
Master’s Thesis

Title

Implementation of M2M applications for demonstrating

benefits of ICN architecture

Supervisor

Professor Masayuki Murata

Author

Yuhao Gao

February 8th, 2019

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Keywords

ICN (Information-centric Networking)

General purpose framework

M2M (machine-to-machine) communication

Service Migration and Execution Management

NDN (Named Data Networking)

1

Contents

1 Introduction 5

2 Related work 7

2.1 Information-centric networking . 7

2.2 Machine-to-machine communication . 8

2.3 Service migration and execution management 9

3 ICN-based and IP-based design of operations and ICN benefits for the

development 10

3.1 Application logic of M2M communication applications 10

3.1.1 Abstraction and requirements . 10

3.1.2 ICN-based design . 16

3.1.3 IP-based design . 20

3.1.4 Benefits of ICN compared to IP networks 24

3.2 Service migration and execution management 27

3.2.1 The abstraction and requirements 27

3.2.2 ICN-based design . 30

3.2.3 IP-based design . 35

3.2.4 Benefits of ICN compared to IP networks 37

4 Proof of concept in a specific scenario 38

4.1 Scenario overview and requirements . 38

4.2 ICN-based design . 42

4.3 IP-based design . 44

4.4 Experiment . 44

4.5 Benefits of ICN compared to IP networks 47

5 Conclusion and future work 51

Acknowledgements 52

References 53

2

Appendix 53

A. Implementation of the average value retrieval 53

B. Implementation of the device control based on the instruction in the

guiding system 65

3

List of Figures

1 Abstraction of general M2M communication applications 13

2 ICN-based implementation of the service location advertisemen and the

service requesting in the M2M communication application 19

3 ICN-based implementation of the service execution and responding in the

M2M communication application . 20

4 IP-based implementation of the service advertisement and the service re-

questing in the M2M communication application 22

5 IP-based implementation of the service execution and responding in the

M2M communication application . 23

6 Abstraction of general service migration and execution management oper-

ations . 28

7 ICN-based implementation of the service requesting in the service migration

and execution management . 34

8 IP-based implementation of the service requesting in the service migration

and execution management . 36

9 Guiding system overview . 39

10 Guiding system node behavior overview . 41

11 PoC scenario node behavior overview . 42

12 ICN-based design of the PoC scenario communication 44

13 IP-based design of the PoC scenario communication 44

14 Robot behaviors in the experiment . 47

15 The overview of the average value retrieval communication 53

16 The diagram of the average value retrieval communication in ICN over IP . 53

17 The diagram of the average value retrieval communication in IP 54

4

List of Tables

1 Details of service requests and the responder behavior in each service category 15

2 Service identities of each service category in M2M communication applications 17

3 Application design differences in ICN and IP 25

4 Details of service requests and the responder behavior of each service category 30

5 Service identities of each service category in the management operation . . 32

6 Name space in the ICN-based design of the PoC scenario 43

7 Software used in the experiment . 45

8 Amount of executable instructions in the ICN and the IP program 48

5

1 Introduction

Information-centric networking (ICN) is a new generation network concept aiming to solve

problems altogether in terms of the robustness, the efficiency, the development cost and so

on. Compared with IP-based architectures, ICN-based architectures primitively embedded

several useful facilities including the name used as the invocation mechanism of services,

the in-network caching, the programmable router and so on, which enhances the system

performance and makes developers comprehend and solve the problems easily.

Currently, various ICN-based frameworks and ICN benefits for users and developers

in specific scenarios have been proposed. ICN is originally designed to realize the effi-

cient content distribution in many-to-many communications, and recent research imply

that ICN may have benefits in distributed computing such as the mobile edge computing.

Because ICN nodes are programmable and are able to retrieve and to execute services

not only in servers but also in routers, which enables the efficient processing. Researchers

have found that ICN has benefits in certain specific application scenarios such as control-

ling Internet of things (IoT) lights, collecting sensor data and processing the data, and

intermittent communications using movable routers. ICN developers intend to develop ap-

plications in various scenarios rather than previously discussed scenarios, but ICN benefits

in general scenarios have not been discussed. If developers know that ICN-based architec-

tures have benefits in certain general scenarios, various applications of general scenarios

have opportunities to be discussed and realized in real-world.

In this thesis, we propose benefits of using the ICN-based architecture for the devel-

opment of general applications and operations compared with the IP-based architecture.

Since arbitrary application with operations well-adapted to ICN and arbitrary network

optimization operations are able to be implemented in ICN layer and to show that ICN

is able to realize easy implementation compared with IP, we discuss the development of

general M2M communication applications and the service migration and execution man-

agement. We show the benefits by comparing the IP-based and the ICN-based design of

those operations. We also present the implementation of specific scenario APIs to confirm

the benefits. The specific application scenario is controlling IoT guidance devices such as

panels and robots to guide people to reach the destination. Through comparing the IP

6

and the ICN design of the specific application APIs, we confirm that the ICN benefit is

that ICN is able to realize the easier implementation of the application logic of general

M2M communications, the service migration and execution management, the caching, and

the publish/subscribe communication than IP.

This thesis is organized as follows. We compare this work with related works including

the ICN, M2M communication, and the service migration and execution management in

Section 2. We show the design and implementation method of M2M application in ICN

and IP, and show the ICN benefits in the application implementation in Section 3. We

confirm the feasibility of the method by designing and implementing a specific application

with the method, and show the ICN benefits in the specific application implementation in

Section 4. We summarize this thesis and show the future work in Section 5.

7

2 Related work

2.1 Information-centric networking

ICN is a new generation network concept aiming to solve problems altogether in efficiency,

robustness, development cost and so on. ICN standardly embeds the content-based packet

awareness, programmability, publish-subscribe, caching mechanism in the network layer.

In recent years, in terms of specific application scenarios, many architectures and pro-

tocols have been proposed and the ICN benefit in those scenarios for service users has

been shown. In the scenario of retrieving real-time contents for Intelligent Transporta-

tion System and a drone connecting to the internet retrieving sensor data of geographical

information, the ICN is able to communicate efficiently by using the primitive publish-

subscribe mechanism [?, ?]. In the scenario of retrieving data from distributed databases,

ICN is able to reduce the waste service request when the service becomes unavailable and

communicate efficiently by using the primitive service availability management mechanism

[?]. In the scenario of the home IoT device cooperation such as controlling the light based

on the sensor data, ICN is able to realize the easy maintenance of the service location

without using IP addresses when the developer deploys, resets, and changes the device

hardware [?]. In the scenario of communications between multiple fragmented networks

without the interactive connection with a movable router to switch and forward packets,

ICN is able to reduce the moving distance of the movable router and communicate effi-

ciently and robustly by using the primitive caching and the service availability mechanism

[?, ?, ?].

The research about architectures and protocols for optimizing the network resource

such as the CPU resource and the bandwidth has been conducted recently. Since the

application function is able to be treated as the content and to be migrated to other nodes,

the architecture for migrating services and managing the CPU resource has been proposed

[?, ?]. By using the ICN primitive publish/subscribe mechanism, ICN is able to enhance

the performance of communications between mobile nodes. Various mobility support

techniques in ICN including routing-based, mapping-based, trace-based, data spot, and

data depot methods have been proposed [?, ?]. The research about the name scheme and

the caching protocol in various scenarios have been conducted [?, ?].

8

In this work, we show the ICN benefit in the application implementation. Since ICN is

able to realize the application function in the network layer, ICN can be a general purpose

framework in the development of various application domains by embedding the function

able to be reused in other domains into the ICN framework. The easy implementation

of applications is able to be achieved by assembling the network layer service instead of

scratching low-level services.

2.2 Machine-to-machine communication

M2M communications mean communications between machines able to connect to other

machines. Massive devices are considered to join the network and massive data will be

transmitted. The major use cases include the security and the public safety, smart grid,

tracking and tracing, vehicular telematics, payment, healthcare, and remote control.

The vision and the requirement of M2M communication have been indicated [?]. The

vision is to realize the compute-rich/high-performance hardware, the ultra scalable con-

nectivity, and the cloud-based mass device management and services. The requirement

includes the enhancement of transmission, security, operation and resource management.

The major architecture for machine type communications includes multiple layers: the de-

vice layer, the network layer, and the application layer [?]. The device layer is responsible

for providing low-level primitive service such as data generation, device control, and data

processing. The network layer is responsible for optimizing the resource and the operation.

The application layer is responsible for realizing the high-level business logic. Various al-

gorithm and protocols enhancing the efficiency and the scalability of the resource and the

operation have been proposed [?, ?].

In this work, we show the M2M communication abstraction including the major M2M

communication which is an instance of communications with operations which are well-

adapted to ICN and are able to show the ICN benefits in the application implementation.

We consider the major communication in M2M communications includes the distributed

machine cooperation which is one of the distributed computing and is well-adapted to

ICN.

9

2.3 Service migration and execution management

Service migration and execution management means migrating service functions to the op-

timal node and instructing the function execution based on the measurement information

for the optimization.

Service migration and execution management is considered as one instance of the net-

work optimization operation focusing on the resource allocation and the operation. Since a

service function can be considered as a content able to be delivered, the publish-subscribe

mechanism is able to be applied to the actual communication for managing service re-

quests and service responses [?]. Since the decision-making algorithm of the management

should satisfy the requirement of specific scenarios such as the migrated function should

keep up with the user mobility, the computing resource usage and so on, various problem

formulations and strategies and protocols have been proposed. The migration manage-

ment operation can be considered as a sequential decision making problem and is able to

be formulated with the Markov decision process technique [?, ?].

In this work, we show the operation abstraction including the major migration and

execution management operations which is an instance of communications with general

purpose operations able to be used in various domains and is able to show the ICN benefits

in the application implementation.

10

3 ICN-based and IP-based design of operations and ICN

benefits for the development

In this section, our purpose is to show the design of general operations in certain ap-

plication domains and ICN benefits for the application development. We describe the

ICN-based and the IP-based design of the M2M communication application and the ser-

vice migration and execution management which are instances of application operations

well-adapted to ICN and network optimization operations. The network optimization

operation means the operation optimising resources in the network (e.g., computing and

transmission resources) and the node processing. Next, we show the ICN benefits for the

application development.

