluster as template. The first stage makes clusters based on the destination

IP addresses. This clustering process makes IP range clusters by grouping HTTP requests

whose destination IP addresses or destination IP prefixes are the same. The second stage

makes clusters based on the similarity between HTTP requests within each IP range clus-

ter. In this clustering, we use the similarity metric Sim (ha, hb) between HTTP requests

ha and hb that is defined by the following equation.

Sim (ha, hb) =
1

n
·

n∑
k=1

σk (ha, hb) (1)

Here, σk is the function to calculate similarities between elements in ha and hb, and

n is the number of considered elements; we set n = 4. Specifically, σ1 is the similarity

10

between URL paths and is calculated using the normalized edit distance, σ2 is the simi-

larity between the combination of parameter names in the URL queries and is calculated

using the Jaccard similarity, σ3 is the similarity between the values in the URL queries

and is calculated using the ratio of having the same data type and length, and σ4 is the

similarity between user agents and is calculated using the normalized edit distance. The

above definitions result in σk ∈ [0, 1] ,∀k and Sim (ha, hb) ∈ [0, 1].

After two stage of clustering, BotProfiler extracts the centroid in each clusters. Specif-

ically, it extract the centroid which refers to one of the HTTP requests that maximizes

the sum of similarities between the request and all other requests. From the centroids, the

templates that contain URL paths, URL queries, and useragents are extracted.

2.3 Template Matching

2.3.1 Step3: Rarity Profiling

Step 3 calculate the rarity that indicates the infrequency of the HTTP request monitored

at the deployment network. BotProfiler focused on the rarity about URL paths, URL

queries, and user agents. The rarity ρt,k of an element k in a template t is calculated using

the following equation.

ρt,k = 1−
nt,k

maxini
(2)

Here, nt,k is the number of hosts that send HTTP requests containing k in t, and

maxini is the maximum number of hosts in all elements of the same type (e.g., URL

paths, URL queries, and user agents). The definition results in ρt,k ∈ [0, 1] ,∀t,∀k.

2.3.2 Step4: Template Matching

Step 4 detects malware-infected hosts based on the matching score. Specifically, a match-

ing score Score(h, t) between an HTTP requet h and a template t is calculated from the

following equation.

Score(h, t) =

∑n
k=1 σk (h, t) · ω (σk (h, t) , ρt,k)∑n

k=1 ω (σk (h, t) , ρt,k)
· ρh,d (3)

11

Here, σk (h, t) is defined in the same way as explained in Section 2.2.2, ρt,k is the rarity

of k in t. ρh,d is the rarity of a destination fully qualified domain name (FQDN) d in h

and is calculated in the same way as step 3, and ω is the weight function between σk (h, t)

and ρt,k and is defined by the following equation.

ω (σk (h, t) , ρt,k) = 1 +
1

(2− σk (h, t) · ρt,k)m
(4)

Here, m is a fixed parameter and determined empirically. The above definitions result

in Score (h, t) ∈ [0, 1]. Score (h, t) is designed to be high when the similarity between an

HTTP request h and a template t is high, and the rarities of elements in t are high in a

deployment network. If Score(h, t) exceeds a predefined threshold, which means an HTTP

request closely matches a template and the elements in the request have rarely appeared

in the deployment network, BotProfiler determines h to be generated by an infected host.

12

3 Analysis of Malicious Traffic

In this section, we investigate the traffic sent by the malware-infected hosts. Malware

traffic was captured from the sandbox system running malware samples. The malware

samples were collected using the honyeclient crawling public blacklists such as MDL [12]

and hpHosts [13] and some commercial blacklists.

Figure 2 shows the distribution of the number of HTTP requests sent by each malware-

infected host. The x-axis is the number of HTTP requests sent by each malware-infected

host, and y-axis is the number of hosts. Figure 2 omits the points of more than 20 HTTP

requests, because only 3% of the malware-infected hosts generate more than 20 HTTP

requests. Figure 2 shows that more than 90% of malware-infected hosts send multiple

HTTP requests.

