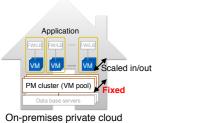
Hierarchical and Frequency-Aware Model Predictive Control for Bare-Metal Cloud Applications

Yukio Ogawa Muroran Institute of Technology Hokkaido, Japan Go Hasegawa and Masayuki Murata Osaka University, Osaka, Japan

з

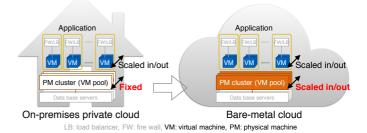

5

Contents

- Research Goal, Approach, and Proposals
- Scaling Models
- Evaluation
- Conclusion

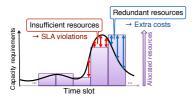
Background and Goal

 On-premises business applications use over-provisioned dedicated physical machines (PMs), which can be improved by migrating them to a bare-metal cloud.

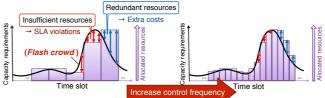


LB: load balancer, FW: fire wall, VM: virtual machine, PM: physical machine

Background and Goal


 On-premises business applications use over-provisioned dedicated physical machines (PMs), which can be improved by migrating them to a bare-metal cloud.

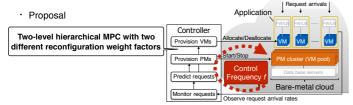
Goal: Development of a scaling mechanism for both PMs and virtual machines (VMs) in a bear-metal cloud


Resource Scaling Approach

Proactive resource allocation needs to predict the future demands, but
prediction errors result in resource inefficiency.

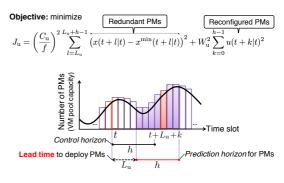
Resource Scaling Approach

- Proactive resource allocation needs to predict the future demands, but prediction errors result in resource inefficiency.
- High control frequency make resource reconfigurations adapt more quickly to demand changes, but it also increase reconfiguration overheads.
- Model predictive control (MPC) is applied to balance between resource efficiency and reconfiguration overheads.

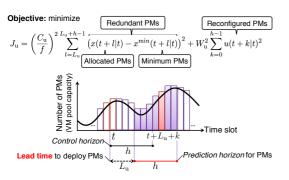


Control frequency: frequency of making reconfiguration decisions

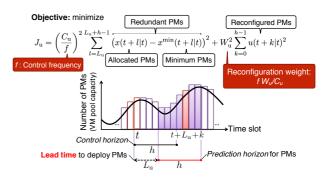
4


Challenges and Proposals

- PMs have larger reconfiguration overheads and need a longer lead time than VMs.
- · Challenges
 - The controller should initiate the reconfiguration process of PMs before initiating that of VMs
 - Excessive reconfigurations should be suppressed for PMs.


Scaling Model: Physical Machines

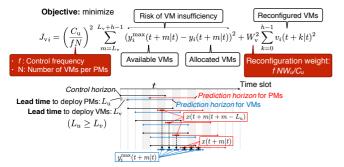
• The controller solves the optimization problem to balance the redundant PMs and the reconfiguration overhead.


Scaling Model: Physical Machines

• The controller solves the optimization problem to balance the redundant PMs and the reconfiguration overhead.

Scaling Model: Physical Machines

• The controller solves the optimization problem to balance the redundant PMs and the reconfiguration overhead.


11

7

9

The controller solves the optimization problem to balance the risk
 of VM insufficiency the reconfiguration overhead.

Evaluation

• Evaluate the proposed MPC using three HTTP traces from real-world web application: *World Cup, Campus* and *Video.*

- · Predict future request arrival rates with ARIMA model.
- · Find the optimal numbers of allocated resources using Dynamic Programming.

10

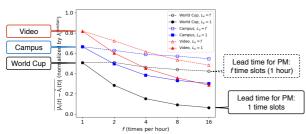
Evaluation

- Evaluate the proposed MPC using three HTTP traces from real-world web application: World Cup, Campus and Video.
- · Predict future request arrival rates with ARIMA model.
- Find the optimal numbers of allocated resources using Dynamic Programming.
- $\cdot\;$ Focus on clarifying the effect of high-frequency control with various
- reconfiguration weights for PMs.