Modules of operations well-adapted to ICN and general purpose operations including

the network optimization operation is able to be standardly embedded in ICN. Application

developers can use the modules in the application development to cut down the develop-

ment time, which is considered as the ICN benefits for the development. Any instance of

these operations can show the ICN benefits. The M2M communication and the service

migration and execution management are instances of these operations and are able to

make full use of the ICN potential in the distributed cooperation and computing which is

considered as one of the important applicable domain in ICN.

In this work, we use terms of the requester and the responder representing nodes

related to services.

3.1 Application logic of M2M communication applications

3.1.1 Abstraction and requirements

The service system is a system that when users inform servers to provide them services

needed in a scenario, servers accomplish several steps of processes needed in the service

logic and provide the services to users.

The system is supposed to include following roles of nodes. A node in the network

is able to have multiple roles. Servers are supposed to have a part of roles including

application user interface (AUI), application decision-maker (ADM), data processor (DP),

11

and content provider (CP).

• User: a trigger of services.

• AUI: provide user the access to applications and the application service in application-

specific format.

• ADM: make decisions and request services provided by other nodes and send service

responses based on the application logic.

• DP: process content data.

• CP: generate and provide contents for the user’s retrieval, the data processing, and

the decision-making.

Regarding to system requirements, users request application services in a certain fre-

quency, and servers are supposed to give users services in a certain frequency. The entire

service logic can be divided into several parts, and each part of the logic can be included

in a function. By servers executing functions, servers are able to achieve the service logic

and then provide services to users.

In the function execution, functions are supposed to be executed in the scenario-specific

order. It means that if a function has been executed, the next function is supposed to

be called and be executed. The server finishing the execution is supposed to notify the

server with the next function to execute the function. Some functions need input data for

processing. The data is produced by servers and devices called responders. Servers with

the functions are supposed to send requests to responders for retrieving the input data.

To satisfy the requirements, nodes are supposed to include functions and behaviors

shown in the following itemization and Fig.1. An arbitrary application we propose in this

section as a general application is able to be realized by including multiple following nodes

and combining multiple following node behaviors.

• Users: send contents and content requests and service requests to AUI in a certain

frequency.

• AUI: An AUI keeps functions including updating the state of itself when receive

interface control commands. An AUI is able to send signal to other AUIs to invoke

12

the function for updating the state of other AUIs. An AUI is able to send service

requests to ADM and to send content requests to CP and to send contents to DP.

• ADM: An ADM keeps functions for the decision-making. An ADM is able to send

contents and signals to other ADMs to invoke the function for the further decision-

making. An ADM is able to respond to service requests from AUIs with interface

control commands. An ADM is able to send content requests to CP and to send

contents to DP. The push communications of pull behaviors are able to be conducted.

• CP: A CP is able to send contents and content requests to other CPs for the ag-

gregation. A CP is able to respond to content requests with contents. The push

communications of pull behaviors are able to be conducted.

• DP: A DP keeps functions for the data processing. A DP is able to send contents

and signals to other DPs to invoke the function for the further processing. A DP is

able to respond to contents with processed contents.

13

Figure 1: Abstraction of general M2M communication applications

Communications in Fig.1 are able to be classified into pull communications and push

communications. Since the research of the push communication general design is still in

progress in the ICN research and the push communication’s aim is able to be realized

in the pull communication, we only discuss the pull communication requirement and the

design and the implementation in this work.

The pull communications in Fig.1 are able to be considered as instances of the service

request operation that requesters request the responders to execute service behaviors and

to provide service responses. The services are able to be classified into 4 categories includ-

ing the decision-making, the content retrieval, the data processing, the AUI control. Any

node in Fig.1 can be a requester. A responder can be an ADM or a CP or a DP or an

AUI.

As for operation requirements, when a requester requests services, the requester needs

14

the service identity information, and the service location information or the location in-

formation of a responder keeping the service location information. If a node with a cache

of the requested service decides to provide the service, the node becomes a responder. A

requester keeps the identity information of services requester intends to request since the

application developer knows what service the requester is supposed to request in an appli-

cation scenario. Therefore, only the service location information is needed to be provided

by responders. The following itemization show requirements of the service requesting.

1. A responder is supposed to advertise the service location information to let a re-

quester know the service location.

2. A requester is supposed to send service requests to the location. The details of

service requests in each service category is shown in Table 1.

3. A responder receiving a request of services is supposed to execute functions corre-

sponding to requested services and to return the service response to the requester.

The responder behaviors in each service category are shown in Table 1.

15

Table 1: Details of service requests and the responder behavior in each service category

Service cat-

egory

Details of the service request responder behavior

Decision-

making

A decision-making request for

the high-level API execution

in the ADM

The responder is an ADM. The ADM is

supposed to execute the high-level API

kept in the ADM and return the API re-

sponse, which conducts actions including

sending service requests to other nodes

and forwarding service responses from

other nodes to the requester.

Content re-

trieval

A content request including

identities of requesting con-

tents

The responder is a CP. The CP is sup-

posed to lookup requested contents at the

buffer or generate contents, and then re-

turn contents to the requester.

Data pro-

cessing

A processing request includ-

ing the identities of processing

functions

The responder is a DP. The DP is sup-

posed to send content requests to retrieve

input data and to process the data and

to return the processed data to a CP and

to return the processing result (ACK/-

NACK).

AUI control A control request including

AUI control commands

The responder is an AUI. The service

request includes AUI control commands.

The AUI is supposed to update its state

based on the commands and to return the

control result (ACK/NACK).

16

3.1.2 ICN-based design

As for the ICN application implementation principle, in order to cut down the time and

resources for application implementation works, the operations well-adapted to ICN (e.g.,

distributed computing, in-network processing, and service mobility) or able to be reused in

other application domains are supposed to be implemented in the network layer by service

developers. The application layer program is supposed to invoke network layer services to

realize the application and is implemented by application developers.

Fig.2, 3 show node behaviors and node communications of the service requesting op-

eration.

Service location advertisement

A responder is supposed to advertise the service location information. The service ad-

vertisement is able to be realized by the responder sending the advertisement Interest

including service identities and the requester updating service identities and incoming in-

terfaces in the FIB after receiving the Interest. The routers receiving the advertisement

Interest will also update the routing of advertised services by updating the FIB.

As for the implementation, the codes of sending the advertisement Interest can be in

the application layer or in the network layer since the operation can be invoked by the

application layer function (e.g., initialization function) or the network layer function (e.g.,

scenario-specific function). Updating the FIB of the requester receiving the advertisement

Interest is an ICN primitive operation.

17

Table 2: Service identities of each service category in M2M communication applications

Service category Service identity

Decision-making Include the high-level API identity and API parameters.

Name example:

ServiceIdentity = /{APIIdentity}/{APIParameter}*

/Guidance/Bob

Content retrieval Include requesting content identities. Name example:

ServiceIdentity = /{ContentIdentity}

/apple.jpg

Data processing Include the processing API identity and API parameters.

Name example:

ServiceIdentity = /{APIIdentity}/{APIParameter}*

/zip/apple.jpg

AUI control Include control API identity and API parameters.

Name example:

ServiceIdentity = /{APIIdentity}/{APIParameter}*

/TurnOnLight/KitchenLight

Sending service requests

A requester keeps the service identity information since the application developer knows

what service the requester is supposed to request in a scenario. The codes of sending the

request can be in the application layer or in the network layer since the operation can be

invoked by the application layer function (e.g., initialization function) or the network layer

function (e.g., scenario-specific function). In the requester application layer program, by

the requester sending an Interest whose name includes the service identity, the service

location lookup can be done in the network layer and the Interest will be sent to the next

hop since the ICN framework primitively manages the service location information in the

network layer.

18

Executing services and responding to requests

When an responder receives service requests, the responder should respond to requests

to execute requirement behaviors mentioned in Table 1. Each service category design is

shown in the following itemization. The codes of executing services and responding to

requests are supposed to be in the network layer since the network computing resource is

able to be used for more efficient processing than the processing only in the endpoint.

• Decision-making: the responder is supposed to execute the high-level API kept in

the responder and return the API response.

• Content retrieval: the responder is supposed to generate the requested content based

on the request name and to return the content.

• Data processing: the responder is supposed to execute the processing API kept in

the responder and return the processing response (e.g., ACK/NACK, the state of

the responder).

• AUI control: the responder is supposed to execute the control API kept in the

responder and return the control response (e.g., ACK/NACK, the state of the re-

sponder).

19

Figure 2: ICN-based implementation of the service location advertisemen and the service

requesting in the M2M communication application

20

Figure 3: ICN-based implementation of the service execution and responding in the M2M

communication application

3.1.3 IP-based design

All application operations are implemented in the application layer by application develop-

ers. Since application layer services used as assembling components in the application de-

21

velopment are general purpose service able to be used in multiple application domains, the

service development depends on requirements from the multiple application domains, and

this development is independent with a specific application development project. There-

fore, the application developer comes to implement all application operations.

Service location advertisement

A responder is supposed to advertise the service location information. The service lo-

cation advertisement is able to be realized by the responder sending the advertisement

packet including service identities and service location information (IP address), and the

requester managing the service information including service identities and the service

location information.

Sending service requests

A requester keeps the service identity and the service location information since the ap-

plication developer knows what service the requester is supposed to request in a scenario.

. In the requester application program, the sending packet operation is able to be realized

by the requester specifying the service location and sending a packet containing the service

identity.

Executing services and responding to requests

When a responder receives service requests, the responder should respond to requests

to execute requirement behaviors mentioned in Table 1. Each service category design is

shown in the following itemization.

• Decision-making: the responder is supposed to execute the high-level API kept in

the responder and return the API response.

• Content retrieval: the responder is supposed to generate the requested content based

on the request name and to return the content.

• Data processing: the responder is supposed to execute the processing API kept in

the responder and return the processing response (e.g., ACK/NACK, the state of

the responder).

22

• AUI control: the responder is supposed to execute the control API kept in the

responder and return the control response (e.g., ACK/NACK, the state of the re-

sponder).

Figure 4: IP-based implementation of the service advertisement and the service requesting

in the M2M communication application

23

Figure 5: IP-based implementation of the service execution and responding in the M2M

communication application

24

3.1.4 Benefits of ICN compared to IP networks

Application logic realized with primitive named services in the network layer

In the ICN-based design, the operations well-adapted to ICN (e.g., distributed computing,

in-network processing, and service mobility) or able to be reused in other application

domains are supposed to be implemented in the network layer by service developers.

