
Master’s Thesis

Title

Implementation and Evaluation of a Network-oriented

Mixed Reality Service based on Core/Periphery Structure

Supervisor

Professor Masayuki Murata

Author

Shiori Takagi

February 5th, 2020

Department of Information Networking

Graduate School of Information Science and Technology

Osaka University

Master’s Thesis

Implementation and Evaluation of a Network-oriented Mixed Reality Service based on

Core/Periphery Structure

Shiori Takagi

Abstract

In recent years, many different new network-oriented services has developed, and Multi-

access Edge Computing (MEC) is standardized to improve the responsiveness of services.

When deploying services in MEC environment, it is necessary to consider a service struc-

ture that can switch service behaviors flexibly to meet various users’ demands and can

change the service behavior to real-world environment at low implementation cost. In

this thesis, I introduce a Core/Periphery structure, which is known as a model for a flex-

ible behavior of biological systems, of service components, and design and implement a

network-oriented mixed reality service based on the Core/Periphery structure. I investi-

gated what kind of functions can be developed due to users’ demands, real environment

where devices are placed, and the development of new devices. Then, to utilize the flexibil-

ity of the Core/Periphery structure, I regarded functions whose behaviors do not change

even when users’ demands or environmental changes occurs as core functions, and func-

tions whose behaviors can be changed due to users’ demands or environmental changes

as peripheral functions. I divided and deployed the service functions in MEC environ-

ment, and evaluated the effect of the design based on Core/Periphery structure by our

experiment environment in our laboratory. My experiment reveals that the implemen-

tation cost is reduced while increase of service response time is less than 5.7 [ms]. This

result shows that taking advantage of Core/Periphery structure enables to divide service

functions appropriately and place the functions in MEC environment appropriately, with

a little penalty on latency and with low implementation cost.

1

Keywords

Core/Periphery Structure

Multi-access Edge Computing (MEC)

Implementation Costs

Mixed Reality (MR)

Telexistence Service

Network Robots

2

Contents

1 Introduction 7

2 Network-oriented Mixed Reality Services: Current and Future Perspec-

tives 10

2.1 Current Services . 10

2.2 Future Services . 10

3 Service Design based on Core/Periphery Structure 12

3.1 Network-oriented Mixed Reality Services under Study 12

3.2 Function Placements based on Core/Periphery Structure 14

3.2.1 Video Processing and Live Streaming 14

3.2.2 Robot Operation . 16

3.3 Service Scenarios . 18

3.3.1 Behavior based on the Real Environment on the Robot Side 19

3.3.2 Behavior based on the Real Environment on the User Side 20

4 Implementation and Evaluation of the Service based on Core/Periphery

Structure 22

4.1 Implementation of the Service based on Core/Periphery Structure 22

4.1.1 Video Processing and Live Streaming 22

4.1.2 Robot Operation . 22

4.2 Evaluation and Experiment Settings . 23

4.2.1 Implementation Cost . 24

4.2.2 Responsiveness of the Service . 25

4.3 Results . 27

4.3.1 Implementation Cost . 27

4.3.2 Responsiveness of the Service . 33

5 Conclusion 37

Acknowledgments 38

3

References 39

Appendix 41

A Source code for evaluation 41

4

List of Figures

1 Supposed service and functions. 12

2 Data flow to change resolution or frame rate. 15

3 Data flow for video distributors to select protocol. 15

4 Data flow for object detection. 16

5 Video system based on Core/Periphery structure. 16

6 Data flow to how to operate robot. 17

7 Data flow for different devices.. 17

8 Data flow to adjust robot speed. 18

9 Robot operation system based on Core/Periphery structure. 18

10 Scenario: behavior based on the real environment on the robot side. 19

11 Scenario: behavior based on the real environment on the user side 20

12 A result of object detection with YOLOv3. 23

13 A result of object detection with Mask R-CNN. 24

14 A screenshot of the application on HoloLens. 25

15 Experiment to measure application-level delay. 26

16 Configuration of MEC environment. 27

17 Number of lines of source code. 33

18 Difference of application-level delay. 35

19 Difference between RTT and application-level delay in cloud environment. . 36

5

List of Tables

1 Examples of demands and functions in video system. 13

2 Examples of demands and functions in robot operation system. 14

3 Result of the experiment to measure the delay due to the cloud. 34

4 Result of the experiment to measure the penalty of using edge server. . . . 34

6

1 Introduction

In recent years, with development of IoT (Internet of Things), many different new network-

oriented services have developed and information network has changed rapidly. In new

network-oriented services, we can send information of real world retrieved from cameras

and sensors to cloud, or perform high-load processing such as image recognition and/or

voice/sound recognition. For example, telexistence services using robots and VR (Virtual

Reality) technology or MR (Mixed Reality) technology are now being developed. In ANA

Avatar project [1], using robotics and techniques to send tactile feeling, development of

services in which users can communicate with remote places by operating avatar robots

as if they existed there is investigated.

In these applications, application-level delay is a significant factor for service quality.

However, application-level delay significantly increases in cloud computing environment

due to communication distance and load concentration [2]. Recently, Multi-access Edge

Computing (MEC) [2–4] is standardized to relax increase of the application-level delay

for delay-sensitive services. In edge computing environment, computing resources and

storage are allocated at the edge of the network, so that processing end devices require is

performed at the place closer to the end devices. This leads to improvement of application

responsiveness by shortening communication distance and load distribution.

Because many different new network-oriented services have developed to meet users’

various demands, it is important to consider a service design that can accommodate as

many services as possible when deploying network services in MEC environment. How-

ever, if developers reconstruct whole services to meet different users’ demands or to adapt

to the environmental variation such as device evolution, implementation cost increases.

Moreover, resources in the MEC environment are not necessarily same as those in cloud

computing environment. Resources in the MEC environment are limited by spatial restric-

tions, and thus, it is difficult to locate all-possible services in advance such that services

on edge can adapt to each user’s demand and environmental variation. Therefore, it is

necessary to consider a service structure that can change behaviors of services in a flexible

manner.

My research group has been investigated a Core/Periphery structure [5, 6] of ser-

7

vice components to effectively adapt to each user’s demand and environmental variation.

Core/Periphery structure is a model for a flexible and efficient information processing

mechanism in biological systems. Information processing units with Core/Periphery struc-

ture is classified as Core or Periphery. Core is composed densely with system constraint,

and process information more efficiently, whereas the Periphery, which is connected with

Core, can have various configurations, flexibly adapts to environmental changes surround-

ing the system, and builds flexible and efficient information processing mechanisms with

Core. The advantage of Core/Periphery structure on accommodating information ser-

vices, represented by chains of functions, is numerically investigated in [7], and the results

show that Core/Periphery structure leads to less developmental costs for accommodating

various kind of information services.

In this thesis, based on the advantage of Core/Periphery structure, I aim to realize a

service system which adapts service behaviors to users’ various demands, environmental

changes such as real environment where the end devices are located, or various devices.

Unlike the model-based evaluation of [7], I design and implement a service based on

Core/Periphery structure in this thesis. Then, I focus on a shopping service using mixed

reality (MR) devices and robots. I implement the service using actual devices, and evaluate

the effect of designing services based on Core/Periphery structure by experiment.

