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Abstract—The amount of traffic on the Internet has been
increasing both in quantity and in fluctuation as the devices
connected to the Internet and the services on the Internet
become popular. Predictive Traffic Engineering (TE) is one
approach to accommodating fluctuating traffic without causing
congestion. Prediction accuracy is important for predictive TE.
Real-world information is useful for the prediction of future
traffic. Although the real-world information may contribute to
the accurate prediction of future traffic, it is difficult to model the
relation between these two types of data. Therefore, we propose
a prediction method inspired by the cognitive process of the
human brain, which makes decisions from uncertain information.
Our method defines multiple states based on the monitored
information including both traffic and real-world information
and subsequently learns the future traffic corresponding to each
state. Then, our method predicts future traffic by deciding the
current state from the traffic and real-world information by
using a process inspired by the cognitive process of the human
brain.Finally, our method allocates resources based on the future
traffic corresponding to the states of which the confidence levels
are high. We evaluated our method by simulation. The results
demonstrate that our method avoids congestion without requiring
a large amount of additional resources; the amount of resources
required to avoid congestion is reduced by 25 % compared with
the predictive TE using only past traffic information.

Index Terms—Traffic Engineering, Resource Allocation, Real-
World Information, Human Brain Cognition

I. INTRODUCTION

The amount of traffic through networks has been increasing
both in terms of quantity and fluctuation as the devices
connected to the Internet and the services on the Internet
become popular. Network operators need to accommodate
such fluctuating traffic without causing congestion. Traffic
Engineering (TE) is one approach to solve this problem [1]–
[5]. These methods are designed to dynamically change the
routes and/or resource allocations to accommodate the traffic
without congestion.

Most of the methods that dynamically control network
resources achieve this on the basis of observed network traffic.
However, resource allocation based on observed traffic does
not correspond to the actual traffic flow when the amount
of traffic changes significantly, yet the configured resource
allocation is not changed until the next control cycle. This

problem may be solved by setting a short control interval,
which may, however, cause network stabilization.

One approach to allocating fluctuating traffic without caus-
ing network stabilization is predictive TE [6]. In this approach,
a controller collects traffic information and predicts future
traffic. Then, the controller allocates the resources based on the
predicted traffic. Predictive TE allocates a sufficient amount
of resources to avoid congestion without specifying a short
control interval.

The accuracy of the prediction is important for predictive
TE; inaccurate traffic prediction may lead to improper resource
allocation and congestion. Many methods to predict future
traffic have been proposed [7]–[10]. For example, Yu et al.
proposed a traffic prediction method that combines ARIMA
and FARIMA based on the multifractal spectrum for mobile
networks, and Feng et al. compared prediction models such
as IMA, FARIMA, ANN, and wavelet-based prediction and
demonstrated that the optimal model depends on the network.

Most of the traffic prediction methods model traffic changes
based on the time series of monitored traffic and predict future
traffic using the model. However, it is difficult to accurately
predict traffic only on the basis of previously monitored traffic,
if the previously monitored traffic does not include the signs
of fluctuation.

In this regard, real-world information can contribute to the
accurate prediction of future traffic because this information
may include the required signs of traffic fluctuation that are
absent from historical traffic data. For example, information
about the number of network users in each area can improve
the accuracy of the prediction, because the traffic in an area
would be expected to increase if the number of users in the
area were to increase. In addition, an increase in the number
of users in adjacent areas would enable us to easily predict
that the number of users in the area is also likely to increase,
which would in turn result in an increase in traffic from the
area.

In this paper, we propose a predictive traffic engineering
method, which predicts future traffic using the information
monitored in the real world. Even though this information may
contribute to accurate prediction, it is difficult to model the
relation between future traffic and real-world information. That



is, we require a new method to predict future traffic using such
information of which the relation to future traffic cannot be
clearly modeled.

This prompted us to propose a prediction method inspired
by the cognitive process of the human brain, which makes
decisions on the basis of uncertain information. Bayesian
decision-making theory is one of the theoretical models that
explain the process the human brain uses to make decisions
based on uncertain information. Bayesian decision-making
theory treats observed information and the confidence of cog-
nitive objects as stochastic variables. Then, the variables are
updated by Bayesian inference every time a new observation
is obtained. Finally, the human brain makes decisions based
on these stochastic variables.

