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Abstract: In realizing the network environment assumed by the Internet-of-Things, network slicing
has drawn considerable attention as a way to enhance the utilization of physical networks (PNs).
Meanwhile, slicing has been shown to cause interdependence among sliced virtual networks (VNs) by
propagating traffic fluctuations from one network to others. However, for interconnected networks
with mutual dependencies, known as a network of networks (NoN), finding a reliable design method
that can cope with environmental changes is an important issue that is yet to be addressed. Some
NoN models exist that describe the behavior of interdependent networks in complex systems, and
previous studies have shown that an NoN model based on the functional networks of the brain
can achieve high robustness, but its application to dynamic and practical systems is yet to be
considered. Consequently, this paper proposes the Physical–Virtual NoN (PV-NoN) model assuming
a network-slicing environment. This model defines an NoN availability state to deal with traffic
fluctuations and interdependence among a PN and VNs. Further, we assume three basic types of
interdependence among VNs for this model. Simulation experiments confirm that the one applying
complementary interdependence inspired by brain functional networks achieves high availability
and communication performance while preventing interference among the VNs. Also investigated
is a method for designing a reliable network structure for the PV-NoN model. To this end, the
deployment of network influencers (i.e., the most influential elements over the entire network) is
configured from the perspective of intra/internetwork assortativity. Simulation experiments confirm
that availability or communication performance is improved when each VN is formed assortatively
or disassortatively, respectively. Regarding internetwork assortativity, both the availability and
communication performance are improved when the influencers are deployed disassortatively
among the VNs.

Keywords: network of networks; brain networks; complex networks; centrality; assortativity;
Internet-of-Things; network virtualization

1. Introduction

The Internet-of-Things (IoT) has seen an increasing number of practical implementations in
recent years, regarding not only traditional Internet services but also other services of extreme societal
importance, such as infrastructure (e.g., electricity grids, vehicular traffic) and life-critical services
(security, medical treatment, etc.) [1,2]. This situation is leading to the emergence of interconnected
networks with mutual dependencies, known as a network of networks (NoN) [3]. Network slicing
based on network virtualization technology can be regarded as an NoN case and has been attracting
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much attention as a way to realize the assumed IoT network environment [4,5]. In this architecture,
sliced networks, i.e., virtual networks (VNs), are created by service providers to offer specific services
on physical networks (PNs) provided by the infrastructure providers. To enhance the flexibility
and efficiency of resource utilization, recent studies have investigated new methods for reallocating
resources dynamically between VNs according to traffic fluctuations instead of dividing the PN
resources statically [6–9]. However, although the above methods have several advantages, traffic
fluctuations in one VN can be propagated to other VNs because of the mutual dependences between
the VNs sharing the same PN resources [10,11]. In the upcoming IoT network scenario, environmental
changes in service networks will exert an increasing influence on society and human life. Consequently,
an urgent issue is to establish a method for designing an NoN with high reliability, namely, the ability
to sustain network services under traffic fluctuation, assuming the network-slicing environment.

The Catastrophic NoN (C-NoN) was presented as a model expressing NoN availability based on
actual interconnected networks comprising infrastructure networks in Italy, namely, a power network
and a control network [12]. The functional availability of each infrastructure network depends on that
of the other network: the power network must be operated by the control network, while the control
network must be supplied with electricity by the power network. The C-NoN model reproduces the
dependence between both networks, revealing how partial fluctuations spread their influence over the
entire NoN.

On the other hand, Morone et al. argued that not all complex networks existing in nature are
vulnerable to fluctuations [13]. Brain functional networks comprise a number of mutually connected
network modules (i.e., regions) of neural cells. The regions are interdependent to complement
their functionalities. Advances in neuroimaging technology, such as functional magnetic resonance
imaging (fMRI), now make it possible to identify the interregional dependence of brain functional
networks, for which Morone et al. proposed the Brain NoN (B-NoN) model [13]. The B-NoN
model reproduces the complementary interregional dependence and elucidates the mechanisms
that suppress the propagation of local fluctuations. However, insights from studying NoN models
are yet to be applied to practical systems of information networks including the aforementioned
network-slicing environment.

As an NoN system, we consider herein layered VNs with slicing, and we propose the
Physical–Virtual NoN (PV-NoN) model based on existing NoN models. To deal with traffic conditions
and interdependence among a PN and VNs, this model describes NoN availability, focusing on the
states of the node interfaces. Here, availability denotes the ability for a network to transmit packets
without loss from the source to the destination. For the PV-NoN model, we assume three different
types of interdependence according to how the resources (e.g., packet buffer, network I/O) are assigned
on the physical interfaces. To investigate NoN reliability, we measured availability and communication
performance through simulation experiments. We confirm that among the three types of PV-NoN
models, the one based on the B-NoN model, which reproduces the complementary interdependence
of brain functional networks, achieves high availability and communication performance while
preventing interference among the VNs.

We also investigate a method for designing reliable network structures in the PV-NoN model.
To this end, we configure the deployment of network influencers, which are the network components
whose fluctuations have the largest influence on the entire network [14–16], from the perspective of
inter/intranetwork assortativity. Assortativity is a network metric for evaluating the correlation of
node centrality, i.e., node influence [17]. Evaluation results show that configuring the assortativity
within each VN and among the VNs can improve NoN availability and communication performance.
Obtaining guidelines on influencer design with the PV-NoN model contributes directly to controlling
the performance of network slicing under unpredictable environmental changes, thereby leading to
the design of highly reliable interdependent network architectures in future IoT scenarios. Our results
also suggest the potential of the NoN model to be applied to other interconnected network systems
wherein there is mutual internetwork dependence.
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2. Basic Principles of NoN Models

There have been several studies that theoretically investigate structural and behavioral
performance of NoN [18–22]. However, in recent years, Morone et al. proposed a model that deals
with the interdependency of NoN [13], and there has been no study that investigates the application of
the models into information networks, including virtualized network environment, where physical
resources are virtually partitioned. Therefore, we introduce the general concepts of NoN models and
provide the definitions of the B-NoN and C-NoN models for the fundamental of our proposed model.
We also explain the method for detecting network influencers based on the NoN models.