Figure 3 shows the distribution of the time between the first and the last packets

sent by each malware-infected host. The x-axis is the time between the first and the last

packets sent by each malware-infected host, and the y-axis is the number of malware-

infected hosts. Figure 3 omits the points of more than 30 seconds, because only less than

10% of the malware-infected hosts generates HTTP requests for more than 30 seconds.

Figure 3 shows that most of the malware-infected hosts sent multiple HTTP requests

within 30 seconds. That is, we can obtain the features of multiple HTTP requests sent by

malware-infected hosts by monitoring HTTP requests for 30 seconds.

13

Figure 2: Distribution of the number of HTTP requests sent by each malware.

Figure 3: Distribution of the time between first and last packets sent by each malware.

14

4 BotProfiler++: New Method to Detect Malware-Infected

Hosts using Templates of Time-Series Access Patterns

BotProfiler detects malware-infected hosts using the similarity between an HTTP request

and a template and the rarities of elements. However, Botprofiler may misdetect a large

amount of benign traffic before a sufficient amount of benign traffic are monitored. More-

over, even if a sufficient amount of benign traffic to calculate rarity are monitored, the

rarity may cause the undetected C&C communications; the C&C communications whose

rarity scores are low are not detected even if they exactly match the templates of the C&C

communications.

Therefore, we propose a method that detects malware-infected hosts with high detec-

tion rate and low false detection rate without using the data on benign communications.

Based on the fact that most of malware-infected hosts generate multiple HTTP requests,

our method is based on the template for the set of multiple HTTP requests. This method

generates a template called group template for each malware that is constructed of the set

of templates of HTTP requests the malware generates. Then, it detects malware-infected

hosts by comparing the set of monitored HTTP requests with the group templates. Be-

cause the probability that the set of benign traffic matches the group templates is low,

our method rarely misdetects the benign traffic even though our method does not use the

data on the monitored benign traffic.

4.1 System Overview

Figure 4 is an overview of our system. This system generates and uses the group template

in addition to the single template generated by the BotProfiler. In our system, a group

template T is defined by the set of single templates UT that matches the of the HTTP

requests sent by the malware-infected host, and the number of matched HTTP requests

for each single template ti (i ∈ UT).

The details of our method is explained in the rest of this section.

15

Honeyclient Sandbox Malware
traffic

Template generation environment

Deployment network

Web proxy

C&C server

Network
traffic

Malware
infected

hosts report

Single
template

Malware samples

・Variability
profiling

・Single template
generation

Single template
matching

Group template
generation

Group template
matching

Group template

BotProfiler

Our Method

HTTP requests
group generation

Figure 4: Overview of our system.

4.2 Group Template Generation

Our method first generates the single template by the same way as the Botprofiler using

the malware traffic captured at the sandbox running malware-infected hosts. Then, based

on the generated single template, we generate the group template by using the same

malware traffic.

A group template are generated by the following steps for each malware-infected hosts.

First, we select the single templates for each HTTP request sent by the host whose simi-

larity is the highest. The selected templates are added to UT . Then, we count the number

of matched HTTP request ti for i ∈ UT .

4.3 Detection

4.3.1 HTTP Requests Group Generation

We first divide the time series of the HTTP requests into HTTP request groups, which are

compared with the group templates. In this thesis, we divide the HTTP requests based on

time. That is, the HTTP requests sent within a predefined time length are grouped into a

HTTP request group. By setting the time length to a sufficiently large value, each HTTP

request group includes a sufficient number of HTTP requests to capture the features of

the HTTP requests sent by the malware-infected hosts.

16

4.3.2 Single Template Matching

Before using the group template, we first use the single template generated by BotProfiler

to detect malware-infected hosts. However, unlike BotProfiler, we do not use the rarity,

because we assume that a sufficient amount of benign traffic to calculate the rarity is not

monitored. Therefore, we use the matching score Score(h, t) defined by

Score(h, t) =

n∑
k=1

σk (5)

If Score(h, t) ≤ θL for all HTTP requests in the HTTP requests group, the HTTP

requests group is decided as benign, because all of the HTTP requests does not match any

single template. If Score(h, t) ≥ θH for any HTTP requests in the HTTP requests group,

the HTTP requests group is decided as malicious, because there are HTTP requests that

exactly match the features of the HTTP requests generated by the malware-infected hosts.