The application layer program is supposed to invoke network layer services to realize the

application and is implemented by application developers.

In the IP-based design, application developers are generally responsible for implement-

ing all application operations in the application layer.

This difference simplifies the implementation work of application developers.

25

Table 3: Application design differences in ICN and IP

Layer and development

responsibility

ICN codes IP codes

High-level application

logic:

・Application project

・Application developers

Combination of network layer

services

Combination of general purpose

services

Primitive component:

・Standardization

・Network layer devel-

opers

・Library/framework/-

platform developers

Operations well-adapted to ICN:

・Distributed computing

・Machine cooperation

Network optimization operations

in ICN layer:

・Caching

・Service migration and execution

management

・Mobility support

General purpose services in ICN

layer:

・Components for communication

including the interface, the rout-

ing

General purpose services:

・Components for communication

including the interface, the rout-

ing

We confirm this benefit by showing the application layer implementation of the average

value retrieval and the guiding system in the IP and the ICN over IP architecture. The

average value retrieval implementation is shown in the appendix of this thesis and the

guiding system implementation is shown in section 4.

26

Built-In caching function in individual ICN nodes

ICN nodes have the primitive caching module in the network layer. Since the module

is embedded in the network layer forwarding pipeline, Interests and Data are able to be

cached based on the default caching policy and there needs no implementation work of

building the caching module.

IP nodes and the IP-based framework generally do not have the primitive caching

module. If the caching module is required in a application, the module is supposed to be

implemented in the application layer.

ICN does not need the implementation and therefore ICN-based frameworks simplify

the implementation.

Efficient pub/sub implementation

The Pub/Sub communication is that the service publish information from responders and

service subscribe information from requesters are able to be stored in pub/sub management

modules. Requesters and responders are able to receive the information when they access

the management module. By using the pub/sub management module, the time of sending

and receiving the information is able to be separate, and the sender does not need to

know the location of receivers. The pub/sub management module is able to deal with

communications where publishing and subscribing are dynamic.

In IP-based design, the pub/sub module is not primitively provided and is supposed

to be implemented in the application layer program of a proxy server or requesters and

responders.

In ICN-based design, the pub/sub module is primitively provided in the network layer

(specifically, the PIT) of requesters and responders and there does not need the application

layer implementation.

Therefore, the ICN-based design simplified the implementation of pub/sub modules.

Unified service invocation mechanism

The service invocation mechanism means the protocol and the description and the service

discovery mechanism for invoking a service.

27

In IP, the invocation mechanism is usually different with the mechanism of other

application domains. For example, a part of Web sites use FTP while another site uses

HTTP for transfering a file. The method for retrieving a file is different in GitHub and

RPM repositories. A developer can not request a service from a repository that the

developer does not know.

In ICN, all service is invoked by using the Interest and the Data packet. For requesting

a service, the invocation protocol is to only send Interest packets. The name resolution

of service identities will be done in the network layer, and a requester is able to request a

service without knowing and inputing the service location.

The unified invocation mechanism cut down the time for developers learning an invo-

cation mechanism in other application domains, which cuts down the development costs.

3.2 Service migration and execution management

3.2.1 The abstraction and requirements

The service migration means that a copy of a service agent moves from the migration

source to the migration destination for the load balance optimization of the computing

and the transmission. There needs a decision-maker which collects the information for the

migration (e.g., states of each node computing resources, service demand information from

clients and servers) from content providers and make decisions and instruct the migration

destination and the migration source to accomplish the migration. The availability of

the original service agent and the copy can be extinguished or provided based on the

configuration of the scenario-specific optimal policy.

The general migration and execution management operation is supposed to involve

roles shown in the following itemization.

• User: a trigger of the migration and execution instruction and provide the configu-

ration to the migration operation.

• Management decision-maker (MDM): provide the user the access to the service of

the service migration and execution instruction. Collect the information for the

migration from content providers, and make migration and execution decisions based

28

on the optimal policy and the configuration, and instruct the migration destination

and the migration source to accomplish the migration, and instruct service executors

to execute requested services.

• Content provider (CP): provide the information for the migration.

• Migration destination (MD): request a service agent from the migration source. After

retrieving the agent, the service can be advertised based on the optimal policy.

• Migration source (MS): provide a copy of a service agent to the migration destination.

After sending the agent, the original service agent can be extinguished based on the

optimal policy.

• Service executor (SE): keep service agents, and when receiving service execution

requests, execute the service logic and respond with the service response.

Figure 6: Abstraction of general service migration and execution management operations

29

Major interactions in the management operation is shown in Fig. 6. An arbitrary

management service is able to be realized by containing all kinds of operations shown in

the following itemization and combining the operations in an arbitrary order.

• Management decision-making: an user invokes the management service by sending

the configuration to the MDM and invokes the management service and receive the

response.

• Content retrieval: MDM sends content requests to CPs and receives the information

for the management.

• Service migration: MDM instructs the service migration by sending migration in-

struction to an MD, and the MD executes the migration by sending service agent

requests to an MS based on the migration instruction of MDM.

• Service execution management: MDM instructs the service execution by sending

service execution requests to SEs and receiving the service response from SEs.

All operations in the above itemization are able to be considered as instances of the

service requesting operation. Services in the management are able to be classified into four

categories of operations including the management decision-making, the content retrieval,

the service migration, and the service execution management. In the service requesting

operations, there are two types of nodes: requesters and responders. The requester can

have any type of roles in Fig. 6. The responder can be the MDM or the CP or the MD

or the MS or the SE.

Requirements of the service requesting operation is shown in Sec. 3.1.1. The differ-

ence of requirements between the M2M communication application and the management

is that the responder receiving service requests executes corresponding behaviors of the

management decision-making, content retrieval, the service migration, the service execute

management. Table 1 shows the details of service requests and the responder behavior of

each service category.

30

Table 4: Details of service requests and the responder behavior of each service category

Service cat-

egory

Details of the service request responder behavior

Management

decision-

making

A decision-making request for

the high-level API execution

in the DM

The responder is an MDM. The MDM is

supposed to execute the high-level API

and return the API response, which con-

ducts behaviors including the content re-

trieval, the service migration, and the ser-

vice execution management.

Content re-

trieval

A content request including

identities of requesting con-

tents

The responder is a CP. The CP is sup-

posed to lookup requested contents at the

buffer or generate contents, and then re-

turn contents to the requester.

Service mi-

gration

A migration execution request

including identities of the MD

and the MS and the migrated

service

The responder is an MD. The MD is sup-

posed to respond to the migration request

with the response (e.g., ACK/NACK) and

to send service agent requests to the MS.

The MS receiving requests is supposed to

return the service agent.

Service exe-

cution man-

agement

A execution request includ-

ing SE identities and execu-

tion instructions

The responder is an SE. The SE is sup-

posed to execute the service and to re-

spond to the request with the ACK/-

NACK response.

3.2.2 ICN-based design

The management service belongs to the network optimization operation. The network

optimization operation is able to be applied to various application domain and it is the

general purpose operation. In order to cut down the development time and to avoid

31

application developers to implement the same operation every time in different projects,

modules for general purpose operations should be embedded in ICN layer. In this case,

the ICN role is a framework for the application development.

According to the requirement, the service requesting operation needs operations in-

cluding advertising the service, sending service requests, and responding to requests. The

design differences between designs of the M2M communication application and the man-

agement service is that the service category and the service identity and the responder

behavior in the management service are different with those of M2M communications. The

service identity of each service category is shown in Table 5. The design of advertising

services and sending service requests is the same as the design of those operations in the

M2M communication application. The design of responding to service requests is shown

in the following itemization and Fig. 7.

32

Table 5: Service identities of each service category in the management operation

Service category Service identity

Management

decision-making

Include the high-level API identity and API parameters.

Name example:

ServiceIdentity = /{APIIdentity}/{APIParameter}*

/Migration/ServiceA/NodeA/NodeB

Content retrieval Include requesting content identities. Name example:

ServiceIdentity = /{ContentIdentity}

/NodeA/CPUState

Service migration Include the identity of the migrating service, the MD, and

the MS.

Name example:

ServiceIdentity = /{MDIdentity}/migration/

{MigratingServiceIdentity}/{MSIdentity}

/NodeA/migration/CalcAverageValue/NodeB

Service execution

management

Include the execution instruction and the identity of the SE

and the service identity.

Name example:

ServiceIdentity = /{SEIdentity}/ExecManagement/

{ServiceIdentity}/{ExecutionInstruction}

/NodeA/ExecManagement/GenerateCameraData/Stop

• Management decision-making: the responder is supposed to execute the high-level

API kept in the responder and return the API response.

• Content retrieval: the responder is supposed to generate the requested content based

on the request name and to return the content.

• Service migration: the responder (MD) is supposed to return the migration response

(e.g., ACK/NACK) and to send service agent requests to the MS based on the

migration instruction from the responder. The MS receiving service agent requests

33

is supposed to send the agent to the MD.

• Service execution management: the responder is supposed to execute the requested

service and return the management response (e.g., ACK/NACK, the state of the

responder).

34

Figure 7: ICN-based implementation of the service requesting in the service migration and

execution management

35

3.2.3 IP-based design

The management service is supposed to be implemented in the application layer by applica-

tion developers. Since there are no IP-based general purpose framework, the management

service can not be primitively provided in a framework and the application developers

have to implement the management service.

The design differences between designs of the M2M communication application and the

management service is that the service category and the service identity and the responder

behavior in the management service are different with those of M2M communications. In

the service requesting operation, the design of advertising services and sending service

requests is the same as the the design of the M2M communication application. The design

of responding to service requests is shown in the following itemization and Fig. 8.

• Management decision-making: the responder is supposed to execute the high-level

API kept in the responder and return the API response.

• Content retrieval: the responder is supposed to generate the requested content based

on the request name and to return the content.

• Service migration: the responder (MD) is supposed to return the migration response

(e.g., ACK/NACK) and to send service agent requests to the MS based on the

migration instruction from the responder. The MS receiving service agent requests

is supposed to send the agent to the MD.

• Service execution management: the responder is supposed to execute the requested

service and return the management response (e.g., ACK/NACK, the state of the

responder).