Bayesian Attractor Model (BAM) is one of the cognitive
models of the brain based on Bayesian decision-making the-
ory [11]. In this model, the cognitive options are embedded
as attractors. Then, the brain is assigned stochastic variables
related to the options, and recognizes which option is suitable
by updating the variables by using Bayesian inference.

In our method, we define multiple states based on the
monitored information including both traffic and real-world
information. In addition, our method learns the future traffic
corresponding to each state. We embed the defined states as
attractors. Then, our method predicts future traffic by deciding
the current state from the traffic and real-world information by
a process inspired by BAM; our method contains stochastic
variables to indicate the confidence level about the current
traffic and real-world information belonging to each state, and
updates the variables every time a new observation is obtained.
Finally, our method allocates the resources based on the future
traffic prediction corresponding to the states for which the
confidence is high.

The remainder of this paper is organized as follows. Sec-
tion II explains the Bayesian Attractor Model (BAM). Sec-
tion III proposes the predictive traffic engineering method
incorporating real-world information. Section IV describes the
evaluation of our method. Section V concludes this paper.

II. BAYESIAN ATTRACTOR MODEL(BAM)

The Bayesian Attractor Model (BAM) models the process
by which the brain makes decisions based on uncertain sensing
information [11]. The BAM encodes the predefined i options
ϕ1, · · · , ϕi, known as an attractor, and makes decisions de-
pending on the option of the current status. The BAM has the
decision state zt as its internal state, and updates zt based
on the observation value xt obtained from the outside by
performing Bayesian inference. The remainder of this section
explains the process of updating the states and the decision-
making process of BAM.

A. Update of decision state

BAM has the following generative model of the decision
state zt and observation xt.

zt − zt−∆t = ∆tf(zt−∆t) +
√

∆twt (1)

xt = Mσ(zt) + vt, (2)

where f(z) is the Hopfield dynamics, wt and vt are Gaussian
noise variables, M = [µi, · · · , µN ] is a matrix indicating
the observation values, and µi is the observation value corre-
sponding to the state ϕi, which is the i-th predefined attractor.
Further, σ(x) is a sigmoid function tanh(ax/2)+1

2 , where a is
the slope of this function.

The BAM updates the decision state zt every time the
observations xt are obtained by inverting the generative model
using Bayesian inference. Because the generative model is
nonlinear, Bitzer et al. use the Unscented Kalman Filter [12] to
update the mean decision state of zt. In addition to updating
the mean decision state, the posterior distribution P (zt|xt)
over the decision state is also obtained.

B. Decision making

The above state estimation outputs the posterior probability
P (zt|xt). Thus, the decision is made by handling the proba-
bility. Bitzer et al. introduced the threshold λ. When P (zt =
phii) > λ, it selects the option ϕi. When P (zt = ϕi) ≤ λ
for all i, the decision is not made until a new observation is
obtained.

III. PREDICTIVE TRAFFIC ENGINEERING INCORPORATING
REAL-WORLD INFORMATION

A. Overview

In this paper, we propose predictive TE that incorporates
real-world information for mobile networks. In mobile net-
works, the traffic from each area may change over the course
of time because of the varying amount of traffic generated
by each user and/or the change in the number of network
users in the area. Network operators therefore need to ensure
sufficient resources are available for each area to accommodate
the variation in traffic without congestion. In this paper, we
discuss a method to predict the future traffic from each area
and determine the amount of resources required for each area.

A mobile network operator needs to know the number of
network users in each area, because this information is useful
to predict the amount of traffic from the area, which increases
when the number of network users in the area increases. In
addition, an increase in the number of users in nearby areas
would indicate a possible increase in the number of users in the
area of interest, and this would cause the traffic from the area
to increase. Therefore, our method uses real-world information
such as the number of users in each area in addition to the
traffic volume generated by each area.

Even though the real-world information may contribute to
the accurate prediction of future traffic, modeling the relation
between future traffic and real-world information is difficult.
That is, we need a new method to predict future traffic using
information of which the relation to future traffic cannot be
clearly modeled.

This led us to propose a prediction method inspired by the
cognitive process of the human brain, which makes decisions
on the basis of uncertain information. This model includes



Fig. 1: Application of the cognitive process of the human brain
to TE

stochastic variables that mimic the human brain and updates
these variables by Bayesian inference every time a new
observation is obtained. Then, a decision is made based on
the stochastic variables, imitating the process followed by the
human brain. Figure 1 shows an illustrative overview of our
method.

The remainder of this section explains the way in which
our method predicts future traffic and the process our method
follows to allocate resources based on this prediction.