Otherwise, we perform the group template matching.

4.3.3 Group Template Matching

We detect the malware-infected hosts by comparing the HTTP request groups with the

group templates. To compare them, we define the matching score S(D,T) between an

HTTP request group D and a group template T , and detect malware-infected hosts when

S(D,T) for one of group templates exceed the predefined threshold θG.

Though more sophisticated definition of S(D,T) may exist, we simply define S(D,T)

by

S (D,T) = 1− 1

|UT |
∑
i∈UT

s (di, ti) (6)

s (di, ti) =

α (di = 0)

β(ti−di)
ti

(0 < di ≤ ti)

0 (di > ti)

(7)

Here, D is a HTTP requests group, and T is a group template. di is the number of

HTTP requests in D that whose score Score(h, t) for single template i exceeds threshold

17

θL. α and β are fixed parameters and α >> β. S(D,T) becomes large as more single

template in the group template T matches the HTTP request in the HTTP request group

D.

By comparing HTTP request groups with the group template, our method accurately

detects malware-infected hosts even when a sufficient amount of benign traffic to calculate

the rarity is monitored, because the probability that multiple benign HTTP requests match

the single template included in the group templates is small.

18

5 Evaluation

5.1 Data

Malware traffic was captured from the sandbox system [14] running malware samples.

The sandbox supports executable files only in Microsoft Windows environments. These

malware samples were collected using the honyeclient crawling public blacklists such as

MDL [12] and hpHosts [13] and some commercial blacklists. Benign traffic was captured

in an university. We divide malware samples and benign traffic into training data and

testing data according to the date when the sample was collected. Table 2 shows the

numbers of malicious HTTP requests and benign HTTP requests. Note that the benign

HTTP requests in the training data set is not used by our method and is used only by

BotProfiler.

In our method, HTTP requests are divided into HTTP request groups. In this thesis,

we group the HTTP requests sent within 30 seconds from the first request into an HTTP

request group, because the discussion on Section 3 indicates that most of malware-infected

hosts generate multiple HTTP requests within 30 seconds.

Table 3 shows the benign HTTP request groups generated from the test data shown

in Table 2. In this evaluation, we define the False Positive Rate (FPR) by the ratio of the

number of the detected benign HTTP request groups to the total number of generated

HTTP request groups shown in Table 3. Table 3 also shows the number of malware-

infected hosts in the test data. In this evaluation, we define the True Positive Rate (TPR)

by the ratio of the number of the detected malware-infected hosts to the total number of

tested malware-infected hosts.

5.2 Results

Figure 5 shows the relationship between TPR and FPR. In this figure, we plot the TPR

and FPR of our method by changing θG from 0.0 to 1.0 by 0.01. This figure also includes

the results for the method that performs only the simple template matching using Eq.

(5). We call this method BotProfiler without RP: Rarity Profiling. We also plot the TPR

and FPR by changing θH from 0.0 to 1.0 by 0.01.

Figure 5 indicates that our method achieves higher TPR and lower FPR than Bot-

19

Table 2: Dataset.

Training Testing

Label Period # HTTP requests Period # HTTP requests

Malicious 2017/8/1 - 2017/12/31 656,714 2018/1/1 - 2018/3/31 442,532

Benign 2018/12/1 - 2018/12/31 291,343 2018/1/1 - 2018/3/31 876,778

Table 3: The number of malware-infected hosts and the number of benign HTTP request

groups in test data.

Malware-infected hosts Benign HTTP requests groups

44,116 30,863

Profiler without RP. This is because our method uses the group template. The group

template matching detects malware-infected hosts even if HTTP requests match multiple

single templates, which avoids misdetections.

To discuss the details of results, we investigates the TPR and FPR of our method when

θG is changed. Table 4 shows the FPR and TPR when θH = 0.90 and θL = 0.80. Table 4

indicates that θG has only a small impact on the TPR and the FPR. This is because the

matching score for group template does not become larger than 0.75 unless multiple single

templates are matched. That is, by setting θG to the value more than 0.75, only HTTP

request groups including multiple HTTP requests matches different single templates are

detected. As a result, we avoid misdetection.