2.1. Network of Networks

2.1.1. Variables in NoN Models

The existing NoN model is characterized by modeling the node states to express the NoN
availability. The state of an arbitrary node in the NoN is determined by those of its neighbors. A
node can be in one of four states, each of which is characterized by three variables (Table 1), and state
transitions occur in three steps (Figure 1). The variable ni indicates the existence of node i, and its
value is predetermined as shown by Figure 1a. The value of σi, which expresses the local effectiveness of
node i, is then determined based on the values nj of all nodes j that are connected via internetwork
links, and shifts to the states shown in Figure 1b. ρi is the global effectiveness of node i and is determined
by whether the node is included in the giant component (GC) composed of locally effective nodes,
which is shown in Figure 1c.

Table 1. Definition of network-of-networks (NoN) node states.

Symbol Node State ni σi ρigv removed 0 0 0gw exists 1 0 0gs locally available 1 1 0gw globally available 1 1 1!"#$%&'() !"#$%&'(* +,-.#(/%01%.".#2.#"&3."#$%&'(4,.'2.#&-3."#$%&'(4,.'5-6 576 5/6
Figure 1. Example of state transition in Brain NoN (B-NoN) model [13]. The node symbols correspond
to those defined in Table 1. The black lines indicate intranetwork links and the blue dashed lines
indicate internetwork links.

The B-NoN and C-NoN models define the local effectiveness σi in the same way but the GC in
different ways. This results in different definitions of the global effectiveness ρi, leading to a large
difference in reliability between the two NoN models. In the following sections, we describe the
definitions of σi and ρi in detail, along with the state-transition mechanisms shown in Figure 1.
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2.1.2. Definition of Local Effectiveness

In a realistic NoN assumed by the B-NoN and C-NoN models, arbitrary nodes cannot be locally
effective unless there is a node that is also locally effective in the interconnected network. For example,
in brain functional networks, the function of “recognizing an image” can be achieved only by the
cooperation of neural cells in two regions, namely, the posterior occipital cortex (vision) and the
anterior cingulate cortex (recognition) [13]. In the same manner, an electric power supply system is
realized by the cooperation of nodes in a power network and a control communication network [12].
As such, the NoN models express the local effectiveness of node i by defining the variable σi as follows:

σi = ni

[
1− ∏

j∈F (i)
(1− ni)

]
, (1)

where F (i) is the set of nodes connected to node i via internetwork links. For node i to be locally
effective, Equation (1) requires (i) node i to exist and (ii) there to be at least one node connected to
node i via internetwork links. If node i has no internetwork links, then the condition reduces to (i).
For example, the node colored black in Figure 1b cannot become locally effective because both nodes
connected via internetwork links are removed.

2.1.3. Definition of Global Effectiveness

The global effectiveness of a node is based on its connectivity to the GC consisting of locally
effective nodes. The size of the GC is calculated using a method known as message passing, where a
node (i) sends the probability of it being connected to the GC to all its adjacent nodes and (ii) updates
this probability whenever the node receives the corresponding information from its neighboring nodes.
A node can send information only when it is locally effective. At the beginning of message passing,
the initial values of the probability are set to a random binary configuration of {0, 1}, and the global
effectiveness is determined by the converged value of the message passing process. The B-NoN and
C-NoN models calculate the GC in different ways as explained in the following sections.

B-NoN Model

An image is recognized in the brain functional networks by the combination of the posterior
occipital cortex, which is responsible for visual function, and the anterior cingulate cortex, which deals
with recognition. These two regions compensate complementarily for the lack of information in each
other; for instance, even if the posterior occipital cortex receives incomplete visual information from
the eye, the anterior cingulate cortex can compensate for this lack and recognize the object. The B-NoN
model reflects this as a logical OR-like dependence between the regions. A node is regarded as globally
effective if either its adjacent nodes of the same network or those from other networks belong to the GC.
For message passing in the B-NoN model, the variable ρi→j is defined as information sent from node i
to node j within the same network and the variable ϕi→j is defined as information sent from node i to
node j of a different network:

ρi→j = σi

[
1− ∏

k∈S(i)\j
(1− ρk→i) ∏

l∈F (i)
(1− ϕl→i)

]
,

ϕi→j = σi

[
1− ∏

k∈S(i)
(1− ρk→i) ∏

l∈F (i)\j
(1− ϕl→i)

]
,

(2)

where S(i) is the set of adjacent nodes of node i within the same network and F (i) is the set of
adjacent nodes of node i from other networks. By this formulation, ρi→j and ϕi→j become 1 if either
ρk→i or ϕl→i is 1, reflecting the logical OR-like dependence. Starting with random configurations of
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ρi→j, ϕi→j ∈ {0, 1}, the global effectiveness ρi as the converged probability of node i being connected
to the GC through message passing is defined as

ρi = σi

[
1− ∏

k∈S(i)
(1− ρk→i) ∏

l∈F (i)
(1− ϕl→i)

]
. (3)

C-NoN Model

In contrast to the B-NoN model, a node in the C-NoN model is globally effective if both its adjacent
nodes of the same network and those from other networks belong to the GC. This model reflects
the logical AND-like dependence that the power network and the control network are not mutually
replaceable functions, whereas the functions in the inter-areal brain networks are complementary.
Based on this characteristic, the variables ρi→j and ϕi→j are defined as

ρi→j = σi

[
1− ∏

k∈S(i)\j
(1− ρk→i)

][
1− ∏

l∈F (i)
(1− ϕl→i)

]
,

ϕi→j = σi

[
1− ∏

k∈S(i)
(1− ρk→i)

][
1− ∏

l∈F (i)\j
(1− ϕl→i)

]
.