B. Traffic prediction based on cognitive process of the human
brain

Our method predicts the future traffic from each area and
allocates the resources based on this prediction. In this section,
we focus on an area and predict the traffic in the area at time
slot t+ p by using the information monitored at time slot t.

Our method defines the state of the network by using the
monitored information. We also assign the expected amount of
future traffic for each state by using the observed information.
This approach enables us to predict the future traffic by
determining the state of the network based on the observed
information. We determine the state of the network by using
the Bayesian Attractor Model (BAM) [11], which is one of
the cognitive models of the human brain.

The remainder of this subsection explains the observation
information used for prediction, the definition of the state of
the network, and the application of BAM for decision-making
regarding this state.

1) Observed information: In this study, we use the number
of users in each area in addition to the amount of traffic
from the area. As explained in Section IV-A, we also use
the information pertaining to nearby areas. In addition to the
absolute values of the number of users and the amount of
traffic, it is useful to know whether the values are increasing;
this is because an increase in the number of users in nearby
areas may be a sign that the number of users and/or the amount
of traffic could be expected to increase. Therefore, we also use
the rates of increase in the traffic and the number of users.

Our method uses the following information in the areas of
which the distance from the area of which the future traffic is
to be predicted is less than m when predicting the traffic at
time slot t+ p

• Traffic amount at time slot t

• Difference between traffic amounts at time slot t− p and
time slot t

• Number of users at time slot t
• Difference between the number of users at time slot t−p

and time slot t

2) State: If the information observed at time slot t is
similar to that observed at time slot t′, the amount of traffic
at time slot t + p is similar to that at time slot t′ + p. Thus,
we define the state by using a clustering method; we divide
the observed information that is collected in advance into k
clusters C1, C2, · · · , Ck such that each cluster includes similar
information. Each cluster indicates the state to be determined
by the decision-making process.

We also assign the future traffic for each cluster. The future
traffic for cluster Cn is determined by

T future
n = max

t∈Cn

Tt+p, (3)

where Tt+p is the amount of traffic at time slot t+p. Definition
of the future traffic by Eq. (3) enables us to avoid the case
in which the amount of traffic at time slot t′ + p for t ∈ Cn

becomes larger than the traffic predicted for cluster Cn. That
is, we can allocate a sufficient amount of resources to avoid
congestion by using the predicted traffic.

We define the k cognitive states based on observed infor-
mation using the k-means method.

3) Application of BAM to state cognition: We use k
decision makers such that the ith decision maker decides
whether the current state belongs to the ith option (i.e., the
ith cluster defined in Section IV-A). Each decision maker
performs decisions based on BAM.

Hereafter, we explain the use of the observed information
in each decision maker and define the attractor in BAM.

a) Using the observed information: Each decision maker
uses observations to determine whether the current state be-
longs to the target cluster. We calculate the input of the BAM
model xi in each decision maker to enable the model to
easily determine whether the current state belongs to the target
cluster

xi = σ

(
ai

ai + bi
,

bi
ai + bi

)
ai = D(X,Mi)

bi = minj ̸=i(D(X,Mj)),

(4)

where xiis the input for BAM to make a decision whether
the current state belongs to the cluster Ci(1 ≤ i ≤ k),
X is the vector of the current observed value, D(y1,y2) is
the Euclidean distance between vectors y1andy2, and σ is a
sigmoid function. Further, yi is the centroid of the observed
information belonging to the ith cluster.

Important is that xi approaches 0, 1 when the observed
value is close to the centroid of the observed information in
the cluster Ci. On the other hand, xi approaches 1, 0 when
the observed value is close to the other clusters.



b) Definition of attractor: Each decision maker decides
whether the current state belongs to the target cluster. That
is, each decision maker has two attractors zyes and zno; zyes
corresponds to the case in which the current state belongs to
the target cluster, and zno corresponds to the case in which
the current state belongs to the other cluster. Then, we define
the observed values for zyes and zno as follows.

µyes = (0, 1)

µno = (1, 0)
(5)

C. Resource allocation based on prediction

The above procedure outputs the posterior probability
P (zyes|x) (hereinafter referred to as the confidence) and the
predicted amount of traffic for each cluster. In this study, we
allocate resources based on this confidence.