Table 5 investigates the impact of θH and θL on the TPR and the FPR. In Table 5,

we set θG = 0.85. Table 5 indicates that a small θH causes many misdetection. That is,

θH should be set to a large value. Table 5 indicates that a small θL makes TPR high even

if θH is set to a large value. Therefore, our method achieves a high TPR and a small FPR

by setting θH to a large value and θL to a small value.

We also compare our method with BotProfiler using rarity profiling. Figure 6 compares

the TPR and FPR, similar to Figure 5. Figure 6 indicates that BotProfiler achieves very

low FPR. That is, the rarity profiling is useful to avoid misdetection. However, BotProfiler

cannot achieve TPR more than 87.17%. This is because the malicious HTTP requests

similar to the benign HTTP requests are not detected by BotProfiler. On the other

20

Figure 5: Relationship between TPR and FPR of BotProfiler without RP and our method.

Table 4: TPR and FPR of our method when θG is changed with θH = 0.90 and θL = 0.80.

θG 0.90 0.85 0.80 0.75

TPR 87.87% 87.87% 87.88% 87.91%

Proposed FPR 3.18% 3.18% 3.52% 3.56%

hand, our method achieves TPR more than 87.17%. This is because our method detects

malware-infected hosts when multiple single templates matches. As a result, our method

detects infected hosts even when HTTP requests from the infected hosts are similar to the

benign HTTP requests.

To simply compare our method with BotProfiler and BotProfiler without RP, we com-

pare the TPRs when the thresholds are set so as to make the FPR less than 3% in Table

6. Our method with θL = 0.80 and θH = 0.90 cannot achieve FPR less than 3%. Table 6

indicates that our method with θL = 0.40 and θH = 0.95 achieves the highest TPR.

21

Table 5: TPR and FPR when changing θH and θL by the our method.

θH θL TPR FPR

0.95 0.40 93.22% 1.80%

0.95 0.80 87.49% 0.76%

0.90 0.80 87.87% 3.18%

Figure 6: Relationship between TPR and FPR of BotProfiler and our method.

Table 6: TPR when parameters are set so as to make FPR less than 3%.

TPR

BotProfiler without RP 86.18%

BotProfiler 87.17%

θH = 0.95, θL = 0.40 93.22%

Our method θH = 0.95, θL = 0.80 87.49%

θH = 0.90, θL = 0.80 -

22

6 Discussion

The Case where Malicious and Benign Traffic are Mixed In our evaluation, we

use the malicious traffic captured at the sandbox as the malicious test data. That is,

the malicious test data does not include benign traffic. On the other hand, in the real

environment, malware-infected hosts are also operated by the user and generate benign

traffic in addition to the malicious traffic. Our method detects malware-infected hosts

even in such cases because our method detects the infected hosts if there exists multiple

HTTP requests matches the templates in the group template. That is, the benign traffic

does not prevent the detection by our method.

HTTP Request Group Generation In our evaluation, we generate HTTP request

groups by simply dividing the time series of the HTTP requests. But, HTTP request

groups should be generated so as to include a sufficient number of HTTP requests to

identify the requests sent by the infected hosts. One approach to generating HTTP request

groups is a sliding window approach. In this approach, when a new HTTP request arrives,

an HTTP request group that includes the HTTP request within s seconds are generated.

And, if one of the generated HTTP request groups is detected as malicious, the malware-

infected hosts are detected.

Parameter Tuning According to the results, the TPR and the FPR depend on the

parameters. A suitable parameter may be set based on the malicious traffic collected at

the sandbox; the parameter should be set to detect malicious traffic but the range that

are regarded to malicious should be small so as to avoid misdetection. A method to set

the suitable parameters is one of our future work.

23

7 Related Work

Various methods for malware-infected hosts have been proposed. Gu et al. proposed

a detection method by modeling the relationship of common actions when hosts are in-

fected by malwares [4]. However, this method is host-based, and the operation of the

malware detection program may be disabled when malware-infected hosts are controled

by attackers.

Therefore, many researchers focus on the network-based methods. Perdisci et al. pro-

posed a method of generating signatures with regular expressions to detect the URLs used

in C&C communications based on HTTP traffic captured in a controlled environment [5].