(4)

In contrast to the formulation of the B-NoN model, ρi→j and ϕi→j become 1 if both ρk→i and
ϕl→i are 1, reflecting the logical AND-like dependence. As the converged probability of node i being
connected to the GC, the global effectiveness ρi is then defined as

ρi = σi

[
1− ∏

k∈S(i)
(1− ρk→i)

][
1− ∏

l∈F (i)
(1− ϕl→i)

]
. (5)

2.2. Influence Identification in a Network of Networks

The identification of highly influential nodes, which play important roles in robustness and
diffusion, has been studied in many research domains, such as social networks [14,23], biology [24,25],
marketing [26,27], and computer networks [16]. Because searching for the optimal influencers over
a given network is an NP-hard problem [14], a number of heuristic methods have been proposed to
date [28–30].

Herein, we also deal with influencer design to enhance NoN reliability, and therefore we focus on
the recently proposed Collective Influence (CI) algorithm for influencer identification [31]. Not only
does the CI algorithm outperform other existing methods in detecting influencers, it is also optimized
for an NoN [13]. The influence on the network centered around node i is represented by CIi, which is
defined as

CIi = (ki − 1) ∑
j∈∂Ball(i,l)

(k j − 1), (6)

where ki is the degree of node i and ∂Ball(i, l) is the set of nodes located exactly l hops away from
node i (Figure 2). CIi is calculated as the product of the degree of node i and the sum of the degree of
node j in ∂Ball(i, l). Furthermore, the definition of CIi is expanded for an NoN as follows:
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Figure 2. Expression of collective influence (CI). CIi is depicted in Network 1. Ball(i, l) is the area
of influence of node i, and ∂Ball(i, l) corresponds to the edge of Ball(i, l). Networks 1 and 2 are
interdependent via an internetwork link.

CIi = (kintra
i + kinter

i − 1) ∑
j∈∂Ball(i,l)

(kintra
j + kinter

j − 1)

+ ∑
j∈F (i):kinter

j =1

[
(kintra

j + kinter
j − 1) ∑

m∈∂Ball(j,l)
(kintra

m + kinter
m − 1)

]
, (7)

where kintra
i and kinter

i are the degree of node i for intranetwork links and internetwork links,
respectively. F (i) is the set of nodes connected to node i via internetwork links. The first term
of Equation (7) corresponds to the CI of node i for Network 1 in Figure 2. The second term represents
the sum of the CI of node j connected to node i via internetwork links, corresponding to Network 2
in Figure 2. The condition kinter

j = 1 indicates that node j is taken into account only if it has a single
intermodular link. This is attributed to the NoN characteristic that the state of node j is not directly
affected by node i if node j has more than one intermodular link according to Equation (1).

3. Network of Networks in Virtualized Networks

3.1. Interdependence of Virtualized Networks

In this study, we assume an interdependent layered network where a single PN is virtualized by
network slicing, and multiple VNs are constructed on the PN as shown in Figure 3. A PN comprises
physical nodes (P-nodes) and physical links (P-links). Similarly, virtual nodes (V-nodes) and virtual
links (V-links) form a VN. Because of the virtualization of the PN, each V-node corresponds to exactly
one P-node, while a V-link comprises multiple P-nodes and P-links that realize the shortest path
connecting the two endpoint V-nodes. We assume that the connectivity structure of the PN is given by
the infrastructure provider, whereas each VN realizes its own connectivity based on the requests of the
service provider. In Figure 3, the P-node and V-node in VN k with common index i are represented
as rP

i and rVk
i , respectively. The P-interface j of P-node i and the V-interface j of V-node i in VN k are

represented as iP
i,j and iVk

i,j , respectively. Refer to Table 2 for the description of the variables defined for
the PV-NoN model and the evaluation in this paper.
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Table 2. List of variables used for the PV-NoN model and evaluation.

Variable Value Description Equation

ni {0,1} Existing state of node i –

σi {0,1} Local effectiveness of node i Equation (1)

ρi {0,1} Global effectiveness of node i Equations (3) and (5)

ρi→j, ϕi→j {0,1}
Probability information for message passing
sent from node i to j Equations (2) and (4)

CIi [0,∞] Collective influence of node i Equations (6) and (7)

rP
x , rVk

x – Index for P-node x and V-node x on VN k –

iP
x,y, iVk

x,y –
Index for P-interface y of rP

x and
V-interface y of rVk

x
–

BP
x,y given Buffer capacity for P-interface y of rP

x –

nP
x,y {0,1} Availability state for P-interface y of rP

x –

nVk
x,y(t) [0,∞] Traffic state for V-interface y of rVk

x at time t –

RVk
x,y(t) {0,1} Vacancy state for V-interface y of rVk

x at time t Equations (8) and (10)

ρVk
x,y(t) {0,1} Traffic state for V-interface y of rVk

x at time t Equations (9), (11) and (12)

CI(rP
x ), CI(rVk

x ) [0,∞] Collective influence of rP
x and rVk

x Equations (13)–(15)

η [−1,1] Assortativity for intra-network connectivity Equation (17)

θ [−1,1] Assortativity for inter-network connectivity Equation (21)

NP, NVk given Number of P-nodes and V-nodes on VN k –

LP, LVk given Number of P-links and V-links on VN k –

W given Bandwidth for P-interfaces –

λ given Arrival rate of packets –

R given Number of packet re-transmission –

Upon virtualization based on network slicing, the physical resources on the PN are shared among
the VNs, thereby making the PN and VNs interdependent. Various services are being provided
continuously over the VN, and environmental changes may occur at any instant because of traffic
fluctuations. Consequently, our aim in this study is to model the VN availability under fluctuating
traffic while considering the interdependence among the VNs caused by resource sharing. Although
various physical resources on the P-nodes can be considered for virtualization (e.g., CPU, memory,
storage, network I/O), we focus on the packet buffer memory (hereinafter referred to as the buffer) and
network I/O because they are influenced directly by the traffic conditions. Consequently, we segment
the P-nodes into physical interfaces (P-interfaces) and model the state of each P-interface taking the
buffer and network I/O into consideration. The P-interface and the virtual interface (V-interface) are
distinguished as shown in Figure 3.
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Figure 3. Example of virtualized network based on network slicing.

