
社団法人 電子情報通信学会

THE INSTITUTE OF ELECTRONICS,
INFORMATION AND COMMUNICATION ENGINEERS

信学技報

TECHNICAL REPORT OF IEICE.

コア/ペリフェリー構造に基づく
ネットワーク型複合現実サービスの実装と評価

高木 詩織† 荒川 伸一† 村田 正幸†

†大阪大学大学院情報科学研究科 〒565–0871大阪府吹田市山田丘 1–5
E-mail: †{s-takagi,arakawa,murata}@ist.osaka-u.ac.jp

あらまし 近年、IoTの進展に伴い、数多くの新しいネットワークサービスが登場しており、サービスの応答性を向上

させるためにMEC (Multi-access Edge Computing)の標準化が進められている。MEC環境にサービスを実装するに際

しては、そのため、少ないコストでアプリケーションの振る舞いを柔軟に変更できるサービスの構成を考える必要が

ある。本研究では、生物システムにおける柔軟な振る舞いをするモデルとして知られる Core/Periphery構造を導入し、

ネットワーク型の複合現実サービスを設計、実装した。Core/Periphery構造の柔軟性を活かすため、ユーザの要求や実

環境に変動があっても変化しない機能をコア機能、ユーザの要求や実環境によって振る舞いが変わり得るものをペリ

フェリー機能とした。実験により、Core/Periphery構造に基づいてサービスを設計することで、アプリケーションレベ

ルの遅延の増加を 5.7 [ms]に留めつつ、実装コストの増大を抑制することがわかった。

キーワード コアペリフェリー構造、マルチアクセスエッジコンピューティング、複合現実、テレイグジスタンスサー

ビス、ネットワークロボット

On the Implementation and Evaluation of a Network-oriented Mixed Reality
Service based on Core/Periphery Structure

Shiori TAKAGI†, Shin’ichi ARAKAWA†, and Masayuki MURATA†

† Graduate School of Information Science and Technology, Osaka University
Yamadaoka 1–5, Suita, Osaka, 565–0871 Japan

E-mail: †{s-takagi,arakawa,murata}@ist.osaka-u.ac.jp

Abstract In recent years, many different new network-oriented services has developed, and Multi-access Edge Computing

(MEC) is standardized to improve the responsiveness of services. When deploying services in MEC environment, to consider

a service structure that can switch service behaviors flexibly to meet various users’ demands and can change the service be-

havior to real-world environment at low implementation cost is needed. In this paper, we introduce a Core/Periphery structure,

which is known as a model for a flexible behavior of biological systems, of service components, and design and implement

a network-oriented mixed reality service based on the Core/Periphery structure. We investigated what kind of functions can

be developed due to users’ demands, real environment where devices are placed, and the development of new devices. Then,

to utilize the flexibility of the Core/Periphery structure, we regarded functions whose behaviors do not change even when

users’ demands or environmental changes occurs as core functions, and others as peripheral functions. Our experiment reveals

that the implementation cost is reduced while increase of service response time is less than 5.7 [ms]. This result shows that

taking advantage of Core/Periphery structure enables to divide service functions appropriately and place the functions in MEC

environment appropriately, with a little penalty on latency and with low implementation cost.

Key words Core/Periphery Structure, Multi-access Edge Computing (MEC), Mixed Reality (MR), Telexistence Service,
Network Robots

— 1 —

1. Introduction

In recent years, with development of IoT (Internet of Things),

many different new network-oriented services have developed and

information network has changed rapidly. In new network-oriented

services, we can send information of real world retrieved from cam-

eras and sensors to cloud, or perform high-load processing such as

image recognition and/or voice/sound recognition. For example,

telexistence services using robots and VR (Virtual Reality) technol-

ogy or MR (Mixed Reality) technology are now being developed,

such as ANA Avatar project [1]. Furthermore, tactile Internet and

full-sensory digital reality can be realized by 6G [2].

In these applications, application-level delay is a significant factor

for service quality. However, application-level delay significantly

increases in cloud computing environment due to communication

distance and load concentration [3]. Recently, Multi-access Edge

Computing (MEC) [3]～[5] is standardized to relax increase of the

application-level delay for delay-sensitive services. In MEC envi-

ronment, computing resources and storage are allocated at the edge

of the network, so that processing end devices require is performed

at the place closer to the end devices. This leads to improvement of

application responsiveness by shortening communication distance

and load distribution.