Nelems et al. proposed a system called ExecScent, which generates templates with regular

expressions and detects malware-infected hosts using not only the similarity of templates

but also rarity which indicates frequency of HTTP requests generally occurring in moni-

toring target network [9]. Chiba et al. improved Nelems et al.’s method, which focused on

common substrings appears among multiple malware because malicious infrastructures,

such as malware and C&C, tend to be reused instead of created from scratch [10]. This

method is called BotProfiler. BotProfiler extracts these substrings as invariable keywords

and generates templates with invariable keywords and regular expressions. Mizuno et al.

proposed a method using machine learning. This method classifies traffic as malicious and

benign. After classifying, it aggregates similar features and generates template.

These methods requires a sufficient amount of monitored benign traffic to avoid mis-

detection of benign traffic. They may cause a large number of misdetections before a

sufficient amount of benign traffic are monitored. On the other hand, our method focuses

on the fact that many malware-infected hosts generate multiple HTTP requests, and de-

tects malware-infected hosts with high detection rate and low false detection rate without

using the data on benign communications.

There are a method to detect malicious traffic by using multiple HTTP requests. We

have proposed another method to detect drive-by download attacks [15], instead of focusing

on the C&C communications. Drive-by download attacks are carried out by an attacker

guiding from a tampering site through a multilevel redirect to the malware download site.

This method learns such multilevel redirect structure as a feature of drive-by download

24

attacks. This method uses a series of HTTP requests included in drive-by download

attacks and a series of benign HTTP requests that occur on a daily for learning. On the

other hand, in this thesis, we focus on the C&C communications and generates group

templates of multiple HTTP requests sent by malware-infected hosts. We demonstrate

that our method using the group templates accurately detects malware-infected host even

when the information on the benign traffic are not observed.

25

8 Conclusion

We proposed a method that detects malware-infected hosts with high detection rate and

low false detection rate without using the data on benign communications. Based on

the fact that many malware-infected hosts generate multiple HTTP requests, our method

uses the templates of the sets of the HTTP requests. This method generates a template

called group template for each malware that is constructed of the set of templates of HTTP

requests the malware generates. Then, it detects malware-infected hosts by comparing the

set of monitored HTTP requests with the group templates. Because the probability that

the set of benign traffic matches the group templates is low, our method rarely misdetects

the benign traffic even though our method does not use the data on the monitored benign

traffic.

We implemented our method and evaluated it using real traffic data. The results show

that our method detects 93.22% of malware-infected hosts with only 3% of false positive

ratio even when we do not use the data on benign traffic monitored in advance. However,

the true positive rate and false positive rate depend on the parameters. The parameter

should be set to detect malicious traffic but the range that are regarded to malicious should

be small so as to avoid misdetection. A method to set the suitable parameters is one of

our future work.

26

Acknowledgments

This thesis would not accomplish without a lot of great support from many people. First,

I would like to express my deepest gratitude to Professor Masayuki Murata of Osaka

University, for providing me with the opportunity to research with a talented team of

researchers. His creative suggestions, insightful comments, and patient encouragement

have been essential for my research activity.

Furthermore, I would like to show my greatest appreciation to Associate Professor

Yuichi Ohsita of Osaka University. He devoted a great deal of time for me and gave me a

lot of advice about my research. Without his continuous support, my work would not be

accomplished. In addition, he enthusiastically taught me the way of thinking and writing.

They must be invaluable skills in the future of my life.

Moreover, I would like to show my appreciation to Associate Professor Shin’ichi Arakawa,

Assistant Professor Daichi Kominami, Assistant Professor Naomi Kuze, and Specially Ap-

pointed Assistant Professor Tatsuya Otoshi of Osaka University for appreciated comments

and support. Their kindnesses on my behalf were invaluable, and I am forever in debt.

I am grateful to Dr. Mitsuaki Akiyama, Dr. Daiki Chiba, and Mr. Toshiki Shibahara

of NTT Corporation for providing me many valuable comments. The opportunity of

discussion at the NTT Secure Platform Laboratories improved my explanation capability.

I am also grateful to Specially Appointed Professor Makoto Imase of Osaka University

for his advice of my research and experimental environment. His advice from different

perspective points of view was always informative and helpful.