Various approaches have been studied for partitioning physical resources, the aim being to
improve the flexibility and efficiency of the virtualized networks [32–34]. Here, we assume three basic
types of interface partitioning (Table 3). The most fundamental is type-SD (Statically Divided), in
which resources (i.e., the buffer and network I/O) for the P-interface are divided statically for each VN;
the upper limit of the number of packets stored and sent out from a V-interface is divided statically
beforehand. With this type, constant performance is guaranteed for each VN and no traffic interference
occurs, but the efficiency of resource utilization is not optimal. In contrast to type-SD, we also assume
type-UD (UnDivided), in which the physical resource for each VN is not partitioned; the resource
capacity for each VN is not guaranteed, and traffic in a VN could even occupy all the buffers and
network I/O on the PN, but the physical resources can be utilized completely. As the third case, we
assume type-DD (Dynamically Divided), in which the physical resources are allocated dynamically
depending on the changing traffic conditions; the physical resources are not partitioned under normal
conditions (as with type-UD), but they are partitioned when traffic congestion occurs. Therefore,
type-DD allows physical resources to be used more efficiently while guaranteeing the resources
for each VN. With all three types, resource virtualization makes the PN and VNs interdependent.
Furthermore, with type-UD and type-DD, the sharing of physical resources among multiple VNs
makes the latter interdependent.

Table 3. Characteristics of three resource partitioning schemes for PV-NoN model.

Type-SD Type-UD Type-DD

Interdependence of PN-VN yes yes yes
Interdependence of VN-VN no yes yes

Utilization guarantee yes no yes
Utilization efficiency no yes yes

3.2. Model of Network of Networks with Network Slicing

The PV-NoN model defines the availability state of interfaces to deal with traffic fluctuations and
interdependence among a PN and VNs. Here, the word available denotes the state in which packets are
transmitted at interfaces with no packet overflow. In the following sections, we describe the definitions
of the input states of V-interfaces and P-interfaces and the availability states of V-interfaces calculated
based on those input states.



Appl. Sci. 2019, 9, 3809 9 of 21

3.2.1. Input States of Interfaces

In contrast to the existing NoN models, we introduce time in the form of the variable t because
traffic conditions may change at any moment. The number of packets arriving at V-interface iVk

r,s at time
t is denoted as nVk

r,s(t), which takes any positive value depending on the traffic conditions. The state of
P-interface iP

r,s is expressed by the Boolean variable nP
r,s, whose value is nominally 0 but becomes 1 if

there is a malfunction and iP
r,s cannot send packets. The buffer capacity of iP

r,s is denoted as BP
r,s.

3.2.2. Availability States of Interfaces

We define σ
Vk
r,s (t) to express the availability state of iVk

r,s considering the dependence among the PN
and VNs. If iP

r,s has no malfunction and iVk
r,s has no packet overflow, then iVk

r,s is regarded as available
and σ

Vk
r,s (t) = 1 holds, otherwise σ

Vk
r,s (t) = 0. However, the threshold for judging the presence of packet

overflow differs among the three types of PV-NoN model as explained above, and details of their
definitions are described below.

Type-SD

Because type-SD allocates the divided physical resources to each VN statically, there is no
interdependence among the VNs. To derive the variable σ

Vk
r,s (t) for iVk

r,s, we begin by defining a variable
RVk

r,s(t) that represents the presence of available capacity on iVk
r,s. σ

Vk
r,s (t) for type-SD is then defined as

follows using RVk
r,s(t):

RVk
r,s(t) =

{
1 if BP

r,s/Nr,s > nVk
r,s(t),

0 otherwise,
(8)

σ
Vk
r,s (t) = RVk

r,s(t)
(
1− nP

r,s(t)
)
, (9)

where Nr,s is the number of VNs that share iP
r,s. RVk

r,s(t) is defined so that it is 1 if the number of packets
arriving at iVk

r,s at time t does not exceed BP
r,s/Nr,s. Equation (9) defines the availability state of iVk

r,s
considering just VN k, which is in contrast to the other two types of PV-NoN model. By multiplying
RVk

r,s(t) and
(
1− nP

r,s(t)
)
, σ

Vk
r,s (t) is configured to be 1 only if the interface is available on both the virtual

and physical levels.

Type-UD

The resources of the P-interface are undivided in the case of type-UD, and thus there is the
interdependence that a traffic increase on a VN can limit the performance of the other VNs. That is,
type-UD has logical AND-like interdependence whereby the performance can be guaranteed only
when all VNs that are interdependent with each other are not congested, similar to the characteristics
of the C-NoN model explained in Section 2. Here, in contrast to RVk

r,s(t), we define RV
r,s(t) to express the

presence of available capacity considering all VNs. Using RV , the availability σ
Vk
r,s (t) for type-UD is

expressed as

RV
r,s(t) =

{
1 if BP

r,s > ∑l∈V nVl
r,s(t),

0 otherwise,
(10)

σ
Vk
r,s (t) = RV

r,s(t)
(
1− nP

r,s(t)
)
, (11)

where V is the set of all VNs. RV
r,s(t) is 1 if the number of packets arriving at iP

r,s at time t does not
exceed BP

r,s(t). This reflects the characteristic of type-UD that each V-interface considers the states
of all interdependent V-interfaces, in contrast to type-SD. Because traffic fluctuations in one VN can
influence all the other VNs, Equation (11) defines σ

Vk
r,s (t) so that iVk

r,s can be regarded as being available
only if all interdependent V-interfaces have room for packets.
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Type-DD

With type-DD, the resources of P-interfaces are reallocated among the VNs in a dynamic and
complementary way depending on the traffic condition. This property allows type-DD to possess
logical OR-like interdependence, which is seen in the B-NoN model described in Section 2: VN k
can guarantee the performance if there is room in either VN k or the external VNs. Combining the
characteristics of type-SD and type-UD, the availability of V-interfaces for type-DD is described as

σ
Vk
r,s (t) =

{
1−

(
1− RVk

r,s(t)
)(

1− RV
r,s(t)

)}(
1− nP

r,s(t)
)
. (12)

The first factor is 1 if the traffic condition satisfies either RVk
r,s(t) = 1 or RV

r,s(t) = 1. This behavior
expresses the logical OR-like interdependence that iVk

r,s is available when either the allocated resources
on VN k or the whole resources on the PN have room for packet processing.