When deploying network services in MEC environment, to con-

sider a service structure that can change behaviors of services in a

flexible manner with low cost is needed. If developers reconstruct

whole services to meet different users’ demands or to adapt to the

environmental variation such as device evolution, implementation

cost increases. Moreover, resources in the MEC environment are

limited by spatial restrictions, and not necessarily same as those in

cloud computing environment. It is difficult to locate all-possible

services in advance such that services on edge can adapt to each

users’ demand and environmental variation.

Our research group has been investigated a Core/Periphery struc-

ture [6],[7] of service components to effectively adapt to each user’s

demand and environmental variation. Core/Periphery structure is a

model for a flexible and efficient information processing mechanism

in biological systems. Information processing units with Core/Pe-

riphery structure is classified as Core or Periphery. Core is com-

posed densely with system constraint, and process information more

efficiently, whereas the Periphery, which is connected with Core,

can have various configurations, flexibly adapts to environmental

changes surrounding the system, and builds flexible and efficient

information processing mechanisms with Core. The advantage of

Core/Periphery structure on accommodating information services,

represented by chains of functions, is numerically investigated in

[8], and the results show that Core/Periphery structure leads to less

developmental costs for accommodating various kind of informa-

tion services.

In this paper, based on the advantage of Core/Periphery structure,

we aim to realize a service system which adapts service behaviors

to users’ various demands, environmental changes such as real en-

vironment where the end devices are located, or various devices.

Unlike the model-based evaluation of [8], we implement the shop-

ping service using mixed reality (MR) devices and robots, using

actual devices, and evaluate the effect of designing services based

on Core/Periphery structure by experiment. First, in our supposed

service, we investigate what kind of functions can arise due to users’

demands, real environment where devices are placed, and the devel-

opment of new devices. To utilize the flexibility of the Core/Periph-

ery structure, we regard functions whose behaviors do not change

when users’ demands or environmental changes occurs as core func-

tions, and functions whose behaviors can be changed due to users’

demands or environmental changes as peripheral functions.

Our experiment proved that the implementation cost is reduced

without increasing the service response time compared to the case

where the service functions are not divided, because core functions

deployed on edge servers cooperate with peripheral functions de-

ployed on end devices.

The remainder of this paper is organized as follows. Section 2 ex-

plains the service targeted in this paper and the service design based

on Core/Periphery structure. Section 3 explains the details of the

service implementation and evaluation. Finally, Section 4 explains

the conclusions and future works.

2. Service Design based on Core/Periphery
Structure

2. 1 Network-oriented Mixed Reality Services under Study
The supposed service is a shopping service using MR and robots.

Robots are places in real stores, and users enjoy shopping as if they

were in the stores though they are actually at home. Robots take

video of the real store while moving as per instructions of users.

Real-world information on store-side is attached on video and sent

to users. Users can move robots with controllers, gestures, or their

gaze. Figure 1 shows the whole service image and service functions.

Robot-side application requires functions for moving, taking

video, processing images, collecting and aggregating information

around the robot, and adjusting moving speed so as not to hit people

or objects. User-side application requires functions for displaying

video, messaging instruction to robots, collecting and aggregating

information around users, and detecting object based on the granu-

larity users want.

For video processing and live streaming system, we suppose that

users’ demands are, for example. to watch real-time video, to watch

high resolution video, or to adopt high accuracy object detection

methods. In addition, we suppose that demands from people who

place robots in stores, or who provide video are, for example, to

distribute video on a large scale, to send video to a single user, and

limit bit rate per user of video.

To meet the above demands, the video system provides functions

— 2 —

User
Robot

Internet

Virtual store
Real store

Aggregate
information

Object
detection

Move

Take
video

Get local
information

Adjust
speed

Aggregate
information

Display
video

Message
instruction

Display
information

Detailed
object

detection

Get local
information

User side Robot side

Figure 1: Supposed service and functions.