I would like to thank all the members of Advanced Network Architecture Research Lab-

oratory at the Graduate School of Information Science and Technology, Osaka University,

for their inciting discussions and fellowship.

Last, but not least, I thank my parents and my sister for their invaluable support and

constant encouragement during my master studies.

27

References

[1] M. Feily, A. Shahrestani, and S. Ramadass, “A Survey of Botnet and Botnet Detec-

tion,” in Proceedings of Third International Conference on Emerging Security Infor-

mation, Systems and Technologies. IEEE, 2009, pp. 268–273.

[2] A. Emigh, “The Crimeware Landscape: Malware, Phishing, Identity Theft and Be-

yond,” Journal of Digital Forensic Practice, vol. 1, no. 3, pp. 245–260, 2006.

[3] R. Boscovich, “Microsoft and Financial Services Industry Leaders Target Cybercrim-

inal Operations from Zeus Botnets,” The official Microsoft blog, 2012.

[4] G. Gu, P. A. Porras, V. Yegneswaran, M. W. Fong, and W. Lee, “Bothunter: De-

tecting Malware Infection Through IDS-Driven Dialog Correlation.” in Proceedings

of USENIX Security Symposium, vol. 7, 2007, pp. 1–16.

[5] R. Perdisci, W. Lee, and N. Feamster, “Behavioral Clustering of HTTP-Based Mal-

ware and Signature Generation Using Malicious Network Traces.” in Proceedings of

15th USENIX Symposium on Networked Systems Design and Implementation, vol. 10,

2010, p. 14.

[6] R. Bortolameotti, T. van Ede, M. Caselli, M. H. Everts, P. Hartel, R. Hofstede,

W. Jonker, and A. Peter, “DECANTeR: DEteCtion of Anomalous outbouNd HTTP

TRaffic by Passive Application Fingerprinting,” in Proceedings of the 33rd Annual

Computer Security Applications Conference. ACM, 2017, pp. 373–386.

[7] M. Kührer, C. Rossow, and T. Holz, “Paint it black: Evaluating the effectiveness of

malware blacklists,” in Proceedings of International Workshop on Recent Advances in

Intrusion Detection. Springer, 2014, pp. 1–21.

[8] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware detection methods,”

in Proceedings of the 3rd Hackers ’Workshop on Computer and Internet Security,

2009, pp. 74–79.

28

[9] T. Nelms, R. Perdisci, and M. Ahamad, “ExecScent: Mining for New C&C Do-

mains in Live Networks with Adaptive Control Protocol Templates.” in Proceedings

of USENIX Security Symposium, 2013, pp. 589–604.

[10] D. Chiba, T. Yagi, M. Akiyama, K. Aoki, T. Hariu, and S. Goto, “BotProfiler: De-

tecting Malware-Infected Hosts by Profiling Variability of Malicious Infrastructure,”

IEICE Transactions on Communications, vol. 99, no. 5, pp. 1012–1023, 2016.

[11] S. Mizuno, M. Hatada, T. Mori, and S. Goto, “Botdetector: A robust and scalable

approach toward detecting malware-infected devices,” in Proceedings of IEEE Inter-

national Conference on Communications. IEEE, 2017, pp. 1–7.

[12] “Malware Domain List.” http://www.malwaredomainlist.com/, accessed December

10. 2018.

[13] “Malwarebytes,” http://www.hosts-file.net/, accessed December 10. 2018.

[14] K. Aoki, T. Yagi, M. Iwamura, and M. Itoh, “Controlling Malware HTTP Commu-

nications in Dynamic Analysis System using Search Engine,” in Proceedings of Third

International Workshop on Cyberspace Safety and Security. IEEE, 2011, pp. 1–6.

[15] T. Shibahara, K. Yamanishi, Y. Takata, D. Chiba, T. Hokaguchi, M. Akiyama,

T. Yagi, Y. Ohsita, and M. Murata, “Event De-Noising Convolutional Neural Network

for Detecting Malicious URL Sequences from Proxy Logs,” IEICE TRANSACTIONS

on Fundamentals of Electronics, Communications and Computer Sciences, vol. 101,

no. 12, pp. 2149–2161, 2018.

29