36

Figure 8: IP-based implementation of the service requesting in the service migration and

execution management

37

3.2.4 Benefits of ICN compared to IP networks

ICN as a general purpose framework with modules of the network optimization

operation

The service migration and execution management mentioned in Sec. 3.2 is one instance

of the network optimization operation. If modules of the network optimization operation

are provided in a framework for application development, application developers do not

need to develop the modules, which reduces the software size in the application layer and

simplifies the application development.

In IP, there does not have a general purpose framework for various application do-

mains and application developers of the domains have to develop modules of the network

optimization operation.

While ICN is able to be used as a general purpose framework with modules of the

network optimization operation, application developers do not need to develop the mod-

ules, which reduces the software size in the application layer and simplifies the application

development.

38

4 Proof of concept in a specific scenario

In this section, our purpose is shown in the following itemization.

• show a practical application functionality is able to be realized with the design

mentioned in Sec. 3.

• confirm the ICN benefits mentioned in Sec. 3 by comparing the ICN-based and the

IP-based design of the guiding system.

The reason we choose the guiding system as the practical application is that the guiding

system is one instance of M2M communication applications and needs the service migration

and execution management for the optimization when users increase. The application is

able to show the ICN benefits.

In addition, the design of another specific scenario which calculates the average value

of sensor data and is able to show the ICN benefits is shown in the appendix. We have

not conducted the experiment to confirm the feasibility of the design but the we have

confirmed the feasibility of the design in the guiding system scenario.

In this section, we describe the scenario overview and requirements and the ICN-based

and the IP-based design of the guiding system.

4.1 Scenario overview and requirements

The guiding system is a system controlling IoT guidance devices including panels and

robots to guide users to the movable or the stationary target. This system is able to be

used in scenarios involving the guidance to movable devices and places in the city or the

tourist spot or the indoor environment. Users can be the the tourist visitor, the student

and the stuff attending to an event and so on. The merit is that the guidance with robots

is able to provide more accurate guidance with the less misleading compared the existing

service such as Google Map in some situation.

In the network, all nodes in the edge network except the global are ICN nodes. The

nodes include the user’s and the target’s mobile terminal, routers, and guidance devices.

The node role is shown in the following itemization. The router and the device is deployed

39

near the physical path which the user passes and they can provide the guidance service to

the user connecting to the router.

• User: a trigger of the guidance service and provide the user location information to

the system.

• Target: the destination of the guidance and provide the target location information

to the system.

• Router: A router has multiple roles including calculating the physical path between

the user and the target and the guidance area that the physical path passes and the

optimal device control instruction, and controlling the device to provide the service.

• Guidance device: be controlled by the router to provide the guidance service.

Figure 9: Guiding system overview

40

The system is supposed to make guidance devices to execute the optimal behavior

based on the data provided by the user and the target and the CP. In the CP, CP keeps

the user and the target location data, the data of the physical path that the user and

the movable target are able to pass, the data of the guidance area that the router and

the guidance device belongs to, the device information including the device type and the

position. In the following itemization, we show that behaviors the system is supposed to

achieve and node roles that each behavior is assign to. We show the example interaction

in the actual communication order in the Fig. 10

1. User: a trigger of the guidance service and provide the user location information to

the system.

2. Target: the destination of the guidance and provide the target location information

to the system.

3. Content provider (CP): provide the cached result of the calculation and the data for

the calculation.

4. Physical path calculation server (PS): calculate the physical path between the user

and the target. The physical path means the path that the user and the movable

target passes (e.g., the sidewalk and the vehicle).

5. Guidance area calculation server (GS): calculate guidance areas that the physical

path passes. The guidance area means the area within the communication range of

the router keeping the connection with multiple guidance devices.

6. Device control instruction calculation server (GCS): calculate the device control in-

struction based on the guidance area and the physical path. The device control

instruction means the high-level control command which will be transferred into

multiple primitive library APIs for communicating with the guidance device hard-

ware.

7. Guidance device (GD): communicate and control the guidance device hardware based

on the device control instruction.

41

Figure 10: Guiding system node behavior overview

As for the PoC scenario, we discuss the subset of the guiding system. In this scenario,

we assume that the DCS already keeps the identity of the guidance area and the physical

path. The user request the guidance service. The DCS receiving the request retrieve the

device information from the CP and calculate the device control instruction and send the

instruction to the GD to provide the guidance service.

The reason we choose the scenario as the PoC scenario is shown in the following

itemization.

• This scenario is able to show that the general design mentioned in the Sec. 3 is able

to develop a specific application.

• This scenario is able to show the ICN benefits mentioned in the Sec. 3. Because the

operation of the content retrieval and the instruction calculation and the device con-

trol can be embedded in the ICN layer, and these operations have to be implemented

in the IP application layer.

The following itemization shows the behavior requirement of the PoC scenario com-

munication.

42

1. The user is supposed to send the guidance service request to the DCS and receive

the response.

2. DCS receiving the service request is supposed to send content requests to CP to

retrieve the device information based on the guidance area ID that the DCS keeps.

3. DCS receiving the device information is supposed to calculate the device control in-

struction based on the physical path that the DCS keeps and the device information.

4. DCS finishing the instruction calculation is supposed to send the control instruction

to the GD.

5. GD receiving the instruction is supposed to communicate with the device hardware

to provide the guidance service.

Figure 11: PoC scenario node behavior overview

4.2 ICN-based design

In the ICN-based design, modules of DCS, CP, GD are implemented in the network layer

and the user module is implemented in the application layer. The DCS module is supposed

43

to be in network layer since the function requires computing resources and can make full

use of the computing resource in the network. The CP and GD module are supposed to

be in network layer since the module can be reused in other applications. The namespace

of ICN packets is shown in Table 6. Fig. 12 shows the module diagram.

Table 6: Name space in the ICN-based design of the PoC scenario

Name Description

/Advt/{ServiceID}

e.g., /Advt/Guid-

ance/User0/Target0

/Advt/DeviceInfo/Area0

The namespace of service advertisement packets. A

node receiving the packet is supposed to update the

pair information of the service ID and the service lo-

cation in the network layer.

/Guidance/{UserID}/

{TargetID}

The namespace of the guidance service request. A

user can request the guidance service from the current

location of the user to the target location by sending

the packet with this name.

/DeviceInfo/

{GuidanceAreaID}

The namespace of the request for retrieving the device

information. A CP receiving the pakcet is supposed

to return the device information including the device

ID in the corresponding guidance area.

/{DeviceID}/

{GuidanceInstruction}

e.g.,

/FR0/FRPathMove/10,10/

20,20

The namespace of the control instruction for control-

ling the device hardware. A GD receiving the packet

is supposed to invoke the library API able to commu-

nicate with the device hardware.

44

Figure 12: ICN-based design of the PoC scenario communication

4.3 IP-based design

In the IP-based design, all modules are supposed to be implemented in the application

layer since the application in IP is implemented with the scratch technique. The behavior

of each module is the same as the ICN-based design. Fig. 13 shows the module diagram.

Figure 13: IP-based design of the PoC scenario communication

4.4 Experiment

The purpose of the experiment is to show the design of PoC scenario is feasible and the

design of M2M communication applications mentioned in Sec. 3 is feasible to realize a

45

specific application.

In the experiment, we execute the code of the ICN-based and the IP-based design

mentioned in Sec. 4.2, 4.3 in the local environment to confirm the feasibility. Although

the design can be realized in multiple nodes, the experiment in the local environment

is also able to show the feasibility of codes and to show the ICN benefit since a part

of functions can be implemented in the ICN layer. We build the ICN program with

named data networking (NDN) [?] architecture which is one of the ICN-based architecture

implementation. We show codes of PoC scenario communications in the appendix of this

paper.

The software used in the experiment is shown in the following table.

Table 7: Software used in the experiment

Software Description

jndn 0.15 The Java NDN library

NFD 0.5.0 The NDN forwarding engine

DroneKit-Python 2.0 The simulator of the drone mobility

Mission Planner 1.3.44 The GUI tool monitoring the state of drones

java 8 The language used in the IP and the ICN pro-

gram

Ubuntu 14.04 LTS The OS executing the program

In the experiment, we assume that the DCS holds the data of the guidance area identity

and the physical path between the target and the user. The actual guidance area identity

is Area0. The physical path is expressed with the group of waypoints. We express the

waypoint with a pair of two dimension coordinates (x, y) that the x is the horizontal

direction coordinate and the y is the vertical direction coordinate. The actual waypoints

are (0, 0), (20, 0), (20, 20). The DCS receiving the guidance service request retrieves the

device information including the device ID in the corresponding guidance area from the

CP. The actual device ID is FR0. The DCS receiving the device information calculates the

device control instruction. We have implemented an algorithm calculating the instruction

by finding out waiting waypoints that two neighbor waypoints are in the same distance in

46

the original physical path. We consider the robot provides the guidance service by moving

and waiting at the waypoint until the user comes to the waypoint. The actual waypoint

is (0, 0), (10, 0), (20, 0), (20, 10), (20, 20).

The following list shows the output message for confirming the program behavior. Fig.

14 shows the actual robot behavior. The ICN-based and the IP-based program print

the similar output message and the robot does the same behavior and we only show the

message and the robot behavior in ICN.

Listing 1: The output message when executing the PoC scenario communication program

1 1. GCS Service invocation

2 [User] Sent packet: Guidance User0 Target0

3 [User] Received packet: ACK

4 [DCS] Received packet: Guidance User0 Target0

5 [DCS] Sent packet: ACK

6

7 2. Content retrieval and 3. Data processing

8 [CP] Received packet: DeviceInfo Area0

9 [CP] Sent DeviceInfo: FR0

10 [DCS] Received DeviceInfo: FR0

11 [DCS] Send Device Control Request: FR0 FNPath 0.0,0.0 10.0,0.0 20.0,0.0
20.0,10.0 20.0,20.0

12

13 4. Device control API invocation

14 [GD] Received packet: FR0 FNPath 0.0,0.0 10.0,0.0 20.0,0.0 20.0,10.0
20.0,20.0

15 [GD] Sent the Device Control response: ACK

16 Now Location: (10.00322558, 0.4122134499)
17 The remains of waypoints: (3)
18 Remained HoverTime:4.0
19 Now Location: (20.01231418, 0.1451367656)
20 The remains of waypoints: (2)
21 Remained HoverTime:5.0
22 Now Location: (20.02325234, 9.4599345392)
23 The remains of waypoints: (1)
24 Remained HoverTime:4.0
25 Now Location: (20.00322558, 15.4029904499)
26 The remains of waypoints: (0)
27 Remained HoverTime:4.0

47

Figure 14: Robot behaviors in the experiment

By confirming that the ICN-based and the IP-based program realizes the application

functionality in the PoC scenario, we show that the design and the implementation method

of M2M applications in ICN and IP are able to realize specific applications.