If the current observed information clearly indicates that
the current state belongs to a certain cluster, the value of
P (zyes|x) is high only for that particular cluster. However,
there may a case in which P (zyes|x) is high for multiple
clusters. In this case, we allocate the resources based on the
maximum value of the predicted traffic of which the corre-
sponding P (zyes|x) is high to avoid the risk of congestion.
That is, we allocate resources to accommodate traffic of which
the volume is larger than

T allocate = max
n∈{n|Pn(zyes|x)>λ}

T future
n

, where Pn(zyes|x) is the confidence of the decision maker
corresponding to the nth cluster, and λ is the threshold.

IV. EVALUATION

This evaluation demonstrates the effect of using the real-
world information, and the effect of the prediction inspired by
the cognitive process of the human brain.

A. Evaluation method

1) Evaluation environment: This evaluation requires data
relating to the movement of users and the traffic generated by
these users. However, data of the actual movement of users
are unavailable.

Thus, in this study we synthetically generated data about
the movement of users and the traffic generated by these users
by using the pseudo-generated GPS trajectory dataset named
Open PFLOW [13] (University of Tokyo CSIS-JoRAS), and
Synthetic Traffic Generator [14].

Open PFLOW includes the typical movement pattern of
network users in the metropolitan area for one day. This
dataset contains pairs of values consisting of the time and
GPS coordinates corresponding to each user. The data were
recorded every 5 seconds. However, the number of people
included in this dataset is 617,040 and does not include data
corresponding to all users in the metropolitan area.

Therefore, assuming that multiple users move in a similar
way, we generated the number of people in each area by
assigning a scale factor to each user in Open PFLOW and
summing the scale factors of the users in the area. We
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Fig. 2: Time series of the number of users in the prediction
target area and its surroundings

generated multiple datasets by randomly changing the scale
factors and used one of them as training data for the prediction,
and the others for the evaluation.

Synthetic Traffic Generator reproduces the amounts of traf-
fic, the number of requests, and the interval time between
requests from x : 00 : 00 to (x + 1) : 00 : 00 (0 ≤ x ≤ 23)
based on the real data. This simulator generates most of the
requests on x : 00 : 00, but, in the actual network, each user’
s request occurs in a greater variety of time zones. Therefore,
in this evaluation, we regenerated the request time such that
the requests were uniformly distributed between x : 00 : 00
and (x + 1) : 00 : 00. The Synthetic Traffic Generator only
generates requests and does not generate information on the
amount of traffic in shorter time granularity. In this evaluation,
the traffic produced by each user was generated assuming that
the traffic rate is constant from the beginning to the end of the
request.

In this evaluation, we defined the area by partitioning
Chiyoda-ku, Tokyo, into areas of 0.0036 (about 350 m) in both
latitude and longitude. We focused on one of the areas as the
target area. Figure 2 shows the time series of the number of
users in the target and nearby areas. Figure 3 shows the time
series of the traffic in the areas. In these figures, sequence 1
corresponds to the target area.

In this evaluation, for simplicity, the unit of the allocated re-
sources was set such that one unit can accommodate 16 Mbps.
We set the value of p to 40 minutes. That is, we predict the
amount of future traffic 40 minutes in advance and allocate
resources to avoid congestion for 40 minutes.

2) Compared method: We evaluate the effect of using real-
world information and the effect of prediction inspired by
the cognitive process of the human brain. The evaluation is
designed to compare the following method with the proposed
method (hereinafter referred to as cognitive TE method with
real-world information).

a) Cognitive TE without real-world information: This
method predicts the future traffic in the same way as our
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Fig. 3: Time series of the amounts of traffic in the prediction
target area and its surroundings

cognitive TE with real-world information but uses only the
information on traffic volumes to predict future traffic. The
information used by this method at time slot t is the following
information of the areas of which the distances from the target
area are less than m

• Traffic volume at time slot t
• Difference between the amount of traffic at time slot t−p

and the time slot t
This method is the same as the proposed method except for
the information used for prediction. The comparison of the
performance of our method with that of this method is intended
to demonstrate the effect of including information about the
number of users.

b) Deterministic TE With real-world information: This
method predicts the future traffic by using the same infor-
mation as our method. However, this method does not use a
process inspired by the cognitive model of the human brain.
Instead, this method determines the cluster of the current
status as being the cluster of which the centroid is the nearest
to the current observation. This comparison is intended to
demonstrate the effect of prediction based on the cognitive
process.

c) Deterministic TE Without real-world information:
This method predicts the future traffic in the same way as the
deterministic TE with real-world information but uses only the
information on the traffic volumes.