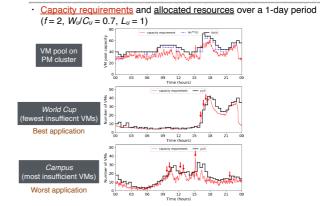
 Experimental setup 			
Control frequency		f	1 - 16 time(s) per hour
Lead time	PMs	Lu	1 - f time slots
	VMs	Lv	
Length of control and prediction horizon		h	f time slots (fixed)
Reconfiguration weight	PMs	W_u/C_u	0.1 - 1.4
	VMs	W_v/C_u	
Number of VMs per PM		N	

Evaluation

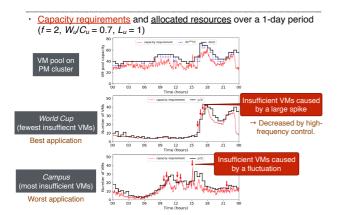
- Evaluate the proposed MPC using three HTTP traces from real-world web application: World Cup, Campus and Video.
- · Predict future request arrival rates with ARIMA model.
- Find the optimal numbers of allocated resources using Dynamic Programming.
- Focus on clarifying the effect of high-frequency control with various reconfiguration weights for PMs.

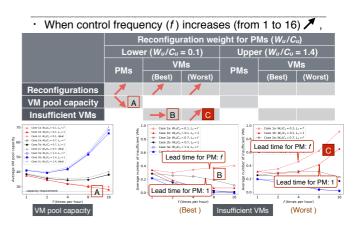

 Experimental setup 			
Control frequency		f	1 - 16 time(s) per hour
Lead time	PMs	Lu	1 - f time slots
	VMs	Lv	1 time slot (fixed)
Length of control and prediction horizon		h	f time slots (fixed)
Reconfiguration weight	PMs	W_u/C_u	0.1 - 1.4
	VMs	W _v /C _u	0.01 (fixed at the lower)
Number of VMs per PM		N	4 (fixed)

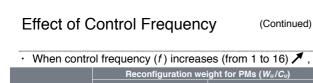
15

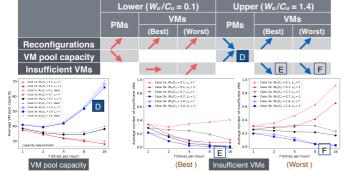

17

Prediction Errors

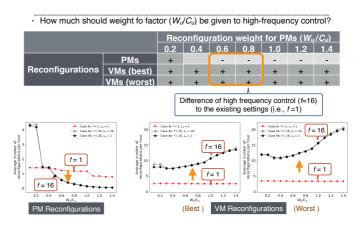

- The prediction errors are mainly caused
 - · by a large spike lasting a few hours in the case of World Cup
 - by a fluctuation during several tens of minutes in the cases of *Campus* and *Video*


Example of Allocated Resources


Example of Allocated Resources



Effect of Control Frequency



16

Effect of Reconfiguration Weight for PMs

21

19

Effect of Reconfiguration Weight for PMs (Continued)

• How much should reconfiguration weight for PMs (W_u/C_u) be given? ration PMs Reconfigurations VMs (best) VMs (worst) ж. VM pool capacity (best) Insufficient VMs (worst) 10 × 10 ← Case Ib: f = 1, L₀ = 1
 - ← Case Ia: f = 16, L₀ = 16
 ← Case Ib: f = 16, L₀ = 1 $f = 16, L_u = 16 \int_{-16, L_u}^{-1, L_u} f(t) = 16 \int_{-16, L_u}^{-16, L_u} f(t) = 10$ $f = 16, L_u = 16$ *f* = 1 f = 1f = 16 $f = 16, L_{\mu} = 1$ 0.4 0.6 $f = 16, L_u = 1$ (Best)

VM pool capacity

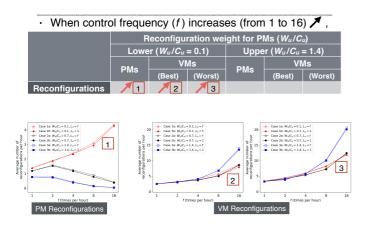
nt VMs

(Worst)

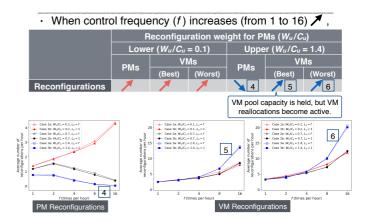
Insuffic

Conclusion

- · High-frequency control of hierarchical and frequency-aware MPC
 - Improve the timing of the PM reconfigurations, and increase . the VM reallocations to adjust the redundant capacity among the applications
 - Lead to the reduction of VM insufficiency without increasing the resource redundancy level
- · Future work
 - · Evaluations with various control options
 - Evaluations with different combinations of the three . applications; each of the combinations has different request arrival characteristics


23

Thank you! **Questions?**


Backup Slides

22

Effect of Control Frequency

Effect of Control Frequency