Table 1: Examples of demands and functions in video system.
Function Users’ demand Behavior variation

Video I/O
Real time video Change rates

High-resolution video Change resolution

Object detection
Fast and standard

Select method
New but slow

Distribute video
To one user With UDP

On a large scale With HTTP

Table 2: Examples of demands and functions in robot operation sys-

tem.
Function Demands/Real world Behavior variation

Get users’ action

Use gestures

Select interfaceUse controllers

Use gazes

Access to APIs
Operate robots

Switch APIs
Operate drones

Adjust robot speed
No obstacles Move robot speedily

Some obstacles Move robot slowly

for capturing and outputting video, for performing object detection,

and for distributing video to users. Table 1 shows correspondence

of uses’ demand to functions in the video system.

In the robot operation system, we suppose that users’ demands

are, for example, to select which robot to access, to change robot

speed, to move robots’ arms, to select how to operate robots by

users’ gestures or controllers, and to follow users’ gaze to change

the direction of robots. Service behavior can be changed due to

variation of real-world environment, such as communication qual-

ity, obstacles, or crowd of people. Furthermore, new devices, such

as new controllers, new robots or drones, can be used.

To meet the above demands, the robot operation system provides

functions for recognizing users’ instruction such as gestures, gazes,

and controller status, for sending message from users, for access-

ing APIs, for adjusting robot speed in order to avoid obstacles, for

collecting and aggregating information obtained from robots.

Table 2 shows correspondence of uses’ demand/real-world envi-

ronment to functions in robot operation system.

2. 2 Function Placements based on Core/Periphery Struc-
ture

This section explains function placements based on Core/Periph-

Input video

Standard part of
object detection

New part of
object detection

Format convesion
Core

UDP (mpegts)

OutputInput

UserCamera
UDP (mpegts)

HLS server

HLS

Object detection

Output video
Change
frame/bit rate

Figure 2: Video system based on Core/Periphery structure.

ery structure in video processing and live streaming system, and

robot operation system, respectively. To place service functions

appropriately, we considered which functions explained in Section

2. 1 are core functions and which functions are peripheral functions,

based on the concept of Core/Periphery structure that Core pro-

cesses information more efficiently, and Periphery has various con-

figurations and flexibly adapts to environmental changes surround-

ing the system.

2. 2. 1 Video Processing and Live Streaming

Among functions shown in Section 2. 1, capturing and outputting

video, and standardized method of object detection are common

functions, and they are core functions.

Figure 2 shows Core/Periphery structure of video system.

Orange-colored field represents Core. Light orange-colored field

represents Periphery on user side and blue-colored fields represents

Periphery on robot side. Video is sent from camera, and its frame/bit

rate is adjusted based on providers’ demands as peripheral function.

Then, the video passes through core function including functions for

inputting video, outputting video, and standard part of object detec-

tion. Finally, the video format and distribution protocol are selected

and sent to users.

2. 2. 2 Robot Operation

Figure 3 shows Core/Periphery structure of robot operation sys-

tem. The function to send instruction messages from users and ag-

gregating information obtained from robots are common, so they

are core functions. Functions that can change to adapt user demands

and changes in the real environment, such as how to input users’ in-

structions are peripheral functions. In addition, functions to access

the API of robots, functions to collect information such as current

robot position, and functions to adjust the speed are peripheral func-

tion because they change due to the type of devices and real-world

environment where devices are placed.

2. 3 Service Scenarios
This section explains service scenarios and function placements

in MEC environment.

2. 3. 1 Behavior based on the Real Environment on the Robot

Side

We explain a scenario in which behavior based on real environ-

ment where robots are placed. Core functions are functions for

— 3 —

Core OutputInput

User

Robot

Send message

Recognize gesture Robot API

Get controller information

Recognize gaze

Adjust speed

Drone

Drone API

Figure 3: Robot operation system based on Core/Periphery struc-

ture.

User

Robot

Wi-Fi AP
Wi-Fi AP

Switch

Edge Server

Switch

Move

Take video

Aggregate
information

Messaging

Detailed
object

detection

Edge Server

Object
detection

Get local
information

Adjust speed

• Instruction
• Send video

• Send local information
• Send video
• Return result of

object detection

Aggregate
information

Get local
information

Display
video

Display
information

Periphery

Core

Periphery

Figure 4: Scenario: behavior based on the real environment on the

robot side.

transmitting instructions from the user to the robot and functions

for object detection. Peripheral functions are functions to get in-

formation near the robot, functions to adjust the movement speed of

the robot, and functions to aggregate information sent from multiple

robots.