When designing services based on the Core/Periphery structure, it is necessary to

consider which functions should be implemented as Core and which functions should be

implemented as Periphery. First, in the shopping service, I investigated what kind of

functions can arise due to users’ demands, real environment where devices are placed, and

the development of new devices. In order to utilize the flexibility of the Core/Periphery

structure, I regard functions whose behaviors do not change even if users’ demands or

environmental changes occurs as core functions, and functions whose behaviors can be

changed due to users’ demands or environmental changes as peripheral functions. The

core functions enable us to adapt to the emergence of new services by adding or changing

some peripheral functions instead of recreating whole services. My experiment proved that

the implementation cost is reduced without increasing the service response time compared

to the case where the service functions are not divided, because core functions deployed

on edge servers cooperate with peripheral functions deployed on end devices.

8

In addition, I got the guidelines for service function placement from Core/Periphery

structure. Taking advantage of Core/Periphery structure enables to divide service func-

tions appropriately, and to deploy functions on different servers or devices. If all functions

are not divided and deployed in cloud or end devices, whole services must be recreated

when developing a new service in order to adapt to users’ various demands or device evo-

lution. Furthermore, allocating core functions on edge servers and peripheral functions on

end devices is the most effective in terms of responsiveness of services and implementation

cost, because it is possible to form feedback loops only by short-distance communication

between end devices and edge servers located near the end devices and adapt to environ-

mental changes in real world.

The remainder of this thesis is organized as follows. Section 2 describes services that

are currently being developed or are expected to be developed in the future as related

works. Section 3 describes the service targeted in this thesis and the service design based

on Core/Periphery structure. Section 4 describes the details of the service implementation

and evaluation. Finally, Section 5 describes the conclusions and future works.

9

2 Network-oriented Mixed Reality Services: Current and

Future Perspectives

This section describes network-oriented service that has been developed recently or are

expected to be developed in the future.

2.1 Current Services

In recent years, telexistence services have been actively developed, and momentum for

social implementation has been rising. The concept of telexistence is that people can

feel as if they were actually at remote places. TELESAR V [8] is telexistence master-

slave system that enables a user to feel present in a remote environment by transmitting

not only video and audio, but also haptic sensation. ANA AVATAR [1] is conceived as

a “new mode of instantaneous transportation”, that enables humanity to communicate

and work as if they were remote places. It uses robotics and technology to send tactile

feeling and enables them to operate remote robot. For example, ANA has begun testing

“ANA AVATAR MUSEUM”, that users enjoy remote aquariums and “ANA AVATAR

FISHING”, that users enjoy fishing remotely . Furthermore, a telexistence application

using drones is developed [9].

2.2 Future Services

With the development of the 6th Generation (6G), new services using technologies that

will be difficult to support in 5th Generation (5G) is expected to be developed. Within 10

years, the current remote interaction technologies are obsolete, and a new form of inter-

action that enable immersion in a remote place will be developed and lead to holographic

communication and five sensory communication [10]. Tactile Internet and full-sensory dig-

ital reality can be realized by 6G [11]. Authors of [11] also state that the 6G will support

underwater and space communications that enable deep sea sightseeing and space travel.

In these applications, application-level delay is a significant factor for service quality.

However, application-level delay significantly increases in cloud computing environment

due to communication distance and load concentration [2]. Therefore, Multi-access Edge

Computing (MEC) [2–4] is expected to be standardized. In edge computing, computing

10

resources and storage are allocated at the edge of the network, so that processing end de-

vices require is performed at the place closer to the end devices. This leads to improvement

of application responsiveness by shortening communication distance and load distribution.

My research group revealed that the service quality of network-oriented mixed reality ser-

vice is improved in MEC environment [12]. ETSI ISG (Industry Specification Group) [13]

describes video content delivery, video stream analysis and Augmented Reality (AR) as

key use cases in MEC, and gives guidelines for software developers.

In current services, audio and video transmission is the mainstream, but considering

that the transmission of the five senses information can be realized, it is necessary to

construct a service system that can handle multiple input and output. In this thesis,

we obtain the guideline of service function placement from the Core/Periphery structure,

which is a biological model to process information flexibly and efficiently.

11

User
Robot

Internet

Virtual store
Real store

Aggregate
information

Object
detection

Move

Take
video

Get local
information

Adjust
speed

Aggregate
information

Display
video

Message
instruction

Display
information

Detailed
object

detection

Get local
information

User side Robot side

Figure 1: Supposed service and functions.

3 Service Design based on Core/Periphery Structure

This section describes a service design based on Core/Periphery structure.

3.1 Network-oriented Mixed Reality Services under Study

The supposed service is a shopping service using MR and robots. Robots are places in

real stores, and users enjoy shopping as if they were in the stores though they are actually

at home. Robots take video of the real store while moving as per instructions of users.

Real-world information on store-side is attached on video and sent to users. Users can

move robots with controllers, gestures, or their gaze. Figure 1 shows the whole service

image and service functions.

Robot-side application requires functions for moving, taking video, processing images,

collecting and aggregating information around the robot, and adjusting moving speed so as

not to hit people or objects. On the other hand, user-side application requires functions for

displaying video, messaging instruction to robots, collecting and aggregating information

around users, and detecting object based on the granularity users want.

For video processing and live streaming system, I suppose that users’ demands are, for

example. to watch real-time video, to watch high resolution video, to adopt high accuracy

object detection methods, and to deteriorate frame rate or bit rate when communication

12

Table 1: Examples of demands and functions in video system.

Function Users’ demand Behavior variation

Capture and output video
Real-time video Change frame/bit rate

High-resolution video Change resolution

Perform object detection
Fast and standard method

Adopt preferred method
New but slow method

Distribute video
Send video to one user Send video with UDP

Distribute video on a large scale Distribute video with HTTP

quality become worse. In addition, I suppose that demands from people who place robots

in stores, or who provide video are, for example, to distribute video on a large scale, to

send video to a single user, and limit bit rate per user of video.

In order to meet the above demands, the video system provides functions for capturing

and outputting video, for performing object detection, and for distributing video to users.

Table 1 shows correspondence of uses’ demand to functions in video system.

In robot operation system, I suppose that users’ demands are, for example, to select

which robot to access, to change robot speed, to move robots’ arms, to select how to operate

robots by users’ gestures or controllers, and to follow users’ gaze to change the direction

of robots. Service behavior can be changed due to variation of real-world environment,

such as communication quality, obstacles, or crowd of people. Furthermore, new devices,

such as new controllers, new robots or drones, can be used.

In order to meet the above demands, the robot operation system provides functions

for recognizing users’ instruction such as gestures, gazes, and controller status, for send-

ing message from users, for accessing APIs, for adjusting robot speed in order to avoid

obstacles, for collecting and aggregating information obtained from robots.

Table 2 shows correspondence of uses’ demand/real-world environment to functions in

robot operation system.

13

Table 2: Examples of demands and functions in robot operation system.

Function Users’ demand/Real world Behavior variation

Recognize users’ instruction

Use gestures to move robot

Change information to getUse controllers to move robot

Use gazes to move robots’ gaze

Access to APIs
Operate robots

Switch APIs to access
Operate drones

Adjust robot speed
where of no obstacles or crowd Move robot speedily

where of obstacles or crowd Move robot slowly

3.2 Function Placements based on Core/Periphery Structure

This section describes function placements based on Core/Periphery structure. In order to

place service functions appropriately, I considered which functions described in Section 3.1

are core functions and which functions are peripheral functions, based on the concept of

Core/Periphery structure that Core processes information more efficiently, and Periphery

has various configurations and flexibly adapts to environmental changes surrounding the

system.