4.5 Benefits of ICN compared to IP networks

The effort of application developer writing application layer codes be-

comes less

Table 8 shows the amount of executabe instructions which is the executable step in the

main and other methods in the ICN and the IP program. We show that the amount of

executable instructions in the ICN program is 14.2% of instructions in the IP program.

The IP program and ICN program is listed in the appendix of this thesis.

The reason why the instruction in the ICN program is less than the IP program is that

the ICN application layer program is implemented by assembling the network layer API

while IP program is implemented by the scratch technique which implements each module

from high-level codes to low-level codes.

48

Table 8: Amount of executable instructions in the ICN and the IP program

ICN modules (lines) IP modules (lines)

User 37 User 28

DCS 137

GD 56

CP 34

Total 37 Total 261

Ratio: 14.2%

We show an implementation example of requesting services. The following lists show

the ICN-based and the IP-based content generation operation in CP. In the ICN-based

program, the content generation function is implemented in the strategy class of the net-

work layer, and the association operation of the service ID and the service function is done

in the application layer or the network layer. Codes of association operation does not gen-

erally written in the application layer. In the IP-based program, codes of handling the

interface and packets and generating contents have to be implemented in the application

layer.

Listing 2: IP-based codes of the content generation

1 package IPPackage;
2

3 import java.io.BufferedReader;
4 import java.io.BufferedWriter;
5 import java.io.InputStreamReader;
6 import java.io.OutputStreamWriter;
7 import java.io.PrintWriter;
8 import java.net.ServerSocket;
9 import java.net.Socket;

10

11 public class CP_IP {
12

13 public static void main(String[] args) {
14

15 try {
16 ServerSocket ConnectionWaitingSocket = new ServerSocket(Common.

CPPort);
17 Socket NewConnectionSocket = ConnectionWaitingSocket.accept();
18 BufferedReader reader_NewConnectionSocket = new BufferedReader(
19 new InputStreamReader(NewConnectionSocket.getInputStream()));

49

20 PrintWriter writer_NewConnectionSocket = new PrintWriter(
21 new BufferedWriter(new OutputStreamWriter(NewConnectionSocket.

getOutputStream())));
22

23 String str;
24 while (true) {
25 if ((str = reader_NewConnectionSocket.readLine()) != null) {
26 System.out.println("[CP] Received packet: " + str);
27

28 if (str.contains("DeviceInfo Area0")) {
29 writer_NewConnectionSocket.println("FR0");
30 writer_NewConnectionSocket.flush();
31 System.out.println("[CP] Sent DeviceInfo: FR0");
32 }
33 }
34 Thread.sleep(1000);
35 }
36 } catch (Exception e) {
37 e.printStackTrace();
38 }
39 }
40 }

Accessing services with the service ID without the explicit service loca-

tion

The user program is supposed to send the guidance service request to DCS. The IP socket

needs the explicit service location information such as the IP address and the port number

of DCS while the ICN face does not needs the information. This difference means that

accessing the service in the network only needs the service ID without considering the

current available service location.

Listing 3: ICN-based codes of the service accessing operation

1 Face GuidanceRequestFace = new Face();
2 Interest GuidanceRequest = new Interest(new Name("/Guidance/User0/Target0

"));
3 GuidanceRequestFace.expressInterest(GuidanceRequest, new

onGuidanceResponse());
4 GuidanceRequestFace.processEvents();

Listing 4: The IP-based user program of the PoC scenario

1 Socket socket = new Socket("localhost", Common.DCS_RecepitonPort);
2 PrintWriter writer = new PrintWriter(socket.getOutputStream(), true);
3 String GuidanceRequestName = "Guidance User0 Target0";

50

4 writer.println(GuidanceRequestName);
5 writer.flush();

51

5 Conclusion and future work

In this work, we have proposed an ICN-based framework for M2M applications and we

have showed the ICN benefits that the effort of the application implementation with the

ICN-based framework is less than the effort with IP-based framework. In order to confirm

the feasibility of the ICN-based framework, we have conducted an experiment realizing

a specific application with the ICN-based framework and the IP-based framework. In

order to confirm the benefits of the ICN-based framework compared with the IP-based

framework, we have showed the ICN and the IP codes realizing the same service func-

tion. Actual ICN codes are shorter than IP codes and we have showed that the effort

of the application implementation in the ICN framework is less than the effort in the IP

framework.

As the future work, we plan to discuss the methodology of the ICN application develop-

ment work including the requirement analysis, design, implementation, test, deployment,

maintenance.

52

Acknowledgments

This thesis would not accomplish without the united efforts and supports of a number of

people. First, I would like to express my the deepest appreciation for my supervisor, Pro-

fessor Masayuki Murata of Osaka University, for his valuable time, advice, and continual

support. Furthermore, I am tremendously grateful to Professor Shingo Ata of Osaka City

University for his significant guidance, precise advice, and helpful discussions. I am also

thankful to Associate Professor EUM Suyong of Osaka University for his instructive ad-

vice. Moreover, I would like to express gratitude to Associate Professor Shin’ichi Arakawa,

Assistant Professor Yuchi Ohsita, Daichi Kominami, and Appointed Assistant Professor

Tatsuya Otoshi for their insightful comments and feedback.

Finally, I owe my gratitude to all the members of the Advanced Network Architec-

ture Research Laboratory at the Graduate School of Information Science and Technology,

Osaka University.

53

A. Implementation of average value retrieval

Fig.15 shows the scenario overview of average value retrieval. A user connecting to DP

sends average value service requests and receives the average value from DP. DP receiving

the service request sends data requests to all connecting CPs and retrieves CP data. DP

receiving all CP data processes the data and return the average value to the user.

Figure 15: The overview of the average value retrieval communication

Communication diagrams in ICN over IP and IP are shown in Fig.16 and Fig.17

Figure 16: The diagram of the average value retrieval communication in ICN over IP

54

Figure 17: The diagram of the average value retrieval communication in IP

Operation requirements are shown in the following itemization.

• DP and CPs are supposed to advertise their services.

• The user is supposed to sends a service request to DP.

• DP receiving a service request from the user is supposed to retrieve sensor data from

multiple CPs, and to process the data, and to respond to the service request with

the process result.

• A CP receiving a data request from DP is supposed to respond with sensor data.

The required behavior sequence is shown in the following itemization.

1. Service advertisement in DP and CPs

(a) (App in ICN) DP and CPs updates its FIB for forwarding the advertisement

packets to neighbor nodes.

(b) (App in ICN and IP) In ICN, DP and CPs send the advertisement packet to

other nodes. In IP, DP and CPs send the advertisement packet to the DNS

server.

(c) (NW in ICN and App in IP) In ICN, nodes receiving the advertisement packet

update their FIB in the network layer. In IP, the DNS server update the DNS

records.

2. Sending service requests: (App in ICN and IP) A user sends a service request to DP.

55

3. Sensor data retrieval and processing and responding in DP

(a) (NW in ICN and App in IP) If DP receives a service request from the user, DP

sends data requests to all CPs and receives sensor data.

(b) (NW in ICN and App in IP) If DP receives all sensor data, DP processes the

data and sends the service response to the user.

4. Sensor data generation in CP: (NW in ICN and App in IP) If a CP receives a data

request from DP, the CP sends sensor data to DP.

Behaviors of each node are shown in the following itemization.

• User: (App in ICN and IP) the user sends a service request and receives the response.

• DP

1. Service advertisement

(a) (App in ICN) DP appends FIB entries directing to CPs to its FIB for

forwarding the advertisement packets to neighbor nodes.

(b) (App in ICN and IP) In ICN, DP and CPs send the advertisement packet

to other nodes. In IP, DP and CPs send the advertisement packet to the

DNS server.

(c) (NW in ICN and App in IP) In ICN, nodes receiving the advertisement

packet update their FIB in the network layer. In IP, the DNS server update

the DNS records.

2. Sensor data retrieval and processing and responding

(a) (NW in ICN and App in IP) If DP receives a service request from the user,

DP sends data requests to all CPs and receives sensor data.

(b) (NW in ICN and App in IP) If DP receives all sensor data, DP processes

the data and sends the service response to the user.

• CP

1. Service advertisement

56

(a) (App in ICN) CP appends an FIB entry directing to DP to its FIB for

forwarding the advertisement packets to neighbor nodes.

(b) (App in ICN and IP) In ICN, CP sends the advertisement packet to neigh-

bor nodes. In IP, DP and CPs send the advertisement packet to the DNS

server.

(c) (NW in ICN and App in IP) In ICN, nodes receiving the advertisement

packet update their FIB in the network layer. In IP, the DNS server update

the DNS records.

2. (NW in ICN and App in IP) If a CP receives a data request from DP, the CP

sends sensor data to DP.

Application layer developers generally divides the application logic into multiple high-

level functions and divides the high-level functions into low-level functions until the low-

level functions come to be library APIs or service APIs. In the application layer program,

the application logic is divided into the invocation of multiple high-level functions in the

application-specific order. Each high-level function is supposed to be realized by invoking

multiple low-level functions.