3) Parameter settings: In the above-mentioned compar-
isons, we set m = 2 and p = 480. That is, all methods use the
observed information of areas of which the distance from the
target area is less than two areas (about 700 m). Furthermore,
the difference from the observed value 40 minutes ago is used
as the rate of increase in the amount of traffic and the number
of people.

In the BAM, we set the sensory uncertainty to 0.42, and
dynamic uncertainty to 0.3. We set the slope of the sigmoid
functions a to 2.0. The other parameters in the BAM are set
to the same values as those used by Bitzer et al. [11]
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Fig. 4: Sum of allocated resources necessary to maintain
the number of timeslots in which congestion occurs below
a certain level

4) Metrics: Each of the above-mentioned methods were
used to allocate resources to the target area with the aim
of avoiding congestion. We allocated resources that can ac-
commodate T future + α Mbps of traffic, where T future is the
predicted traffic and α is a margin. Setting a large margin
avoids congestion but requires more resources. Because it
is preferable to avoid congestion with a limited amount of
resources, we determined the number of time slots in which
congestion occurred and the total amount of allocated re-
sources.

B. Evaluation results

Figure 4 shows the results. The horizontal axis indicates the
number of time slots when congestion occurs due to the lack
of resources and the vertical axis indicates the total amount
of resources allocated when we set α such that the number of
time slots in which congestion occurs is less than the value
on the horizontal axis. The total amount of resources indicates
the total volume of traffic (KByte) that can be relayed in all
time slots by the allocated resources.

Comparing the cognitive TE with real-world information
and the cognitive TE without real-world information, the
cognitive TE with real-world information required a smaller
amount of resources to maintain the number of time slots in
which congestion occurred to less than a certain value. This
is because the real-world information enables us to capture
the difference in the states which could not be distinguished
by using only traffic volume information, thereby allowing the
accurate prediction of future traffic. As shown in Figures 2 and
3, the traffic volumes are strongly correlated with the number
of users. That is, the number of users is useful information
for predicting the traffic. In addition, the fluctuation of the
number of users does not include a large amount of noise,
compared with the fluctuation of the traffic. Consequently,
the large amount of noise prevents the cognitive TE without
real-world information from accurately deciding the status of



the network only from the traffic information. On the other
hand, the cognitive TE with real-world information accurately
decides the states even in cases such as this.

We next compare the cognitive TE with real-world infor-
mation and the deterministic TE with real-world information.
Figure 4 shows that the cognitive TE requires a smaller amount
of resources. This is because the cognitive TE with real-
world information controls the traffic based on confidence.
The cognitive TE requests additional resources when the
confidence levels for multiple candidates become large. As
a result, a small value of α is sufficient to avoid congestion.
On the other hand, the deterministic TE does not consider the
confidence levels. As a result, α needs to have a large value to
avoid congestion, which requires a large amount of additional
resources.

V. CONCLUSION AND FUTURE WORK

This paper proposed a predictive traffic engineering method
that predicts future traffic by using information monitored in
the real world. Despite the obvious usefulness of basing the
prediction on real-world information, it is difficult to model
this traffic as a function of the real-world information. That is,
we required a new method to predict future traffic using this
information.

Therefore, we proposed a prediction method inspired by the
cognitive process of the human brain, which makes decisions
based on uncertain information. Our model uses stochastic
variables to mimic the human brain and updates the vari-
ables by Bayesian inference every time a new observation is
recorded. Then, similar to the human brain, the model makes
a decision based on the stochastic variables.

Our method was designed to define multiple conditions
based on the monitored information including both traffic
and real-world information. Our method learns the amount
of future traffic corresponding to each condition. Then, our
method uses a process inspired by the cognitive process of
the human brain to predict the amount of future traffic by
estimating the current amount of traffic and by using real-
world information; our method contains stochastic variables
indicating the confidence level of the current traffic and real-
world information relating to the corresponding condition,
and updates the variables every time a new observation is
recorded. Finally, our method allocates resources based on the
future traffic corresponding to the conditions for which the
confidence levels are high.

We evaluated our method by simulation. The results demon-
strated that our method avoids congestion without requiring a
large amount of additional resources; the amount of resources
required to avoid congestion is reduced by 25 % compared
with the predictive TE using only historical traffic information.

Our future work includes optimization of the parameter
settings of our method. Especially, the number of clusters k
may have a large impact on the accuracy of the prediction. We
also plan to evaluate our method in a different environment;
for example, we intend evaluating our method by specifying
a different value for p.
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