For video processing and live streaming system and robot operation system, respec-

tively, I show examples of data flow based on functions supposed in Section 3.1, and show

the system structure based on Core/Periphery structure.

3.2.1 Video Processing and Live Streaming

Figure 2, Figure 3, and Figure 4 show examples of data flow in video processing and live

streaming system. Arrows represent flows of video data from cameras to users, and dots

represent functions. In these data flows, the function for inputting/outputting video is

the common function. Figure 2 shows an example of data flow to change frame rate or

resolution. Both users and distributors of video can change frame/bit rate, and behaviors

of these functions can change due to users’ demands. Figure 3 shows an example of data

flow for video distributors to select protocol. Video distributors use UDP to send video to

a single user, otherwise use HTTP. Protocols and video format can change along service

14

Camera User
UDP (mpegts) UDP (mpegts)

Input/Output video Format conversion

Camera User
UDP (mpegts)

Change frame/bit rate on robot side
Change frame/bit rate

Change frame/bit rate

UDP (mpegts)

Change frame/bit rate on user side

Figure 2: Data flow to change resolution or frame rate.

Camera User
UDP (mpegts) UDP (mpegts)

Input/Output video Format conversion

Camera User
UDP (mpegts) HTTP (ogg)

Send video to a single user

Distribute video on a large scale

Figure 3: Data flow for video distributors to select protocol.

providers’ demands. Figure 4shows an example of data flow for object detection. There are

different object detection methods, such as YOLOv3 [14], which is fast and widely used,

and Mask R-CNN [15], which is detailed but slow. Users adopt a method they prefer.

Among functions shown in Figure 2, 3, and 4, orange-colored functions are common, and

they are core functions. Other blue-colored functions are peripheral functions.

Figure 5 shows Core/Periphery structure of video system. Orange-colored field repre-

sents Core, and blue-colored fields represent Periphery. Video is sent from camera, and

its frame/bit rate is adjusted based on providers’ demands as peripheral function. Then,

the video passes through core function including functions for inputting video, outputting

video, and standard part of object detection. Finally, the video format and distribution

protocol are selected along users’ demands, and sent to users. By taking flexibility of

15

Camera User
UDP (mpegts) UDP (mpegts)

Input video Format conversion

Camera User
UDP (mpegts)

Perform a standard object detection

New part of the object detection

UDP (mpegts)

Perform a new object detection
Standard part
of object detection

Figure 4: Data flow for object detection.

Input video

Standard part of
object detection

New part of
object detection

Format convesion
Core

UDP (mpegts)

OutputInput

UserCamera
UDP (mpegts)

HLS server

HLS

Object detection

Output video
Change
frame/bit rate

Figure 5: Video system based on Core/Periphery structure.

Core/Periphery structure, all developers have to do is remake or add peripheral functions

in order to adapt to different user demands, changes in the real environment where devices

are placed, or device evolution.

3.2.2 Robot Operation

Figure 6, Figure 7, and Figure 8 show examples of data flow. Arrows represent flows of

instruction messages from users to robots, and dots represent functions. Figure 6 shows

an example of data flow select how to operate robot, controller or gesture. Along the

way users select, users’ device recognizes their instructions and send messages. Figure

16

User Robot

Send instructions Access to the robot API

User Robot

Operate robots with controller

Operate robots with gesture

Input

Input

Recognize gestures

Get controller information

Figure 6: Data flow to how to operate robot.

User Robot

Send instructions

Access to the robot API

User Drone

Operate robots with controller

Operate drones with controller

Input

Input

Get controller
information

Access to the drone API

Figure 7: Data flow for different devices..

7 shows an example of data flow for operation of different devices, robots and drones.

Service behavior after receiving messages from users changes and accesses to robots’ or

drones’ API. Figure 8 shows an example of data flow to adjust robot speed based on the

environment around robots. If there are no obstacles or crowds, users can move robots

speedily, otherwise, robots slow down their speed to avoid hitting obstacles and people.

In these data flows, the function for send messages is the common function. Therefore,

this function should be divided, rather than whole service is performed as an all-in-one

function.

Figure 9 shows Core/Periphery structure of robot operation system. The function to

send instruction messages from users and aggregating information obtained from robots

are common, so they are core functions. Functions that can change to adapt user demands

17

Donʼt slow down the robot speed

Slow down the robot speed

User Robot

Send instructions Access to the robot API

User Robot

Input

Input

Get controller
information

Adjust speed

Figure 8: Data flow to adjust robot speed.

Core OutputInput

User

Robot

Send message

Recognize gesture Robot API

Get controller information

Recognize gaze

Adjust speed

Drone

Drone API

Figure 9: Robot operation system based on Core/Periphery structure.

and changes in the real environment, such as how to input users’ instructions are periph-

eral functions. In addition, functions to access the API of robots, functions to collect

information such as current robot position, and functions to adjust the speed are periph-

eral function because they change due to the type of devices and real-world environment

where devices are placed. Because taking flexibility of Core/Periphery structure, all devel-

opers have to do is remake or add peripheral functions in order to adapt to different user

demands, changes in the real environment where devices are placed, or device evolution.

3.3 Service Scenarios

This subsection describes service scenarios and function placements in MEC environment.

First scenario described in 3.3.1 is behavior based on the real environment on the robot

18

User

Robot

Wi-Fi AP
Wi-Fi AP

Switch

Edge Server

Switch

Move

Take video

Aggregate
information

Messaging

Detailed
object

detection

Edge Server

Object
detection

Get local
information

Adjust speed

• Instruction
• Send video

• Send local information
• Send video
• Return result of

object detection

Aggregate
information

Get local
information

Display
video

Display
information Periphery

Core Core

Periphery

Figure 10: Scenario: behavior based on the real environment on the robot side.

side. Second scenario described in 3.3.2 is behavior based on the real environment on the

user side.

3.3.1 Behavior based on the Real Environment on the Robot Side

I describe a scenario in which behavior based on real environment where robots are placed.

Functions for robot operation, the functions of Core/Periphery are as follows, respectively.

• Core: functions for transmitting instructions from the user to the robot and functions

for object detection

• Periphery: functions to get information near the robot, functions to adjust the

movement speed of the robot, and functions to aggregate information sent from

multiple robots

Figure 10 shows this scenario. There are users with MR headsets, robots, cameras,

and edge servers on robot side. Blue-colored functions are core functions on robot side,

and light blue-colored functions are peripheral functions on robot side. Orange-colored

functions are core functions on user side, and light orange-colored functions are peripheral

functions on user side. Users send their instruction to robot, and move bodies and heads

of the robots by controllers, gestures, and their gaze. Robots can detect nearby obstacles

19

User

Robot

Wi-Fi AP

Wi-Fi AP

Switch

Edge Server

Switch

Wi-Fi AP Robot

Edge Server

• Instruction
• Send video

Aggregate
information

Messaging

Detailed
object

detection

Get local
information

Display
video

Display
information Periphery

Core Core

Periphery

Object
detection

Aggregate
information

Move

Take video

Get local
information

Adjust speed

Move

Take video

Get local
information

Adjust speed

• Send local information
• Send video
• Return result of

object detection

Figure 11: Scenario: behavior based on the real environment on the user side

and stop using sensors mounted on them. In addition, video captured by the camera on

robots are sent to the edge servers. Edge servers perform object detection on the video

and recognize objects and persons around robots. Object detection function, one of core

functions, needs to be performed in real time, and required high specification servers.