3.3. Influencers in a Network of Networks with Network Slicing

In addition to modeling the availability state of an NoN with network virtualization, we aim
to design NoN influencers to improve reliability. Consequently, we develop a method for detecting
influencers in an NoN by applying the PV-NoN model based on the CI algorithm described in Section 2.
As can be seen from the definition of the PV-NoN model described in the previous section, a failure
of P-nodes occurring on the PN spreads to all interdependent VNs in any type of PV-NoN model.
We therefore express the CI of P-node i as CI(rP

i ), and its definition is given based on Equation (7),
corresponding to the sum of the influence on the PN centered around P-node i and the influence on
each VN centered around V-node i. We define CI(rP

i ) as

CI(rP
i ) = (kP

i − 1) ∑
j∈∂Ball(rP

i ,l)

(kP
j − 1) + ∑

k∈V

[
(kVk

i − 1) ∑
h∈∂Ball(r

Vk
i ,l)

(kVk
h − 1)

]
, (13)

where kP
i and kVk

i are the node degrees of rP
i and rVk

i , respectively. The definition of ∂Ball is the same as
that described in Figure 2. The first term accounts for the CI of P-node i within the PN, and the second
term accounts for the sum of the CIs of all the V-nodes that are interdependent with P-node i because
of resource virtualization.

Regarding the CIs of the V-nodes, in the case of type-SD and type-DD, a specific V-node influences
neither the V-nodes on the external VN nor the P-node on the PN, and thus CI(rVk

i ) can be defined
considering the influence on the VN to which the V-node belongs:

CI(rVk
i ) = (kVk

i − 1) ∑
j∈∂Ball(r

Vk
i ,l)

(kVk
j − 1). (14)

On the other hand, in the case of type-UD, it is possible for a V-node to occupy all of the resources
shared among the VNs, and eventually the interdependent P-node runs out of capacity. Therefore,
CI(rVk

i ) can be defined as the sum of the CIs of all the interdependent V-nodes including the CI of the
interdependent P-node as given by Equation (13):

CI(rVk
i ) = CI(rP

i ) = (kP
i − 1) ∑

j∈∂Ball(rP
i ,l)

(kP
j − 1) + ∑

k∈V

[
(kVk

i − 1) ∑
h∈∂Ball(r

Vk
i ,l)

(kVk
h − 1)

]
. (15)

4. Evaluation

In this section, we conduct simulation experiments that generate traffic over the VNs to evaluate
the availability of the PV-NoN model. We begin by describing the methods for the evaluation, and
then we explain the evaluation results.
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4.1. Network Construction

This study assumes that an NoN comprises a PN and multiple VNs. The PN contains NP P-nodes
and EP P-links, and similarly VN k contains NVk V-nodes and EVk V-links. If NP > NVk , the VNs
are mapped onto the PN so that the fewest P-nodes are shared among the VNs. The connectivity
structure for the PN and VNs is determined based on a specific network model, for which we adopt the
Erdös-Rényi (ER) model [35] and the Barabasi–Albert (BA) model [36] , which generate node degrees
following a Poisson distribution and a power-law distribution, respectively. Because it is virtually
impossible to predict connectivity patterns in an IoT scenario with numerous types of services, we
use the aforementioned models because they have been observed widely in actual networks and used
for network evaluation to date [37–40]. Other types of network model are conceivable, such as the
Watts–Strogatz (WS) model [41] , the Waxman model [42], and the random geometric graph (RGG)
model [43] . However, the Waxman model belongs to the class of random networks; in other words, it
is a special case of the ER model. The degree distributions of the WS and RGG models are close to a
uniform distribution, making it difficult to evaluate how network influencers and configuration affect
assortativity. Furthermore, the WS model is characterized by its small-worldness, which the BA model
shows as well.

Regarding the VN topologies, demands from service providers for connectivity reconfiguration
now arise more frequently because of the flexibility and cost-efficiency of virtualized
networks [10,34,44–46]. Therefore, this paper deals with the configuration of VN connectivity from the
perspective of assortativity. Assortativity is a network metric for evaluating the correlation of node
centrality in a given topology [17]. For example, looking at assortativity based on degree centrality,
an assortative node is one whose connected neighbors have similarly high (or low) degrees, while a
disassortative node is one that has either a high degree compared to its low-degree neighbors or vice
versa. In this study, we configure the assortativity of a VN (intranetwork assortativity) and that among
VNs (internetwork assortativity).

4.1.1. Intranetwork Assortativity

When node degree distribution is fixed on configuring topological connectivity within a network,
the nodal degree is the only metric that can evaluate the centrality of the nodes. Consequently, we
focus on the degree assortativity η to configure the connectivity of a VN. We begin by introducing the
remaining degree distribution q(k), which is defined as

q(k) =
(k + 1)p(k + 1)

∑j jp(j)
. (16)

The remaining degree distribution is related to the degree distribution p(k) that describes the
probability that the degree of a randomly chosen node corresponds to k. The remaining degree of a
node in a path corresponds to the number of links of a node excluding the link it was arriving from. For
a given q(k), we can introduce the joint probability distribution e(j, k), which indicates the probability
that the two endpoints of a randomly chosen link have remaining degrees k and j. Consequently, the
degree assortativity η is defined as

η =
1
σ2

q

[
∑
j,k

jke(j, k)−
(
∑

j
jq(j)

)2
]

, (17)

where σq is the standard deviation of the remaining degree distribution q(k). η can take any value in
the interval [−1, 1]: η > 0 and η < 0 indicate an assortative network and a disassortative network,
respectively, while η = 0 indicates that the nodes are connected with each other randomly irrespective
of their degrees. The degree distribution limits the range of feasible values of η.
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Having constructed an initial VN topology with a specific degree distribution, we then set a target
value of η′ and rewire the links continuously [47,48] until the assortativity η of the current topology
approximates the given ηtarget. Note that we rewire a topology so that it is not split into submodules; if
the generated VN topology is separated into more than one module, the former is reconstructed so
that it is fully connected.