Figure 4 shows this scenario. There are users with MR headsets,

robots, cameras, and edge servers. Orange-colored functions are

core functions. Light blue-colored functions are peripheral func-

tions on robot side, and light orange-colored functions are periph-

eral functions on user side.

Users send their instruction to robot, and move bodies and heads

of the robots by controllers, gestures, and their gaze. In addition,

video captured by the camera on robots are sent to the edge servers.

Edge servers perform object detection on the video and recognize

objects and persons around robots. Object detection function, one of

core functions, needs to be performed in real time, and required high

specification servers and thus should be deployed on edge servers.

Results of the object detection is returned to robots. When there

are many people around them the robot reduce its speed in order to

avoid collision. Moreover, information obtained from robots can be

aggregated in the edge server and shared with other robots. Infor-

mation sharing enables users to avoid other robots while operating

their robots.

2. 3. 2 Behavior based on the Real Environment on the User

Side

We explain a scenario in which behavior based on real environ-

ment on user side. Core functions are functions for instructions from

the user to robots and function to aggregate information of multiple

User

Robot

Wi-Fi AP

Wi-Fi AP

Switch

Edge Server

Switch

Wi-Fi AP Robot

Edge Server

• Instruction
• Send video

Aggregate
information

Messaging

Detailed
object

detection

Get local
information

Display
video

Display
information Periphery

Core

Periphery

Object
detection

Aggregate
information

Move

Take video

Get local
information

Adjust speed

Move

Take video

Get local
information

Adjust speed

• Send local information
• Send video
• Return result of

object detection

Figure 5: Scenario: behavior based on the real environment on the

user side

robots. Peripheral functions are functions for displaying video, de-

tailed information of objects, information about each robot.

Figure 5 shows this scenario. Orange-colored functions are core

functions. Light blue-colored functions are peripheral functions on

robot side, and light orange-colored functions are peripheral func-

tions on user side. Information of stores and robots such as product

information or communication status is collected at the edge severs

on user side. Users select which robot to operate only by commu-

nicating with their own edge servers while seeing the aggregated

information of the stores and robots.

As a core function, the video sent from cameras is roughly classi-

fied into each object type on edge servers on the robot side. Then, as

a peripheral function, detailed object detection is performed on the

edge servers or users’ devices. Users’ devices collect personal in-

formation such as the users’ tastes, information about what the user

has, and purchase history. Using the personal information, contents

which users want to know are displayed. For example, if purchase

history has a commodity that is regularly purchased, the application

recommends the commodity based on the history, or the expiration

date of a food in users’ home is displayed.

3. Implementation and Evaluation of the Service
based on Core/Periphery Structure

This section explains implementation detail and evaluation of the

service based on Section 2. 3.

3. 1 Implementation of the Service based on Core/Periphery
Structure

3. 1. 1 Video Processing and Live Streaming

Video from cameras is sent to the edge server on robot side and

captured with OpenCV [9]. Then, object detection with YOLOv3

[10] and PyTorch, a library for deep learning is performed. Mask

R-CNN (Region-based Convolutional Neural Networks) [11], an al-

gorithm that not only surrounds certain areas where objects are de-

tected with a rectangle but also recognizes the type of object for each

pixel and colors it, can be used. The processed video is transmitted

to the HoloLens [12], MR headset worn by users using ffmpeg [13]

with UDP and displayed.

— 4 —

3. 1. 2 Robot Operation

We used Xbox controller, which can connect to HoloLens, as the

users’ controller. Information of the controller by HoloLens is trans-

mitted with MQTT (Message Queuing Telemetry Transport), which

is a publish/subscribe type protocol. We built an MQTT messag-

ing system on the edge server on user side with mosquitto [14], an

open source message broker, and Node-RED [15], a programming

tool for event-driven applications. The MQTT broker gets messages

from HoloLens and send it to Choregraphe, the programming tool

for Pepper [16], robot. A program on Choregraphe accesses to Pep-

per API when it gets messages from MQTT broker.