Therefore, object detection function should be deployed not on end devices but on edge

servers. Results of the object detection is returned to robots. For example, if robots

know that there are many people around them, The robot reduce speed in order to avoid

collision.

Moreover, information obtained from robots can be aggregated in the edge server and

shared with other robots. Information sharing enables users to avoid other robots while

operating their robots.

3.3.2 Behavior based on the Real Environment on the User Side

I describe a scenario in which behavior based on real environment on user side. Functions

of Core/Periphery are as follows, respectively.

• Core: functions for instructions from the user to robots and function to aggregate

information of multiple robots

• Periphery: function for displaying video, detailed information of objects, information

20

about each robot

Figure 11 shows this scenario. Blue-colored functions are core functions on robot side,

and light blue-colored functions are peripheral functions on robot side. Orange-colored

functions are core functions on user side, and light orange-colored functions are peripheral

functions on user side. Information of stores and robots such as product information or

communication status is collected at the edge severs on user side. Users select which robot

to operate only by communicating with their own edge servers while seeing the aggregated

information of the stores and robots.

As a core function, the video sent from cameras is roughly classified into each object

type on edge servers on the robot side. Then, as a peripheral function, detailed object

detection is performed on the edge servers or users’ devices. Users’ devices collect personal

information such as the users’ tastes, information about what the user has, and purchase

history. Using the personal information, contents which users want to know are displayed.

For example, if purchase history has a commodity that is regularly purchased, the appli-

cation recommends the commodity based on the history, or the expiration date of a food

in users’ home is displayed.

21

4 Implementation and Evaluation of the Service based on

Core/Periphery Structure

This section describes implementation detail and evaluation of the service based on 3.3.

4.1 Implementation of the Service based on Core/Periphery Structure

4.1.1 Video Processing and Live Streaming

Video from cameras is sent to the edge server on robot side. The video was captured with

OpenCV [16]. Then, object detection with YOLOv3 [14] and PyTorch, a library for deep

learning is performed. Figure 12 shows a result of object detection with YOLOv3. Mask

R-CNN (Region-based Convolutional Neural Networks) [15], an algorithm that not only

surrounds certain areas where objects are detected with a rectangle but also recognizes

the type of object for each pixel and colors it, can be used. Figure 13 (citation from [15])

shows a result of object detection with Mask R-CNN. The processed video is transmitted

to the HoloLens [17], MR headset worn by users using ffmpeg [18] with UDP and displayed

on HoloLens.

HoloLens is a standalone head mounted computer made by Microsoft. It gives users

MR experience by displaying holograms and recognizing users’ gaze and gestures.

4.1.2 Robot Operation

Information of the controller by HoloLens is transmitted with MQTT (Message Queu-

ing Telemetry Transport), which is a publish/subscribe type protocol and developed for

messaging frequently exchanged between IoT devices. I used Xbox controller, which can

connect to HoloLens, as the user’s controller. I built an MQTT messaging system on

the edge server on user side with mosquitto [19], an open source message broker, and

Node-RED [20], a programming tool for event-driven applications. The MQTT broker

gets controller information from HoloLens and send it to Choregraphe, the programming

tool for Pepper [21], robot. A program on Choregraphe accesses to Pepper API when it

gets messages from MQTT broker.

Pepper gets lists of object names from the edge server which performs object detection,

22

Figure 12: A result of object detection with YOLOv3.

and if there is a person, it reduces speed.

Furthermore, Pepper has a map of an area where it can move, and get its position

regularly. Each Pepper’s position is aggregated in the edge server and shared with the

other Pepper. Pepper’s position is also plotted on map, sent to users’ HoloLens, and

displayed on HoloLens.

Pepper is a humanoid robot made by Softbank Robotics. APIs and the development

tool are provided, and developers can create applications executed on Pepper.

Figure 14 shows a screenshot of application on HoloLens. Users can see video with

result of object detection and a map made by Pepper displayed at the top left. Green-

colored dot represents Pepper’s position.

4.2 Evaluation and Experiment Settings

In this subsection, I describe evaluation indexes and experiment settings. Evaluation

indexes are implementation cost and responsiveness of the service.

23

Figure 13: A result of object detection with Mask R-CNN.

4.2.1 Implementation Cost

With the implemented service, I show that the implementation cost is reduced by adopting

to the Core/Periphery structure. If all functions are deployed on an end device, the

implementation is based on the type of end device, and source code to adapt each devices’

features and APIs. Dividing service function of into core function and peripheral function,

enables to adapt to device variation because developers have to remake only peripheral

function, and can reduce implementation cost. For example, consider the amount of source

code for sending users’ instruction. Function for messaging users’ instruction is deployed

on the edge server as core function. Therefore, developers have to write only peripheral

functions, the part necessary to access HoloLens and Pepper APIs, and various devices

can be handled without adding source code.

I compare amount of the source code when functions are divided to Core and periph-

eral functions with when whole service is implemented on an end device to evaluate the

implementation cost.

24

Figure 14: A screenshot of the application on HoloLens.

4.2.2 Responsiveness of the Service

The advantage of Core/Periphery structure is that, in addition to reducing the imple-

mentation cost, the service function can be divided and allocated on different servers and

devices. The improvement of service responsiveness by placing peripheral functions on

end devices and core functions on edge servers evaluated is as an effect of Core/Periphery

structure.

When allocating core functions and peripheral functions respectively, core function

can be deployed on the cloud or on the edge server, and the peripheral function can be

deployed on the edge server or on the end devices. Core functions perform real-time image

processing or aggregation of information, and cannot be executed on end devices. In order

to improve responsiveness, Core functions should be placed on the edge server instead of

the cloud.

I measured the time from when a user inputs an instruction to when the robot starts

moving in MEC environment and in cloud environment, respectively. Then, I compared

the time and evaluate the effect of allocating core functions on the edge server. I sent

25

Figure 15: Experiment to measure application-level delay.

messages about 50 times regularly from the HoloLens application and save each time

when it sent messages as t1, t2, ..., tn, where n is number of inputs. On the other hand,

a digital clock that can display milliseconds is displayed on a laptop nearby Pepper15. I

took a video and made records of each time when Pepper started moving as t′1, t
′
2, ...,

t′n. Then, I calculated average of t′1 − t1, t
′
2 − t2, ..., t

′
n − tn as the absolute time from

each input to the start of Pepper with time difference between devices. Since the clocks of

HoloLens and Pepper are not synchronized, the absolute time from each input to the start

of Pepper cannot be measured. Therefore, I calculated the penalty of using the edge server

by subtraction these two average times. The reason for adopting this way is that different

between two system time cannot be canceled by obtaining the system time on HoloLens

and Pepper. When sending messages directly from HoloLens to Pepper, I can only obtain

the time when HoloLens sends message and the time when Pepper stops moving both in

HoloLens. When sending messages via the edge server, the time when HoloLens sends

message can be obtained only in HoloLens and the time when Pepper stops moving can

be obtained only in Pepper.