4.1.2. Internetwork Assortativity

As well as configuring the connectivity within each VN, we must also consider how to map the
dependence of V-nodes because traffic fluctuation along the VNs causes interference . For example,
we must investigate whether a V-node with high influence in one VN should be interdependent
with a V-node of high influence in another VN. We therefore introduce the variable θ to evaluate
the assortativity among VNs, and we configure the NoN structure from the perspective of mapping
V-nodes on the VNs. Although we use the degree assortativity for connectivity within a VN because
of its conditional limitation, we use the CI as a centrality measurement for the assortativity between
networks, which is described in Section 2.

In a previous study [47], we developed a method for measuring the assortativity between
networks to evaluate the interdependence of information networks. The assortativity of a set
of links is represented as the sum of each link’s contribution to the assortativity of the entire
network. Consequently, we begin by rewriting the definition of network assortativity described
by Equation (17) as

η =
1
σ2

q

(
E[(J −Uq)(K−Uq)]

)
, (18)

where Uq is the expected value of the remaining degree, and J and K are variables of the remaining
degree that have the same expected value Uq. To expand the definition of assortativity for centrality
metrics other than degree centrality, we introduce p′(c) as distribution of any kind of centrality metrics
c on a VN. As for internetwork assortativity, the centrality of endpoint nodes of an internetwork
link when the link is removed is equal to the centrality of those nodes on each VN topology. Hence,
generalized assortativity η′ can be defined based on degree assortativity η in Equation (18) as follows:

η′ =
1

σp′j
σp′k

(
E[(Cj −Up′j

)(Ck −Up′k
)]

)
, (19)

where p′j denotes the centrality distribution on VN j. Up′j
and σp′j

denote the expected value and the

standard deviation of the centrality distribution p′j, respectively. Cj denotes variables of the node
centrality on VN j that have the same expected value Up′j

. Based on Equation (19), the contribution θl

of link l to the assortativity η′ of the entire network is defined as follows:

θl =
(cj −Up′j

)(ck −Up′k
)

σp′j
σp′k

, (20)

where cj and ck are the node centrality of the two endpoints of link l. Finally, the internetwork
assortativity θ (i.e., the assortativity of the set of links Lset between two networks) is given by

θ = ∑
l∈Lset

θl = ∑
l∈Lset

(cj −Up′j
)(ck −Up′k

)

σp′j
σp′k

. (21)

To map interdependent V-nodes among VNs, we begin by deploying the VNs randomly upon
a PN. Then, similarly to the configuration of connectivity within a VN, we set a target value θtarget

and repeatedly re-map until the θ calculated from the current VN interconnectivity approximates
θtarget sufficiently.
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4.2. Traffic Model

Network virtualization is expected to be used in a wide variety of situations and scales in the
IoT scenario, resulting in unforeseeable traffic patterns [1,2,44,49,50]. Consequently, this study deals
with a basic traffic model for performance evaluation, and the packet processing is designed on the
basis of the M/D/1/K queuing model [51]. The traffic condition changes discretely every time unit.
Here, the average arrival rate (i.e., the rate at which a new packet is generated on a V-node at time t) is
expressed by λ. The destination V-node of the generated packet is selected randomly from the other
V-nodes on the VN to which the V-node belongs.

The routing path for a packet is determined so as to minimize the total number of P-links from
the source V-node to the destination V-node. If there are multiple candidates for the shortest path, then
one of them is selected randomly. For a pair of V-nodes, each path is determined statically and then
left unchanged during the simulation. The total packet delay consists of the propagation delay and the
queuing delay. A packet sent from a V-node at time t arrives at the next V-node at time t + 1 because
of the propagation delay (i.e., the propagation delay on each P-link is 1). Packets newly generated and
packets arriving from neighbors at time t on a V-interface are stored on the buffer immediately. Because
of the limitation of the bandwidth of P-links, the maximum number of packets that can be sent from
one P-interface at time t is set uniformly to W, resulting in the queuing delay. Every P-interface holds
a packet buffer that can store BP

r,s packets, and packets waiting for their turn to be sent out are stored
in the buffer. Packets are basically processed in a first in, first out (FIFO) manner, but the sending order
is determined randomly when a V-interface receives multiple packets simultaneously. When a packet
arrives at an intermediate full buffer (i.e., σ

Vk
r,s (t) = 0), it is re-transmitted from its source V-node at the

next time step. Packets are removed from the VN after either being re-transmitted R times or arriving
at the destination V-node.

4.3. Evaluation Results

4.3.1. Comparing the Availability of the Three Types of PV-NoN Model

First, we compare the performance regarding the availability of the type-SD, type-UD, and
type-DD versions of the PV-NoN model. We set V = 2 as the number of VNs, NP = 100 and
NVk = 0.9NP (k ∈ V) for the number of nodes, and LP = 3NP and LVk = 3NVk (k ∈ V) for the number
of links. The ER model is used to construct the PN topology, while both the ER and BA models are
used for the VNs. In this evaluation, the inter/intranetwork connectivity is determined randomly
without considering the assortativity. The packet buffer size for the P-interfaces is set to ∀BP

r,s = 20,
and the bandwidth for the P-interfaces is set to W = 1; This means that each P-interface can send W
packets from the network I/O every time unit, ∀BP

r,s is determined assuming a TCP/IP environment,
where in general packet size is set to 1.5 KB and buffer size is set to 8-256KB. We simulate two types of
traffic conditions based on the arrival rate λ: (i) an equal amount of traffic flows on each VN and (ii)
traffic is biased toward one of the two VNs. For (i), λ for both VNs is changed in the range [0.1, 1.6],
while for (ii) λ is fixed at 0.2 on VN1 and varied in the range [0.2, 3.2] on VN2.