User program

Listing 5: The user program of requesting the average value in ICN

1 package net.named_data.jndn.tests;
2

3 import java.nio.ByteBuffer;
4 import net.named_data.jndn.Data;
5 import net.named_data.jndn.Face;
6 import net.named_data.jndn.Interest;
7 import net.named_data.jndn.Name;
8 import net.named_data.jndn.OnData;
9

10 public class User_RequestingAverageValue_ICN{
11 public static void

12 main(String[] args){
13 try{
14 Face face = new Face();
15 face.expressInterest("/CPData/0..N/CalcAverageValue", new

onReceivingDataListener());
16 face.processEvent();
17 }

57

18 catch (Exception e){
19 System.err.println(e);
20 }
21 }
22 }
23

24 class onReceivingDataListener implements OnData{
25 public void onData(Interest interest, Data data) {
26 ByteBuffer content = data.getContent().buf();
27 for (int i = content.position(); i < content.limit(); ++i)
28 System.out.print((char) content.get(i));
29 }
30 }

Listing 6: The user program of requesting the average value in IP

1 package RequestingAverageValue;
2

3 import java.io.BufferedReader;
4 import java.io.IOException;
5 import java.io.InputStreamReader;
6 import java.io.PrintWriter;
7 import java.net.InetAddress;
8 import java.net.Socket;
9

10 public class User_RequestingAverageValue_IP {
11

12 final static int DPReceptionPort = 10000;
13

14 public static void main(String args[]) {
15

16 String DNSAddr = args[0];
17 String UserAddr;
18 String IncomingMessage;
19

20 try {
21 UserAddr = InetAddress.getLocalHost().getHostAddress();
22 Runtime.getRuntime().exec("ssh " + DNSAddr + " dnscmd /RecordAdd

CalcAverage.com User A " + UserAddr);
23

24 Socket socket = new Socket("DP.CalcAverageValue.com",
DPReceptionPort);

25 BufferedReader IncomingStreamFromNW = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

26 PrintWriter OutgoingStreamToNW = new PrintWriter(socket.
getOutputStream());

27

28 OutgoingStreamToNW.print("RequestAverageValue");
29 OutgoingStreamToNW.flush();
30 while (true) {
31 while ((IncomingMessage = IncomingStreamFromNW.readLine()) != null

)

58

32 System.out.print(IncomingMessage + "\n");
33 }
34 }
35 catch (IOException e) {
36 System.err.println(e);
37 }
38 }
39 }

DP program

Listing 7: The DP program of requesting the average value in ICN

1 package net.named_data.jndn.tests;
2

3 import java.nio.ByteBuffer;
4 import net.named_data.jndn.Data;
5 import net.named_data.jndn.Face;
6 import net.named_data.jndn.Interest;
7 import net.named_data.jndn.Name;
8 import net.named_data.jndn.OnData;
9

10 public class DP_RequestingAverageValue_ICN{
11 public static void

12 main(String[] args){
13 String UserAddr = args[0];
14 try {
15 Runtime.getRuntime().exec("nfdc route add prefix /Advt nexthop " +

UserAddr);
16 Face face = new Face();
17 face.expressInterest("/Advt/CalcAverageValue");
18 face.processEvent();
19 } catch (IOException e) {
20 e.printStackTrace();
21 }
22 }
23 }

Listing 8: The DP program of requesting the average value in IP

1 package RequestingAverageValue;
2

3 import java.io.BufferedReader;
4 import java.io.IOException;
5 import java.io.InputStreamReader;
6 import java.io.PrintWriter;
7 import java.net.DatagramPacket;
8 import java.net.InetAddress;
9 import java.net.MulticastSocket;

59

10 import java.net.ServerSocket;
11 import java.net.Socket;
12 import java.util.concurrent.BlockingQueue;
13 import java.util.concurrent.LinkedBlockingQueue;
14

15 public class DP_RequestingAverageValue_IP {
16

17 final static int DPReceptionPort = 10000;
18

19 public static

20 void main(String[] args) {
21 try {
22 String DNSAddr = args[0];
23 InetAddress CPMCastAddr = InetAddress.getByName(args[1]);
24 int CPSize = Integer.parseInt(args[2]);
25 String DPAddr = InetAddress.getLocalHost().getHostAddress();
26 BlockingQueue<String> queue = new LinkedBlockingQueue<>();
27

28 // Service location advertisement

29 // register the DNS record of DP

30 Runtime.getRuntime().exec("ssh " + DNSAddr + " dnscmd /RecordAdd
CalcAverage.com DP A " + DPAddr);

31

32 // Wait for the handshake from the user and CPs and create sockets

33 ServerSocket ServerSocket = new ServerSocket(DPReceptionPort);
34 String UserAddr = InetAddress.getByName("User.CalcAverageValue.com")

.getHostAddress();
35 while (true) {
36 Socket socket = null;
37 socket = ServerSocket.accept();
38 if (socket.getInetAddress().getHostAddress() == UserAddr)
39 new UserSocketBehaviorThread(socket, CPMCastAddr, queue).start()

;
40 else

41 new CPSocketBehaviorThread(socket, CPSize, queue).start();
42 }
43 } catch (IOException e) {
44 System.err.println(e);
45 }
46 }
47 }
48

49 class UserSocketBehaviorThread extends Thread {
50

51 final static int CPMCastPort = 10001;
52 public static final int PACKET_SIZE = 1024;
53 // private MulticastSocket CPMCastSocket;
54 Socket SocketToUser;
55

56 byte[] buf = new byte[PACKET_SIZE];
57 DatagramPacket packet = new DatagramPacket(buf, buf.length);
58 String IncomingMessage;

60

59 MulticastSocket CPMCastSocket;
60

61 InetAddress CPMCastAddr;
62 BlockingQueue<String> queue;
63

64 UserSocketBehaviorThread(Socket t_socket, InetAddress t_MCastAddr,
BlockingQueue<String> t_queue) {

65 this.SocketToUser = t_socket;
66 this.CPMCastAddr = t_MCastAddr;
67 this.queue = t_queue;
68 }
69

70 // Process CP data and respond to the service request with the average

value

71 // after receiving all CP data

72 @Override

73 public

74 void run() {
75 try {
76 // Wait for receiving a packet

77 BufferedReader IncomingStream = new BufferedReader(new
InputStreamReader(SocketToUser.getInputStream()));

78 PrintWriter OutgoingStream = new PrintWriter(SocketToUser.
getOutputStream());

79

80 // Wait for response of CP data

81 // Send data requests and process data and respond to the

82 // service request

83 CPMCastSocket = new MulticastSocket();
84 while (true) {
85 while ((IncomingMessage = IncomingStream.readLine()) != null){
86 // Send CP data requests after receiving a service

87 // request

88 if (IncomingMessage.equals("CalcAverageValue")) {
89 String CPDataRequestMessage = "CPDataRequest";
90 byte[] bytes = CPDataRequestMessage.getBytes();
91 DatagramPacket DataRequest = new DatagramPacket(bytes, bytes.

length, CPMCastAddr,
92 CPMCastPort);
93 CPMCastSocket.send(DataRequest);
94 }
95 }
96 //If average value has been calculated, send the value to the user

97 for(String entry : queue){
98 if(entry.contains("AverageValue")) OutgoingStream.write(entry);
99 }

100 Thread.sleep(100);
101 }
102 }
103 catch (IOException | InterruptedException e) {
104 System.err.println(e);
105 }

61

106 }
107 }
108

109

110 class CPSocketBehaviorThread extends Thread {
111

112 public static final int PACKET_SIZE = 1024;
113 //private MulticastSocket CPMCastSocket;
114 Socket socket;
115

116 byte[] buf = new byte[PACKET_SIZE];
117 DatagramPacket packet = new DatagramPacket(buf, buf.length);
118 String IncomingMessage;
119 MulticastSocket CPMCastSocket;
120 BlockingQueue<String> queue;
121

122 int CPSize;
123 float Average;
124

125 CPSocketBehaviorThread(Socket t_socket,int t_CPSize, BlockingQueue<
String> t_queue) {

126 this.socket = t_socket;
127 this.CPSize = t_CPSize;
128 this.queue = t_queue;
129 }
130

131 // Process CP data and respond to the service request with the average

value

132 // after receiving all CP data

133 @Override

134 public

135 void run() {
136 try{
137 //Wait for receiving a packet

138 BufferedReader IncomingStream = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

139 CPMCastSocket = new MulticastSocket();
140

141 //Wait for response of CP data

142 //Send data requests and process data and respond to the service

request

143

144 while(true){
145 while ((IncomingMessage = IncomingStream.readLine()) != null){
146 if(IncomingMessage.contains("CPData")){
147 //Packet payload example: CPData CP0 100
148 //if the data has been received from a certain CP, drop the

packet

149 if(queue.contains(IncomingMessage)) continue;
150 //if not, add to the queue

151 else queue.put(IncomingMessage);;
152

62

153 //if DP receives all data from CPs in the list, DP responds to

the user with the average value

154 if(queue.size() == CPSize){
155 int Total = 0;
156 for(String entry : queue){
157 String[] message = entry.split(" ");
158 Total+= Integer.parseInt(message[2]);
159 }
160 Average = Total / CPSize;
161 queue.clear();
162 queue.put("AverageValue " + String.valueOf(Average));
163 }
164 }
165 }
166 Thread.sleep(100);
167 }
168 }
169 catch (IOException | InterruptedException e) {
170 System.err.println(e);
171 }
172 }
173 }

CP program

Listing 9: The CP program of requesting the average value in ICN

1 package net.named_data.jndn.tests;
2

3 import java.nio.ByteBuffer;
4 import net.named_data.jndn.Data;
5 import net.named_data.jndn.Face;
6 import net.named_data.jndn.Interest;
7 import net.named_data.jndn.Name;
8 import net.named_data.jndn.OnData;
9

10

11 public class CP_RequestingAverageValue_ICN{
12 public static void

13 main(String[] args){
14 String DPAddr = args[0];
15 String CPID = args[1];
16 try{
17 Runtime.getRuntime().exec("nfdc route add prefix /Advt nexthop " +

DPAddr);
18 Face face = new Face();
19 face.expressInterest("/Advt/CPData/" + CPID);
20 face.processEvent();
21 }

63

22 catch (Exception e) System.out.println("exception: " + e.getMessage()
);

23 }
24 }

Listing 10: The CP program of requesting the average value in IP

1 package RequestingAverageValue;
2

3 import java.io.IOException;
4 import java.io.PrintWriter;
5 import java.net.DatagramPacket;
6 import java.net.InetAddress;
7 import java.net.MulticastSocket;
8 import java.net.Socket;
9

10 public class CP_RequestingAverageValue_IP {
11

12 // Multicast socket Thread: receive data request

13 // Socket: send data

14

15 public static void main(String[] args) {
16 // advertisement service

17 // update the DNS record

18 String DNSAddr = args[0];
19 String CPID = args[1];
20 String CPMCastAddr = args[2];
21 String CPAddr;
22 try {
23 CPAddr = InetAddress.getLocalHost().getHostAddress();
24 Runtime.getRuntime().exec("ssh " + DNSAddr + " dnscmd /RecordAdd