Since application-level delay may increase when users’ instructions are sent via the edge

26

User

Robot

Wi-Fi AP
Wi-Fi AP

Switch

Cloud
(AWS)

Edge Server
(OpenStack)

Wireless connection
Wired connection

Switch

Edge Server
(OpenStack)

~~

VPN Gate

Figure 16: Configuration of MEC environment.

server, compared with when they are sent directly to robots, I measured and evaluated

application-level delay as penalty of using edge server. I sent messages about 50 times

regularly from the HoloLens application and save each time when it sent messages as same

as previously noted. For each input, Pepper saved each time when it started moving. Then,

I calculated average the absolute time from each input to the start of Pepper with time

difference between devices. Finally, the application-level delay in cloud environment by

subtraction these two average times.

Figure 16 shows configuration of the MEC environment. I constructed MEC environ-

ment using OpenStack and Amazon Web Service (AWS). The AWS cloud is in Ohio, and

connected to OpensStack environment via VPN gate.

4.3 Results

4.3.1 Implementation Cost

I show extracts of source code to implement robot operation system. The whole source

code is described in Appendix A. Source code 1 shows a part of source code of HoloLens

27

application, which connects to robot Pepper or another robot, and Source code 2 shows a

part which connects to a MQTT broker. After line 8 of Source code 1 represents the code

needed to make anther robot usable in the application. Source code 3 and Source code 4

show parts of source code of HoloLens application, which sends messages of Xbox controller

to robot Pepper or another robot. Source code 3 and Source code 1 are not designed based

on Core/Periphery structure, and perform all in one application from get message to move

robots. Since I have not implemented using another drone, Source code 3 is based on the

supposition of connecting to estimated another robot. After line 37 of Source code 3

represents the code get information from another robot in the application. Source code 4

and Source code 2 are designed based on Core/Periphery structure. Service functions are

divided and MQTT is used to send messages. Compared to the case where the functions

are not divided, in case the functions are divided and MQTT is used, developers do not

need to change nor add source code for accessing each device APIs to establish connections,

to disconnect, and to move devices in remote places, and settings of relationship between

information of controller and movement distance of devices (parameter “move scalefactor”

in Source code 3), when the type of devices increases. However, preparing topics on the

MQTT broker, connecting to the MQTT with devices in remote places, and writing source

code for processing after subscribe messages from the MQTT broker are needed.

For amount of the entire source code, the implementation cost is reduced due to the

effect of the connection establishment part, shown in Source code 2. In terms of the cost for

implementing the application on the user side, the case when devices on user side establish

connections directly with devices in remote device, developers cannot write many parts of

source code unless they know APIs of different devices.

Therefore, developers can implement applications more easily by adopt Core/Periphery

structure and use MQTT.

28

Source code 1: Establish connection to robots.

1 //Pepper
2 if(!string.IsNullOrEmpty(pepperIP)){
3 session = QiSession.Create(tcpPrefix + pepperIP + portSuffix);
4 if (! session.IsConnected){
5 Debug.Log("Failed␣to␣establish␣connection");
6 return;
7 }
8 //another robot (estimated)
9 }else if(!string.IsNullOrEmpty(robotIP)){

10 session robot = RobotSession.Create(tcpPrefix + robotIP + portSuffix);
11 if (! session.IsConnected){
12 Debug.Log("Failed␣to␣establish␣connection");
13 return;
14 }
15 }

Source code 2: Establish connection to MQTT broker.

1 BrokerAddress = "192.168.10.73";
2 clientId = Guid.NewGuid().ToString();
3 client = new MqttClient(BrokerAddress);
4 client.ProtocolVersion = MqttProtocolVersion.Version 3 1;
5 try{
6 client.Connect(clientId);
7 } catch (Exception e){
8 Debug.Log(string.Format("Exception␣has␣occurred␣in␣connecting␣to␣MQTT␣

{0}␣", e));
9 throw new Exception("Exception␣has␣occurred␣in␣connecting␣to␣MQTT", e.

InnerException);
10 }

29

Source code 3: Send messages Directly.

1 if(session.IsConnected){
2 if (eventData.XboxLeftStickHorizontalAxis != 0 || eventData.

XboxLeftStickVerticalAxis != 0){
3 var motion = session.GetService("ALMotion");
4 motion["moveTo"].Call(eventData.XboxLeftStickHorizontalAxis ∗ move scalefactor,

eventData.XboxLeftStickVerticalAxis ∗ (−1) ∗ move scalefactor, 0f);
5 }
6 if (eventData.XboxLeftBumper Pressed){
7 var motion = session.GetService("ALMotion");
8 motion["moveTo"].Call(0f, 0f, rotation scalefactor);
9 }else if (eventData.XboxRightBumper Pressed){

10 var motion = session.GetService("ALMotion");
11 motion["moveTo"].Call(0f, 0f, (−1) ∗ rotation scalefactor);
12 }
13 if (eventData.XboxB Pressed){
14 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
15 var motion = session.GetService("ALMotion");
16 motion["setAngles"].Call("HeadYaw", angle, 0f);
17 }
18 first buttonpressed = Time.time;
19 }
20 if (eventData.XboxX Pressed){
21 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
22 if (pepperIP == "192.168.10.49"){
23 session.Close();
24 session.Destroy();
25 pepperIP = "192.168.10.48"
26 session = QiSession.Create(tcpPrefix + pepperIP + portSuffix);
27 }else{
28 session.Close();
29 session.Destroy();
30 pepperIP = "192.168.10.49"
31 session = QiSession.Create(tcpPrefix + pepperIP + portSuffix);
32 }
33 }
34 first buttonpressed = Time.time;
35 }
36

37 //another robot (estimated)
38 }else if(session robot.isConnected){
39 if (eventData.XboxLeftStickHorizontalAxis != 0 || eventData.

XboxLeftStickVerticalAxis != 0){
40 CallRobotsAPI move(eventData.XboxLeftStickHorizontalAxis ∗

move scalefactor robot, eventData.XboxLeftStickVerticalAxis ∗ (−1) ∗
move scalefactor drone, 0f);

41 }
42 if (eventData.XboxLeftBumper Pressed){
43 CallRobotsAPI rotate(0f, 0f, rotation scalefactor);
44 }else if (eventData.XboxRightBumper Pressed){
45 CallRobotsAPI rotate(0f, 0f, (−1) ∗ rotation scalefactor);
46 }
47 if (eventData.XboxB Pressed){
48 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
49 CallRobotsAPI rotate(0f, 0f, 0f);

30

50 }
51 first buttonpressed = Time.time;
52 }
53 if (eventData.XboxX Pressed){
54 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
55 if (robotIP == "192.168.10.50"){
56 session robot.Close();
57 session robot.Destroy();
58 robotIP = "192.168.10.51"
59 session robot = RobotSession.Create(tcpPrefix + robotIP + portSuffix);
60 }else{
61 session robot.Close();
62 session robot.Destroy();
63 robotIP = "192.168.10.50"
64 session robot = RobotSession.Create(tcpPrefix + robotIP + portSuffix);
65 }
66 }
67 first buttonpressed = Time.time;
68 }
69 }
70

Source code 4: Send message via MQTT.