We use the giant component size (GCS) and the packet delay as evaluation metrics to investigate NoN
reliability from the perspectives of availability and communication performance. When a network
topology is fixed, the evaluation on availability and communication performance is correlated with a
given traffic fluctuation, i.e., availability increases when communication performance is high. However,
when configuring a network topology, there can be a trade-off of availability and communication
performance. If we configure a network topology to distribute the communication path, the network
diameter can increase. This is the reason why we introduced communication performance in addition
to availability as the evaluation metrics for evaluating reliability.

The GCS denotes the largest connected component on each VN consisting of available V-interfaces
(i.e., σ

Vk
r,s (t) = 1), which we use to evaluate the availability of the entire network for each VN. The GCS
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is often used as a metric for complex networks [31,37]. The packet delay denotes the average time
required for a packet to be transmitted from its source to its destination, which is a more practical
performance metric in communication networks. To see the impact of packet delay, we set the number
of packet retransmissions to R = 100. In a realistic TCP/IP implementation, a much smaller number
of around 10 would be used for the number of retransmissions. However, with such small values,
only those packets whose source and destination are near each other can be transmitted successfully
and longer routes do not work on the VN, thereby making it difficult to evaluate the impact of packet
delay appropriately. Instead, we used R = 100 for the number of retransmissions. To evaluate the GCS,
packets are created on the VN over 100 time steps and the GCS is measured at the 100th step, which
is when the availability state of the V-interfaces is assumed to have converged and the simulation is
finished. Regarding the packet delay, we create packets for the first 20 time steps and then continue
the simulation until all the packets are either transmitted or removed from the VN. The packet delay is
then counted for all the packets that were transmitted successfully during the simulation. Each result
shown is the mean value from 50 simulations.

The simulation results for the GCS are shown in Figure 4. Each subfigure shows that type-DD
gives the best availability of the three types of PV-NoN model. Although with type-SD traffic on one
VN does not interfere with the other VN, neither VN can use its allocated physical resources fully
because of the existence of the partition. Meanwhile, with type-UD the VNs can use their resources
fully, but traffic between the VNs interferes with each other. Type-DD combines the characteristics of
the other two types, thereby overcoming their shortcomings and improving the availability.

Another notable characteristic is observed in the simulation with biased traffic, as shown
in Figure 4b,d. Because there is no resource partition among the VNs in type-UD, traffic congestion in
one VN influences the other interdependent VNs in a cascading manner. Therefore, of the three dotted
lines, only the red one drops as the arrival rate λ increases. The extent to which cascades occur with
type-UD is expected to increase further if the overlapping area of physical resources shared among the
VNs increases. Meanwhile, even though type-DD also shares the physical resources of P-interfaces, the
cascading of the performance degradation is prevented by the complementary dependence inspired
by the B-NoN model.

Figure 5 shows the simulation results for the packet delay. The performance of the packet delay
can basically be explained in correspondence with the GCS results, and we confirm that the delay is
lowest with type-DD. Type-DD can be said to be superior to the other two types regarding practical
performance as a communication network. Another notable point is that the type-SD packet-delay
performance degrades when compared with the GCS results in Figure 4. No matter how large the
buffer utilization (i.e., ∑l∈V nVl

r,s(t)/BP
r,s), the availability σ

Vk
r,s (t), which is the basis of the GCS, is

expressed as a binary state that does not take a negative value. On the other hand, the packet delay
is expressed by taking any positive value reflecting the buffer utilization as it is. Based on these
characteristics and results, we assume that interference among VNs with type-UD is likely to generate
a number of moderately loaded V-interfaces to degrade the availability. Meanwhile, inefficient buffer
allocation with type-SD is likely to generate rather few highly loaded V-interfaces to degrade the
communication performance.
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Figure 4. Variation of giant component size (GCS) with arrival rate λ. The vertical axis represents the
GCS: 1 indicates that all the nodes on a VN are connected, whereas 0 indicates that they are completely
disconnected. The solid lines in (a,c) correspond to the average GCS of the two VNs, whereas the GCS
for each VN is plotted separately in (b,d). The horizontal axis represents the arrival rate λ. In (b,d),
note that λ is changed on VN1 but fixed on VN2.
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Figure 5. Variation of packet delay with arrival rate λ. The vertical axis represents the packet delay,
required time steps for a packet to be transmitted. Similarly to Figure 4, the solid lines in (a,c)
correspond to the average packet delay of the two VNs, whereas the packet delays for each VN are
plotted separately in (b,d). The horizontal axis represents the arrival rate λ. In (b,d), note that λ is
changed on VN1 but fixed on VN2.

4.3.2. Designing Influencers on the PV-NoN Model

In this section, we investigate the importance of influencer deployment regarding
inter/intranetwork assortativity. Because we confirmed above that type-DD prevails over the other two
types, we focus on type-DD in this evaluation to investigate how to improve the performance further.
The simulation settings are basically the same as those described in the previous evaluation, and we
again use the GCS and packet delay to evaluate the availability and communication performance,
respectively. However, to show the results concisely, we set the arrival rate for both VNs to λ = 0.5
because the evaluation above confirmed that changes in performance can be seen with that value. As for
the inter/intranetwork assortativity of network influencers, we picked three cases for each assortativity:
(i) assort. is the case in which the rewiring procedure described in Section 4.1 is repeated until the
connectivity converges with the highest assortativity, (ii) disassort. corresponds to the analogous case
with the lowest assort. value, and (iii) non-assort. is the case in which the original connectivity pattern
is maintained.