CalcAverage.com " + CPID + " A " + CPAddr);
25

26 new MCastSocketBehaviorThread(CPMCastAddr).start();
27 } catch (IOException e) {
28 e.printStackTrace();
29 }
30 }
31 }
32

33 class MCastSocketBehaviorThread extends Thread {
34

35 final static int CPMCastPort = 10001;
36 final static int PACKET_SIZE = 1024;
37 String CPMCastAddr;
38

39 MCastSocketBehaviorThread(String t_CPMCastAddr) {
40 this.CPMCastAddr = t_CPMCastAddr;
41 }
42

43 public

44 void run() {

64

45

46 MulticastSocket CPMCastSocket;
47

48 try {
49 CPMCastSocket = new MulticastSocket(CPMCastPort);
50 InetAddress mcastAddress = InetAddress.getByName(CPMCastAddr);
51 CPMCastSocket.joinGroup(mcastAddress);
52

53 byte[] buf = new byte[PACKET_SIZE];
54 DatagramPacket packet = new DatagramPacket(buf, buf.length);
55 while (true) {
56 CPMCastSocket.receive(packet);
57 String MCastMessage = new String(buf, 0, packet.getLength());
58 if(MCastMessage.equals("CPDataRequest")){
59 Socket DPSocket = new Socket("DP.CalcAverageValue.com",

CPMCastPort);
60 PrintWriter OutgoingStream = new PrintWriter(DPSocket.

getOutputStream());
61

62 OutgoingStream.print(GenerateCPData());
63 OutgoingStream.flush();
64 }
65 }
66 } catch (IOException e) {
67 e.printStackTrace();
68 }
69

70 }
71

72 private

73 String GenerateCPData(){
74 return "Dummy";
75 }
76

77 }

65

B. Implementation of the device control based on the instruc-

tion in the guiding system

User program

Listing 11: The user program of the PoC scenario communication in the guiding system

in ICN

1 package ICNPackage;
2 import java.io.IOException;
3 import java.nio.ByteBuffer;
4 import java.util.jar.Attributes.Name;
5

6 import javax.xml.crypto.Data;
7

8 import net.named_data.jndn.Face;
9 import net.named_data.jndn.Interest;

10 import net.named_data.jndn.OnData;
11 import net.named_data.jndn.encoding.EncodingException;
12

13 public class User_ICN {
14 public static void main(String[] args){
15 Face GuidanceRequestFace = new Face();
16 try {
17 GuidanceRequestFace.expressInterest(new Name("/Guidance/User0/

Target0"), new onGuidanceResponse());
18 while(true) {
19 GuidanceRequestFace.processEvents();
20 Thread.sleep(1000);
21 }
22 } catch (IOException | EncodingException | InterruptedException e) {
23 e.printStackTrace();
24 }
25 }
26 }
27

28 class onGuidanceResponse implements OnData{
29 public void

30 onData(Interest interest, Data data)
31 {
32 System.out.println
33 ("[User] Got data packet with name " + data.getName().toUri());
34 System.out.print
35 ("Payload:");
36 ByteBuffer content = data.getContent().buf();
37 for (int i = content.position(); i < content.limit(); ++i)
38 System.out.print((char)content.get(i));
39 System.out.println("");
40 }

66

41 }

Listing 12: The user program of the PoC scenario communication in the guiding system

in IP

1

2 package IPPackage;
3

4 import java.io.BufferedReader;
5 import java.io.InputStreamReader;
6 import java.io.PrintWriter;
7 import java.net.Socket;
8

9 public class User_IP {
10

11 public static void main(String[] args) {
12 Socket socket = null;
13 PrintWriter writer = null;
14 BufferedReader reader = null;
15

16 try {
17 socket = new Socket("localhost", Common.DCS_RecepitonPort);
18

19 writer = new PrintWriter(socket.getOutputStream(), true);
20 reader = new BufferedReader(new InputStreamReader(socket.

getInputStream()));
21

22 String GuidanceRequestName = "Guidance User0 Target0";
23 writer.println(GuidanceRequestName);
24 writer.flush();
25 System.out.println("[User] Sent packet: " + GuidanceRequestName);
26

27 String line = null;
28 while (true) {
29 if((line = reader.readLine()) != null) System.out.println("[User

] Received packet: " + line);
30 Thread.sleep(1000);
31 }
32

33 } catch (Exception e) {
34 e.printStackTrace();
35 }
36

37 }
38 }

DCS program

67

Listing 13: The DCS program of the PoC scenario communication in the guiding system

in IP

1 package IPPackage;
2

3 import java.io.BufferedReader;
4 import java.io.BufferedWriter;
5 import java.io.IOException;
6 import java.io.InputStreamReader;
7 import java.io.OutputStreamWriter;
8 import java.io.PrintWriter;
9 import java.net.ServerSocket;

10 import java.net.Socket;
11 import java.util.ArrayList;
12

13 public class DCS_IP {
14

15 public static void main(String[] args) {
16

17 try {
18 new ConnectionRequestWaitingThread().start();
19 } catch (Exception ex) {
20 ex.printStackTrace();
21 }
22 }
23 }
24

25 class ConnectionRequestWaitingThread extends Thread {
26

27 public void run() {
28

29 try {
30 ServerSocket ConnectionWaitingSocket = new ServerSocket(Common.

DCS_RecepitonPort);
31 Socket NewConnectionSocket = ConnectionWaitingSocket.accept();
32 BufferedReader reader_NewConnectionSocket = new BufferedReader(
33 new InputStreamReader(NewConnectionSocket.getInputStream()));
34 PrintWriter writer_NewConnectionSocket = new PrintWriter(
35 new BufferedWriter(new OutputStreamWriter(NewConnectionSocket.

getOutputStream())));
36

37 String str;
38 while (true) {
39 if ((str = reader_NewConnectionSocket.readLine()) != null) {
40 System.out.println("[DCS] Received packet: " + str);
41

42 if (str.contains("Guidance")) {
43 writer_NewConnectionSocket.println("ACK");
44 writer_NewConnectionSocket.flush();
45 System.out.println("[DCS] Sent packet: ACK");
46

47 // Send the DeviceInfo request to CP

68

48 Socket DeviceInfoRequestSocket = new Socket("localhost",
Common.CPPort);

49 BufferedReader reader_DeviceInfoRequestSocket = new

BufferedReader(
50 new InputStreamReader(DeviceInfoRequestSocket.

getInputStream()));
51 PrintWriter writer_DeviceInfoRequestSocket = new PrintWriter(
52 new BufferedWriter(new OutputStreamWriter(

DeviceInfoRequestSocket.getOutputStream())));
53

54 writer_DeviceInfoRequestSocket.println("DeviceInfo Area0");
55 writer_DeviceInfoRequestSocket.flush();
56 new DeviceInfoResponseWaitingThread(

reader_DeviceInfoRequestSocket).start();
57 }
58 }
59 Thread.sleep(1000);
60 }
61 } catch (Exception e) {
62 e.printStackTrace();
63 }
64 }
65 }
66

67 class DeviceInfoResponseWaitingThread extends Thread {
68

69 public DeviceInfoResponseWaitingThread(BufferedReader br) {
70 br_ = br;
71 }
72

73 public void run() {
74 try {
75 String DeviceInfo;
76 while (true) {
77 // if DCS receives the device info, then calculate the device

78 // control instruction

79 if ((DeviceInfo = br_.readLine()) != null) {
80 System.out.println("[DCS] Received DeviceInfo: " + DeviceInfo);
81

82 ArrayList<Point> OriginalPointArray = new ArrayList<Point>();
83 OriginalPointArray.add(new Point(0, 0));
84 OriginalPointArray.add(new Point(20, 0));
85 OriginalPointArray.add(new Point(20, 20));
86

87 ArrayList<Point> CompletedPointArray = CalculateFRWaypoint(
OriginalPointArray);

88

89 String DeviceControlRequest = "FR0 FNPath";
90 for (Point p : CompletedPointArray) {
91 DeviceControlRequest = DeviceControlRequest + " " + p.x_ +

"," + p.y_;
92 }

69

93

94 Socket DeviceControlRequestSocket = new Socket("localhost",
Common.GDPort);

95 PrintWriter writer_DeviceControlRequestSocket = new PrintWriter(
96 new BufferedWriter(new OutputStreamWriter(

DeviceControlRequestSocket.getOutputStream())));
97

98 writer_DeviceControlRequestSocket.println(DeviceControlRequest);
99 writer_DeviceControlRequestSocket.flush();

100

101 System.out.println("[DCS] Send Device Control Request: " +
DeviceControlRequest);

102 }
103 Thread.sleep(1000);
104 }
105 } catch (InterruptedException | IOException e) {
106 e.printStackTrace();
107 }
108 }
109

110 public static ArrayList<Point> CalculateFRWaypoint(ArrayList<Point>
OriginalPointArray) {

111 int i = 0;
112 double CompletedDistance_Next = 0f;
113 ArrayList<Point> CompletedPointArray = new ArrayList<Point>();
114 int UnitMovingDistance = 10;
115 Point OriginalStartPoint;
116 Point OriginalEndPoint;
117 Point NextPoint;
118 Point CurrentPoint;
119

120 CompletedPointArray.add(OriginalPointArray.get(0));
121 while (i + 1 < OriginalPointArray.size()) {
122 OriginalStartPoint = OriginalPointArray.get(i);
123 OriginalEndPoint = OriginalPointArray.get(i + 1);
124

125 // calculate the unit vector between OriginalStartPoint and

126 // OriginalEndPoint

127 // calculate the distance between

128 double DeltaX = OriginalEndPoint.x_ - OriginalStartPoint.x_;
129 double DeltaY = OriginalEndPoint.y_ - OriginalStartPoint.y_;
130 double OriginalDistance = Math.sqrt(DeltaX * DeltaX + DeltaY *

DeltaY);
131 Vector UnitVector = new Vector(DeltaX / OriginalDistance, DeltaY /

OriginalDistance);
132 CurrentPoint = OriginalStartPoint;
133

134 CompletedDistance_Next += UnitMovingDistance;
135 while (CompletedDistance_Next < OriginalDistance) {
136 NextPoint = new Point(CurrentPoint.x_ + UnitMovingDistance *

UnitVector.x_,
137 CurrentPoint.y_ + UnitMovingDistance * UnitVector.y_);

70

138 CompletedPointArray.add(NextPoint);
139 CompletedDistance_Next += UnitMovingDistance;
140 CurrentPoint = NextPoint;
141 }
142 if (CompletedDistance_Next >= OriginalDistance) {
143 CompletedPointArray.add(OriginalEndPoint);
144 }
145

146 CompletedDistance_Next = 0;
147 i++;
148 }
149

150 return CompletedPointArray;
151

152 }
153

154 private BufferedReader br_;
155 }
156

157 class Point {
158

159 public double x_;
160 public double y_;
161

162 Point(double t_x, double t_y) {
163 x_ = t_x;
164 y_ = t_y;
165 }
166 }
167

168 class Vector {
169 public double x_;
170 public double y_;
171

172 Vector(double t_x, double t_y) {
173 x_ = t_x;
174 y_ = t_y;
175 }
176 }

CP program

Listing 14: The CP program of the PoC scenario communication in the guiding system in

IP

1 package IPPackage;
2

3 import java.io.BufferedReader;
4 import java.io.BufferedWriter;

71

5 import java.io.InputStreamReader;
6 import java.io.OutputStreamWriter;
7 import java.io.PrintWriter;
8 import java.net.ServerSocket;
9 import java.net.Socket;

10

11 public class CP_IP {
12

13 public static void main(String[] args) {
14

15 try {
16 ServerSocket ConnectionWaitingSocket = new ServerSocket(Common.