1 if (eventData.XboxLeftStickHorizontalAxis != 0 || eventData.XboxLeftStickVerticalAxis
!= 0){

2 msg = string.Format("{1}␣{0}␣0␣{2}", (−0.2) ∗ eventData.
XboxLeftStickHorizontalAxis, (−0.2) ∗ eventData.XboxLeftStickVerticalAxis,
deviceIP);

3 client.Publish(topicPublishPath, Encoding.UTF8.GetBytes(msg), MqttMsgBase.
QOS LEVEL AT MOST ONCE, true);

4 }
5 if (eventData.XboxLeftBumper Pressed){
6 msg = string.Format("0␣0␣15␣{0}", deviceIP);
7 client.Publish(topicPublishPath, Encoding.UTF8.GetBytes(msg), MqttMsgBase.

QOS LEVEL AT MOST ONCE, true);
8 }
9 else if (eventData.XboxRightBumper Pressed){

10 msg = string.Format("0␣0␣-15␣{0}", deviceIP);
11 client.Publish(topicPublishPath, Encoding.UTF8.GetBytes(msg), MqttMsgBase.

QOS LEVEL AT MOST ONCE, true);
12 }
13 if (eventData.XboxB Pressed){
14 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
15 msg = string.Format("b");
16 client.Publish(topicPublishPath button, Encoding.UTF8.GetBytes(msg),

MqttMsgBase.QOS LEVEL AT MOST ONCE, true);
17 }
18 first buttonpressed = Time.time;
19 }
20 if (eventData.XboxX Pressed){
21 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
22 if (deviceIP == 51){
23 deviceIP = 48;
24 }else{
25 deviceIP++;

31

26 }
27 }
28 first buttonpressed = Time.time;
29 }
30

Figure 17 shows the relation between the number of device types and the number of

lines of source code. Both Figure (a), the connection establishment part, and Figure (b),

the messaging part, show that designing services based on Core/Periphery structure is

effective when the number of device types.

Not only variation of device in remote places, but also variation of devices on user

side. In both services based on Core/Periphery and services not based on Core/Periphery

structure, developers have to add source code to get information of controller, because this

function is peripheral. However, the more types of controllers, the more parts of source

code to add when the types of devices on the remote side increase, effect obtained by

designing services based on Core/Periphery structure.

Furthermore, I consider the implementation cost for sharing information among robots.

Service structure without Core/Periphery structure does not have edge servers. In order

to share information such as robot positions, robots have to establish connections each

other. Therefore, each time when new robot appears, developers have to edit source

code to connect the new robot on each robot. By designing based on Core/Periphery

structure, since robots only send its information to edge servers and edge servers aggregate

information, source code does not need to be changed even when new robots appear.

32

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

L
in

e
s

Number of Device Types

Direct
Core/Periphery

(a) Connection establishment part

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

L
in

e
s

Number of Device Types

Direct
Core/Periphery

(b) Messaging part

Figure 17: Number of lines of source code.

4.3.2 Responsiveness of the Service

Figure 18 shows the difference of application-level delay between the case the HoloLens

application directly connects the robot Pepper, and the case of the HoloLens application

connects Pepper via the edge server. Result shown Table 4 revealed that the delay due to

33

Table 3: Result of the experiment to measure the delay due to the cloud.

Core on edge Core on cloud

Number of input 49 50

Average of interval (with time difference) [ms] -10.4 463.9

Table 4: Result of the experiment to measure the penalty of using edge server.

Direct Core on edge

Number of input 41 48

Average of interval (with time difference) [ms] 343.9 349.6

MQTT on the edge server was less than 5.7 [ms]. Combining with the results shown in4.3.1,

the service design based on Core/Periphery structure enables to reduce the implementation

cost without deteriorating responsiveness of the service much.

Result shown Table 3 and 19 revealed that the difference of application-level delay

between using the edge server and using the cloud was 474.3 [ms]. The difference of

RTT between PC-to-Edge and PC-to-Cloud is 140 [ms], and the difference of application-

level delay is about 3 times larger. Therefore, deploying core functions on edge servers is

significant.

34

 0

 2

 4

 6

 8

 10

Direct Core on Edge

D
if
fe

re
n
c
e
 o

f
A

p
p
-l
e
v
e
l
D

e
la

y
 [
m

s
]

Figure 18: Difference of application-level delay.

35

 0

 100

 200

 300

 400

 500

RTT Applecation-level Delay

D
if
fe

re
n

c
e

 b
e

t.
 E

d
g

e
/A

W
S

-O
h

io

Figure 19: Difference between RTT and application-level delay in cloud environment.

36

5 Conclusion

In this thesis, I introduced a Core/Periphery structure, which is known as a model for

a flexible behavior of biological systems, of service components, and designed and imple-

mented a network-oriented mixed reality service based on the Core/Periphery structure.

First, in the supposed service, I investigated what kind of functions can be developed

due to users’ demands, real environment where devices are placed, and the development of

new devices. In order to utilize the flexibility of the Core/Periphery structure, I regarded

functions whose behaviors do not change even if users’ demands or environmental changes

occurs as core functions, and functions whose behaviors can be changed due to users’

demands or environmental changes as peripheral functions. Second, I implemented appli-

cations based on scenarios described in Section 3.3, and evaluated the effect of the design

based on Core/Periphery structure by our experiment environment in our laboratory.

My experiment revealed that the application-level delay due to MQTT on the edge

server was less than 5.7 [ms]. Taking advantage of Core/Periphery structure enables

to divide service functions appropriately and place the functions in MEC environment

appropriately, so that implementation cost is reduced with little penalty.

As future works, I will evaluate the implementation cost and for object detection and

feedback to robots, for sharing information among robots. Furthermore, implementation

and evaluation of the service using different devices such as robots rather than Pepper is

needed. Service design based on Core/Periphery structure is more efficient when there are

various devices, but in this thesis, I implemented and evaluated the service using one kind

of headset and robot.

37

Acknowledgments

This thesis would not accomplish without a lot of great support from many people. First,

I would like to express my deepest gratitude to Professor Masayuki Murata of Osaka

University, for providing me with the opportunity to research with a talented team of re-

searchers. His creative suggestions, insightful comments, and patient encouragement have

been essential for my research activity. Furthermore, my heartfelt appreciation goes to

Associate Professor Shin’ichi Arakawa of Osaka University for contributing to the progress

of my research with his valuable advice, technical supports and constructive discussion.

This thesis would not be accomplished without his supports. Associate Professor Yuichi

Ohsita and Assistant Professor Daichi Kominami of Osaka University gave me objective

comments and feedback. All the comments and feedback were helpful for me to evaluate

my research from diversified perspectives. I offer my special thanks to them. I would

like to thank Dr. Koki Inoue, Mr. Junichi Kaneda, and all the members of Advanced

Network Architecture Research Laboratory. Last, but not least, I thank my parents for

their invaluable support and constant encouragement during my master studies.

38

References

[1] “ANA Avatar.” https://ana-avatar.com.

[2] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing benefit from

software-defined networking: A survey, use cases, and future directions,” IEEE Com-

munications Surveys Tutorials, vol. 19, pp. 2359–2391, June 2017.

[3] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing

a key technology towards 5G,” ETSI White Paper, Sept. 2015.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-

access edge computing: A survey of the emerging 5G network edge cloud architecture

and orchestration,” IEEE Communications Surveys Tutorials, vol. 19, pp. 1657–1681,

May 2017.