Figure 6 shows to the GCS evaluation results, and Figure 7 shows those for the packet delay. First,
we find that the GCS is increased when the intranetwork connectivity is assortative (i.e., η > 0) and the
internetwork connectivity is disassortative (i.e., θ < 0). We have shown previously that an assortative
single network is fragile against random failures [47]. However, it is notable that the results in Figure 7
tell us the opposite. We assume that when each VN topology is assortative, the overlapping of the
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shared physical resources among the VNs becomes concentrated on a local area of the entire NoN,
thereby enhancing the availability when each VN is formed assortatively. By contrast, when θ < 0, the
high-influence nodes are likely to not be shared among the VNs but rather to be dedicated to each VN.
Consequently, an efficient resource utilization is realized, resulting in improved availability.

The results also show that the assortativity configuration has greater influence on networks based
on the BA model. Because of the biased degree distribution and the limitation in the procedure of
topology construction, influencers have greater impact with the BA model. However, because the ER
model (i) has a more uniform degree distribution compared to the BA model and (ii) its topological
structure is generated randomly, the impact of the assortativity configuration is smaller.

By contrast, Figure 7 shows that the packet-delay performance is increased when intranetwork
connectivity is disassortative (i.e., η < 0). When a network topology is formed assortatively, the
network diameter becomes large and the communication performance degrades. It is true that
assortative connectivity within each VN has a positive impact on availability, as seen in Figure 6.
However, from a practical viewpoint of communication performance, we find that the increase of
network diameter has a larger negative impact, resulting in degraded communication performance.
As for the internetwork assortativity, the packet delay is decreased when it is disassortative, similar to
the performance of GCS.

We ran simulations on type-UD and type-SD as well, but these merely confirmed that they show
almost the same tendency in relation to the inter/intranetwork assortativity. A notable point is that
the assortativity configuration had a larger influence on type-UD because the topological structure is
closely related to the interference on the physical resources that is seen in type-UD.
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Figure 6. GCS with changes in assortativity. The results are represented as heat maps. The GCS denotes
the size of the largest connected component, and thus higher values indicate high performance (bright
colors).
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Figure 7. Packet delay with changes in assortativity. Now, in contrast to the GCS, higher values indicate
low performance (dark colors).

5. Discussion and Conclusions

With the growing use of network slicing to implement the IoT network environment, it has been
pointed out that traffic fluctuation in a sliced network could propagate to other networks [10,11]. It has
therefore become necessary to consider reliable design for not just single networks and interconnected
networks but also interdependent networks, i.e., NoN. The existing NoN models [12,13] describe the
availability state of the NoN while considering the interdependence among the component networks,
but are yet to be applied to practical systems of information networks. A contribution of the present
work is that we considered layered VNs with network slicing as an NoN. We then proposed the
PV-NoN model that expresses the availability state of an NoN that comprises a PN and VNs. The
most notable aspect of our proposed model is that it considers traffic conditions and interdependence
among the VNs. In this model, there are three types of interdependence according to the strategy used
to divide the physical resources. With type-SD, the interface buffer on the physical nodes is divided
statically. With type-UD, the buffer is undivided and the traffic among the VNs interferes with itself in
a logical AND-like way, as seen in the C-NoN model. With type-DD, the buffer is usually undivided
but is divided when there is congestion, in which case interference occurs in a logical OR-like way
similarly to the B-NoN model.

To investigate a reliable NoN design in the assumed network virtualization environment, in our
simulation experiments we measured the GCS and packet delay on an NoN to evaluate the availability
and communication performance. In the first experiment, we compared the performance of the three
types of PV-NoN model, and we confirmed that in every case type-DD achieves the highest availability
and communication performance. This superiority of type-DD arises from combining the guaranteed
resource utilization of type-SD and the utilization efficiency of type-UD. Furthermore, we confirmed
that type-DD prevents the cascading of performance degradation even though it shares physical
resources on P-interfaces similarly to type-UD. In that aspect, even when dealing with interdependent
network systems other than those based on network slicing, there appears to be potential for improving
the availability of the system by adopting the complementary dependence inspired by the B-NoN
model. Regarding the application of brain functional networks, it is also the case that type-DD appears
to be highly resilient to network failures, which is one of the most notable characteristics of brain
networks [52,53].

We also conducted simulation experiments in which we configured the intra/internetwork
assortativity of network influencers. The evaluation results confirmed that when the internetwork
connectivity is disassortative (i.e., θ < 0), both the availability and communication performance are
improved because influential nodes are not shared among the VNs, thereby avoiding interference
among those nodes. When the intranetwork connectivity is assortative (i.e., θ > 0), the availability is
improved while the communication performance is degraded. Although the internetwork connectivity
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affects only the interdependence among the VNs, the intranetwork connectivity also influences the
structural performance of each VN in addition to the aforementioned interdependence. In detail,
assortative connectivity within VNs localizes the area of physical resource sharing, thereby decreasing
the interference among the VNs. At the same time, the assortative connectivity creates a long and
narrow topology for each VN, thereby increasing the delay for packet communication. In a more
practical scenario assuming the IoT environment, a larger-scale NoN must be considered, wherein
the number of VNs or network components increases greatly. In that sense, optimizing the NoN’s
structure would take an enormous amount of time and incur a huge computational cost. Consequently,
structural configuration based on the assortativity of network influencers would help in designing
reliable NoNs.

Because the main purpose of this paper was to deal with traffic fluctuations and interdependence
on the assumed NoN environment, we configured the traffic pattern over the VNs in the simulation
evaluation, which differentiates the performance among the three types of the PV-NoN model.
However, it would also be valuable to investigate the influence of network failures occurring on
the PN as a future task. Because of the rapid development of the IoT network environment, where a
skyrocketing of network scale, traffic amount, and service variety is expected, various types of NoN
systems are expected to emerge in the IoT scenario. Consequently, it is our opinion that the findings in
this paper will help to solve upcoming issues related to other NoN systems in the IoT environment
besides VN environments based on network slicing.
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