CPPort);
17 Socket NewConnectionSocket = ConnectionWaitingSocket.accept();
18 BufferedReader reader_NewConnectionSocket = new BufferedReader(
19 new InputStreamReader(NewConnectionSocket.getInputStream()));
20 PrintWriter writer_NewConnectionSocket = new PrintWriter(
21 new BufferedWriter(new OutputStreamWriter(NewConnectionSocket.

getOutputStream())));
22

23 String str;
24 while (true) {
25 if ((str = reader_NewConnectionSocket.readLine()) != null) {
26 System.out.println("[CP] Received packet: " + str);
27

28 if (str.contains("DeviceInfo Area0")) {
29 writer_NewConnectionSocket.println("FR0");
30 writer_NewConnectionSocket.flush();
31 System.out.println("[CP] Sent DeviceInfo: FR0");
32 }
33 }
34 Thread.sleep(1000);
35 }
36 } catch (Exception e) {
37 e.printStackTrace();
38 }
39 }
40

41 }

GD program

Listing 15: The GD program of the PoC scenario communication in the guiding system

in IP

1 package IPPackage;
2

3 import java.io.BufferedReader;
4 import java.io.BufferedWriter;

72

5 import java.io.File;
6 import java.io.FileWriter;
7 import java.io.IOException;
8 import java.io.InputStreamReader;
9 import java.io.OutputStreamWriter;

10 import java.io.PrintWriter;
11 import java.net.ServerSocket;
12 import java.net.Socket;
13

14 public class GD_IP {
15 public static void main(String[] args) {
16

17 try {
18 ServerSocket ConnectionWaitingSocket = new ServerSocket(Common.

GDPort);
19 Socket NewConnectionSocket = ConnectionWaitingSocket.accept();
20 BufferedReader reader_NewConnectionSocket = new BufferedReader(
21 new InputStreamReader(NewConnectionSocket.getInputStream()));
22 PrintWriter writer_NewConnectionSocket = new PrintWriter(
23 new BufferedWriter(new OutputStreamWriter(NewConnectionSocket.

getOutputStream())));
24

25 String DeviceControlRequest;
26 while (true) {
27 if ((DeviceControlRequest = reader_NewConnectionSocket.readLine())

!= null) {
28 System.out.println("[GD] Received packet: " +

DeviceControlRequest);
29

30 if (DeviceControlRequest.contains("FR0")) {
31 writer_NewConnectionSocket.println("ACK");
32 writer_NewConnectionSocket.flush();
33 System.out.println("[GD] Sent the Device Control response: ACK

");
34 }
35

36 String[] SplittedRequest = DeviceControlRequest.split(" ");
37

38

39 try {
40 File newfile = new File("./path.txt");
41 newfile.createNewFile();
42 FileWriter fw = new FileWriter("./path.txt",false);
43 for(int i = 2; i < SplittedRequest.length; i++) {
44 String[] SplittedPoint = SplittedRequest[i].split(",")

;
45 fw.write("/" + SplittedPoint[0] + "/" +

SplittedPoint[1] + "/10\n");
46 }
47 fw.close();
48

73

49 Process p = Runtime.getRuntime().exec("python ./
FRControlScript.py -c tcp:127.0.0.1:5760 -f FNPathRun")
;

50 BufferedReader br = new BufferedReader(new
InputStreamReader(p.getInputStream()));

51 String line;
52 while((line = br.readLine()) != null) {
53 System.out.println(line);
54 }
55 } catch (IOException ex) {
56 ex.printStackTrace();
57 }
58 }
59 Thread.sleep(1000);
60 }
61 } catch (Exception e) {
62 e.printStackTrace();
63 }
64 }
65 }

74

References

[1] M. Losciale, P. Boccadoro, G. Piro, G. Ribezzo, L. A. Grieco, and N. Blefari-Melazzi,

“A novel ICN-based communication bus for intelligent transportation systems,” in

Proceedings of 2018 IEEE International Conference on Communications Workshops

(ICC Workshops), pp. 1–6, May. 2018.

[2] P. Boccadoro, M. Losciale, G. Piro, and L. A. Grieco, “A standard-compliant and

information-centric communication platform for the internet of drones,” in Proceed-

ings of European Wireless 2018; 24th European Wireless Conference, pp. 1–6, May.

2018.

[3] A. Detti, M. Orru, R. Paolillo, G. Rossi, P. Loreti, L. Bracciale, and N. B. Melazzi,

“Application of information centric networking to NoSQL databases: The spatio-

temporal use case,” in Proceedings of 2017 IEEE International Symposium on Local

and Metropolitan Area Networks (LANMAN), pp. 1–6, Jun. 2017.

[4] U. D. Silva, A. Lertsinsrubtavee, A. Sathiaseelan, C. Molina-Jiménez, and K. Kan-

chanasut, “Deploying an information centric smart lighting system in the wild,”

CoRR, vol. abs/1607.05784, Jul. 2016.

[5] Y. Gao, T. Kitagawa, S. Eum, S. Ata, and M. Murata, “Realization of mobility-

controlled flying router in information-centric networking,” Journal of Communica-

tions and Networks, vol. 20, pp. 443–451, Oct 2018.

[6] T. Kitagawa, S. Ata, and M. Murata, “Mobility-controlled flying routers for

information-centric networking,” in Proceedings of 2018 IEEE Consumer Commu-

nications & Networking Conference (CCNC), pp. 1–2, Jan. 2018.

[7] T. Kitagawa, S. Ata, and M. Murata, “Retrieving information with autonomously-

flying routers in information-centric network,” in Proceedings of 2016 IEEE Interna-

tional Conference on Communications (ICC), pp. 1–6, May. 2016.

[8] C. Tschudin and M. Sifalakis, “Named functions and cached computations,” in Pro-

ceedings of Consumer Communications and Networking Conference (CCNC), 2014

IEEE 11th, pp. 851–857, Jan. 2014.

75

[9] M. Król and I. Psaras, “NFaaS: Named function as a service,” in Proceedings of the

4th ACM Conference on Information-Centric Networking, pp. 134–144, Sep. 2017.

[10] Y. Zhang, A. Afanasyev, J. Burke, and L. Zhang, “A survey of mobility support

in named data networking,” in Proceedings of 2016 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS), pp. 83–88, Apr. 2016.

[11] D. An and D. Kim, “ICN-based light-weighted mobility support in IoT,” in Pro-

ceedings of 2018 27th International Conference on Computer Communication and

Networks (ICCCN), pp. 1–2, Jul. 2018.

[12] S. Arshad, M. A. Azam, S. H. Ahmed, and J. Loo, “Towards information-centric

networking (ICN) naming for internet of things (IoT): The case of smart campus,”

in Proceedings of the International Conference on Future Networks and Distributed

Systems, ICFNDS ’17, pp. 41:1–41:6, Jul. 2017.

[13] G. Zhang, Y. Li, and T. Lin, “Caching in information centric networking: A survey,”

Computer Networks, vol. 57, pp. 3128–3141, Apr. 2013.

[14] G. Wu, S. Talwar, K. Johnsson, N. Himayat, and K. D. Johnson, “M2M: From

mobile to embedded internet,” IEEE Communications Magazine, vol. 49, pp. 36–43,

Apr. 2011.

[15] H. Shariatmadari, R. Ratasuk, S. Iraji, A. Laya, T. Taleb, R. Jantti, and A. Ghosh,

“Machine-type communications: current status and future perspectives toward 5G

systems,” IEEE Communications Magazine, vol. 53, pp. 10–17, Sep. 2015.

[16] N. Zhang, G. Kang, J. Wang, Y. Guo, and F. Labeau, “Resource allocation in a new

random access for M2M communications,” IEEE Communications Letters, vol. 19,

pp. 843–846, May 2015.

[17] Y. Liu, C. Yuen, J. Chen, and X. Cao, “A scalable hybrid MAC protocol for mas-

sive M2M networks,” in Proceedings of 2013 IEEE Wireless Communications and

Networking Conference (WCNC), pp. 250–255, Apr. 2013.

76

[18] M. P. Papazoglou, “Service-oriented computing: Concepts, characteristics and direc-

tions,” in Proceedings of Web Information Systems Engineering, 2003. WISE 2003.

Proceedings of the Fourth International Conference, pp. 3–12, Sep. 2003.

[19] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K. Leung, “Dynamic

service migration in mobile edge-clouds,” CoRR, vol. abs/1506.05261, Jun. 2015.

[20] M. Bienkowski, A. Feldmann, D. Jurca, W. Kellerer, G. Schaffrath, S. Schmid, and

J. Widmer, “Competitive analysis for service migration in VNets,” in Proceedings of

the Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and

Architectures, VISA ’10, pp. 17–24, Sep. 2010.

[21] NDN Project, “Named Data Networking (NDN).” http://named-data.net/. Ac-

cessed: 2019-02-07.

77