[5] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, “Structure and dynamics of core-

periphery networks,” Journal of Complex Networks, vol. 1, pp. 93–123, Sept. 2013.

[6] V. Miele, R. Ramos-Jiliberto, and D. P. Vázquez, “Core–periphery dynamics in a

plant–pollinator network,” bioRxiv, July 2019.

[7] Y. Tsukui, “On network function virtualization for dynamically changing service re-

quests based on a core/periphery structure,” Master’s thesis, Graduate School of

Information Science and Technology, Osaka University, Feb. 2020.

[8] S. Tachi, “Telexistence: Enabling humans to be virtually ubiquitous,” IEEE Com-

puter Graphics and Applications, vol. 36, pp. 8–14, Jan. 2016.

[9] X. Xia, C. Pun, D. Zhang, Y. Yang, H. Lu, H. Gao, and F. Xu, “A 6-DOF telexistence

drone controlled by a head mounted display,” in 2019 IEEE Conference on Virtual

Reality and 3D User Interfaces (VR), pp. 1241–1242, Mar. 2019.

[10] E. C. Strinati, S. Barbarossa, J. L. Gonzalez-Jimenez, D. Ktenas, N. Cassiau,

L. Maret, and C. Dehos, “6G: The next frontier: From holographic messaging to

artificial intelligence using subterahertz and visible light communication,” IEEE Ve-

hicular Technology Magazine, vol. 14, pp. 42–50, Sept. 2019.

39

[11] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagiannidis, and P. Fan,

“6G wireless networks: Vision, requirements, architecture, and key technologies,”

IEEE Vehicular Technology Magazine, vol. 14, pp. 28–41, Sept. 2019.

[12] S. Takagi, J. Kaneda, S. Arakawa, and M. Murata, “An improvement of service quali-

ties by edge computing in network-oriented mixed reality application,” in 2019 6th In-

ternational Conference on Control, Decision and Information Technologies (CoDIT),

pp. 773–778, Apr. 2019.

[13] D. Sabella, V. Sukhomlinov, L. Trang, S. Kekki, P. Paglierani, R. Rossbach, X. Li,

Y. Fang, D. Druta, F. Giust, L. Cominardi, W. Featherstone, B. Pike, and S. Hadad,

“Developing software for multi-access edge computing,” ETSI White Paper, Feb. 2019.

[14] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,” CoRR,

vol. abs/1804.02767, Apr. 2018.

[15] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in Proceedings of

2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988,

Oct. 2017.

[16] “OpenCV.” https://opencv.org.

[17] “Microsoft HoloLens.” https://www.microsoft.com/ja-jp/hololens.

[18] “FFmpeg.” https://www.ffmpeg.org/.

[19] “Eclipse Mosquitto.” https://mosquitto.org.

[20] “Node-RED.” https://nodered.org.

[21] “Pepper the humanoid robot - SoftBank Robotics.”

https://www.softbankrobotics.com/emea/en/pepper.

40

Appendix

A Source code for evaluation

Source code 5 is a program for HoloLens to send messages of Xbox controller directly to

Pepper and a drone. Source code6 is a program for HoloLens to send messages of Xbox

controller to the MQTT broker. Source code 7 is a program for Pepper to receive messages

from MQTT broker and move.

Source code 5: HoloLens connects to Pepper directly.

1 using UnityEngine;
2 using UnityEngine.UI;
3 using MiniJSON;
4 using System;
5 using System.Text;
6 using System.Threading.Tasks;
7 using System.Windows;
8 using Baku.LibqiDotNet;
9 using LibraryForDrone; //fictious

10

11 namespace HoloToolkit.Unity.InputModule.Tests{
12 public class xbox direct : XboxControllerHandlerBase{
13 [Header("Xbox␣Controller␣Test␣Options")]
14 [SerializeField]
15 private float movementSpeedMultiplier = 1f;
16

17 [SerializeField]
18 private float rotationSpeedMultiplier = 1f;
19

20 [SerializeField]
21 private XboxControllerMappingTypes resetButton = XboxControllerMappingTypes.

XboxY;
22

23 private Vector3 initialPosition;
24 private Vector3 newPosition;
25 private Vector3 newRotation;
26

27 public string pepperIP; //192.168.10.48 − 49
28 public string droneIP; //192.168.10.50 − 51
29

30 public float rotation scalefactor = 0.785f;
31

32 //Pepper
33 private const string tcpPrefix = "tcp://";
34 private const string portSuffix = ":9559";
35 private QiSession session;
36 public float move scalefactor = 3.0f;
37

38 //Drone (fictious)
39 private DroneSession session drone;

41

40 public float move scalefactor drone = 5.0f;
41

42 void Start(){
43 initialPosition = transform.position;
44 //Pepper
45 if(!string.IsNullOrEmpty(pepperIP)){
46 session = QiSession.Create(tcpPrefix + pepperIP + portSuffix);
47 if (! session.IsConnected){
48 Debug.Log("Failed␣to␣establish␣connection");
49 return;
50 }
51 //Drone (fictious)
52 }else if(!string.IsNullOrEmpty(droneIP)){
53 session drone = DroneSession.Create(tcpPrefix + droneIP + portSuffix);
54 if (! session.IsConnected){
55 Debug.Log("Failed␣to␣establish␣connection");
56 return;
57 }
58 }
59 }
60

61 public override void OnXboxInputUpdate(XboxControllerEventData eventData){
62 if (string.IsNullOrEmpty(GamePadName)){
63 Debug.LogFormat("Joystick␣{0}␣with␣id:␣\"{1}\"␣Connected", eventData.

GamePadName, eventData.SourceId);
64 }
65

66 base.OnXboxInputUpdate(eventData);
67

68 /∗get information from xbox controller∗/
69

70 if(session.IsConnected){
71 if (eventData.XboxLeftStickHorizontalAxis != 0 || eventData.

XboxLeftStickVerticalAxis != 0){
72 var motion = session.GetService("ALMotion");
73 motion["moveTo"].Call(eventData.XboxLeftStickHorizontalAxis ∗ move scalefactor,

eventData.XboxLeftStickVerticalAxis ∗ (−1) ∗ move scalefactor, 0f);
74 }
75 if (eventData.XboxLeftBumper Pressed){
76 var motion = session.GetService("ALMotion");
77 motion["moveTo"].Call(0f, 0f, rotation scalefactor);
78 }else if (eventData.XboxRightBumper Pressed){
79 var motion = session.GetService("ALMotion");
80 motion["moveTo"].Call(0f, 0f, (−1) ∗ rotation scalefactor);
81 }
82 if (eventData.XboxB Pressed){
83 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
84 var motion = session.GetService("ALMotion");
85 motion["setAngles"].Call("HeadYaw", angle, 0f);
86 }
87 first buttonpressed = Time.time;
88 }
89 if (eventData.XboxX Pressed){
90 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
91 if (pepperIP == "192.168.10.49"){
92 session.Close();
93 session.Destroy();
94 pepperIP = "192.168.10.48"

42

95 session = QiSession.Create(tcpPrefix + pepperIP + portSuffix);
96 }else{
97 session.Close();
98 session.Destroy();
99 pepperIP = "192.168.10.49"

100 session = QiSession.Create(tcpPrefix + pepperIP + portSuffix);
101 }
102 }
103 first buttonpressed = Time.time;
104 }
105

106 //Drone (fictious)
107 }else if(session drone.isConnected){
108 if (eventData.XboxLeftStickHorizontalAxis != 0 || eventData.

XboxLeftStickVerticalAxis != 0){
109 CallDronesAPI move(eventData.XboxLeftStickHorizontalAxis ∗

move scalefactor drone, eventData.XboxLeftStickVerticalAxis ∗ (−1) ∗
move scalefactor drone, 0f);

110 }
111 if (eventData.XboxLeftBumper Pressed){
112 CallDronesAPI rotate(0f, 0f, rotation scalefactor);
113 }else if (eventData.XboxRightBumper Pressed){
114 CallDronesAPI rotate(0f, 0f, (−1) ∗ rotation scalefactor);
115 }
116 if (eventData.XboxB Pressed){
117 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
118 CallDronesAPI rotate(0f, 0f, 0f);
119 }
120 first buttonpressed = Time.time;
121 }
122 if (eventData.XboxX Pressed){
123 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
124 if (droneIP == "192.168.10.50"){
125 session drone.Close();
126 session drone.Destroy();
127 droneIP = "192.168.10.51"
128 session drone = DroneSession.Create(tcpPrefix + droneIP + portSuffix);
129 }else{
130 session drone.Close();
131 session drone.Destroy();
132 droneIP = "192.168.10.50"
133 session drone = DroneSession.Create(tcpPrefix + droneIP + portSuffix);
134 }
135 }
136 first buttonpressed = Time.time;
137 }
138 }
139 }
140 }

43

Source code 6: HoloLens sends message via MQTT broker.

1 using UnityEngine;
2 using UnityEngine.UI;
3 using MiniJSON;
4 using System;
5 using System.Text;
6 using System.Threading.Tasks;
7 using System.Windows;
8 using uPLibrary.Networking.M2Mqtt;
9 using uPLibrary.Networking.M2Mqtt.Messages;

10

11 namespace HoloToolkit.Unity.InputModule.Tests{
12 public class XboxController : XboxControllerHandlerBase{
13 [Header("Xbox␣Controller␣Test␣Options")]
14 [SerializeField]
15 private float movementSpeedMultiplier = 1f;
16

17 [SerializeField]
18 private float rotationSpeedMultiplier = 1f;
19

20 [SerializeField]
21 private XboxControllerMappingTypes resetButton = XboxControllerMappingTypes.

XboxY;
22

23 private Vector3 initialPosition;
24 private Vector3 newPosition;
25 private Vector3 newRotation;
26

27 MqttClient client;
28 string clientId;
29 string topicPublishPath;
30 string topicPublishPath button;
31 string topicSubscribePath;
32 string BrokerAddress;
33 private string msg;
34 float first buttonpressed = 0f;
35 float timeBetweenbuttonpressed = 0.3f;
36

37 public static int deviceIP { get; set; }; //192.168.10.48 − 51
38

39 protected virtual void Start(){
40 initialPosition = transform.position;
41

42 //MQTT broker
43 BrokerAddress = "192.168.10.73";
44 clientId = Guid.NewGuid().ToString();
45 client = new MqttClient(BrokerAddress);
46 client.ProtocolVersion = MqttProtocolVersion.Version 3 1;
47 topicPublishPath = "HoloLens/message/push";
48 topicPublishPath button = "Xbox/button";
49 topicSubscribePath = "sub/HoloLens";
50

51 try{
52 client.Connect(clientId);
53 }
54 catch (Exception e){

44

55 Debug.Log(string.Format("Exception␣has␣occurred␣in␣connecting␣to␣MQTT␣
{0}␣", e));

56 throw new Exception("Exception␣has␣occurred␣in␣connecting␣to␣MQTT", e.
InnerException);

57 }
58

59 //Subscribe
60 client.Subscribe(new string[] { topicSubscribePath }, new byte[] { 2 });
61 }
62

63 public override void OnXboxInputUpdate(XboxControllerEventData eventData){
64 if (string.IsNullOrEmpty(GamePadName)){
65 Debug.LogFormat("Joystick␣{0}␣with␣id:␣\"{1}\"␣Connected", eventData.

GamePadName, eventData.SourceId);
66 }
67

68 base.OnXboxInputUpdate(eventData);
69

70 /∗get information from xbox controller∗/
71

72 if (eventData.XboxLeftStickHorizontalAxis != 0 || eventData.
XboxLeftStickVerticalAxis != 0){

73 msg = string.Format("{1}␣{0}␣0␣{2}", (−0.2) ∗ eventData.
XboxLeftStickHorizontalAxis, (−0.2) ∗ eventData.XboxLeftStickVerticalAxis,
deviceIP);

74 client.Publish(topicPublishPath, Encoding.UTF8.GetBytes(msg), MqttMsgBase.
QOS LEVEL AT MOST ONCE, true);

75 }
76 if (eventData.XboxLeftBumper Pressed){
77 msg = string.Format("0␣0␣15␣{0}", deviceIP);
78 client.Publish(topicPublishPath, Encoding.UTF8.GetBytes(msg), MqttMsgBase.

QOS LEVEL AT MOST ONCE, true);
79 }
80 else if (eventData.XboxRightBumper Pressed){
81 msg = string.Format("0␣0␣-15␣{0}", deviceIP);
82 client.Publish(topicPublishPath, Encoding.UTF8.GetBytes(msg), MqttMsgBase.

QOS LEVEL AT MOST ONCE, true);
83 }
84 if (eventData.XboxB Pressed){
85 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
86 msg = string.Format("b");
87 client.Publish(topicPublishPath button, Encoding.UTF8.GetBytes(msg),

MqttMsgBase.QOS LEVEL AT MOST ONCE, true);
88 }
89 first buttonpressed = Time.time;
90 }
91 if (eventData.XboxX Pressed){
92 if (Time.time − first buttonpressed > timeBetweenbuttonpressed){
93 if (deviceIP == 51){
94 deviceIP = 48;
95 }else{
96 deviceIP++;
97 }
98 }
99 first buttonpressed = Time.time;

100 }
101 }
102 }

45

103 }

Source code 7: Pepper moves after getting message from MQTT broker.

1 import datetime
2 import os, sys
3

4 class MyClass(GeneratedClass):
5 def init (self):
6 GeneratedClass. init (self, False)
7 self.framemanager = ALProxy("ALFrameManager")
8 self.motion = ALProxy("ALMotion")
9 self.positionErrorThresholdPos = 0.01

10 self.positionErrorThresholdAng = 0.03
11 self.memory = ALProxy("ALMemory")
12

13 def onInput onStart(self,p):
14 labels = self.memory.getData("count")
15 pcount = labels.count("person")
16 self.logger.info("person␣count:␣"+ str(pcount))
17 if argslist[3] == self.getParameter("robotIP"):
18 import almath
19 initPosition = almath.Pose2D(self.motion.getRobotPosition(True))
20 targetDistance = almath.Pose2D(float(argslist[0]), float(argslist[1]), float(argslist[2]) ∗

almath.PI / 180)
21 expectedEndPosition = initPosition ∗ targetDistance
22 enableArms = True
23 self.motion.setMoveArmsEnabled(enableArms, enableArms)
24 self.motion.moveTo(float(argslist[0]), float(argslist[1]), float(argslist[2]) ∗ almath.PI /

180,[["MaxVelXY", speed]])

46