Pepper gets lists of object names from the edge server which

performs object detection, and when there is people, it reduces its

speed. Furthermore, Pepper has a map of an area where it can move,

and get its position regularly. Each Pepper’s position is aggregated

in the edge server and shared with the other Pepper. Pepper’s posi-

tion is also plotted on map, sent to users’ HoloLens, and displayed

on HoloLens.

3. 2 Evaluation and Experiment Settings
3. 2. 1 Implementation Cost

With the implemented service, we show that the implementation

cost is reduced by adopting to the Core/Periphery structure. We

compare amount of the source code for sending users’ instruction

when functions are divided to core and peripheral functions with

when whole service is implemented on an end device to evaluate

the implementation cost.

3. 2. 2 Responsiveness of Service

Since application-level delay may increase when users’ instruc-

tions are sent via the edge server, compared with when they are sent

directly to robots, we measured and evaluated application-level de-

lay as penalty of using edge server.

We sent messages about 50 times regularly from the HoloLens

application and save each time when it sent messages as t1, t2, ...,

tn, where n is number of inputs. On the robot side, a digital clock

that can display milliseconds is displayed on a laptop nearby Pep-

per. We took a video and made records of each time when Pepper

started moving as t′
1, t′

2, ..., t′
n. Then, we calculated average of

t′
1 − t1, t′

2 − t2, ..., t′
n − tn as the absolute time from each input

to the start of Pepper with time difference between devices. Since

the clocks of HoloLens and Pepper are not synchronized, the abso-

lute time from each input to the start of Pepper cannot be measured.

Therefore, we calculated the penalty of using the edge server by

subtraction these two average times.

Furthermore, we measured the improvement of service respon-

siveness by placing core functions on edge servers. When allocating

core functions and peripheral functions respectively, core function

can be deployed on the cloud or on the edge server, and the pe-

ripheral function can be deployed on the edge server or on the end

devices. Core functions perform real-time image processing or ag-

gregation of information, and cannot be executed on end devices.

To improve responsiveness, core functions should be placed on the

edge server instead of the cloud.

We constructed MEC environment using OpenStack and Ama-

zon Web Service (AWS). The AWS cloud is in Ohio, and connected

to OpensStack environment via VPN. Then, we measured the time

from when a user inputs an instruction to when the robot starts mov-

ing in MEC environment and in cloud environment, respectively,

and compared the time and evaluate the effect of allocating core

functions on the edge server. For each input, Pepper saved each

time when it started moving. Then, we calculated average the abso-

lute time from each input to the start of Pepper with time difference

between devices. Finally, the application-level delay in cloud envi-

ronment by subtraction these two average times.

3. 3 Results
3. 3. 1 Implementation Cost

Figure 6 shows the relation between the number of device types

and the number of lines of source code. Both Figure (a), the con-

nection establishment part, and Figure (b), the messaging part, show

that designing services based on Core/Periphery structure is effec-

tive when the number of device types.

Compared to the case where the functions are not divided, in

case the functions are divided and MQTT is used, developers do

not need to change nor add source code for accessing each device

APIs to establish connections, to disconnect, and to move devices in

remote places, and settings of relationship between information of

controller and movement distance of devices when the type of de-

vices increases. The case when devices on user side establish con-

nections directly with devices in remote device, developers cannot

write many parts of source code unless they know APIs of different

devices. Not only variation of device in remote places, but also vari-

ation of devices on user side. In both services based on Core/Periph-

ery and services not based on Core/Periphery structure, developers

have to add source code to get information of controller, because

this function is peripheral. However, the more types of controllers,

the more parts of source code to add when the types of devices on

the remote side increase, effect obtained by designing services based

on Core/Periphery structure. Therefore, developers can implement

applications more easily by adopt Core/Periphery structure.

3. 3. 2 Responsiveness of the Service

Figure 7 shows the difference of application-level delay between

the case the HoloLens application directly connects the robot Pep-

per, and the case of the HoloLens application connects Pepper via

the edge server. The delay due to MQTT on the edge server was 5.7

[ms].

Difference of application-level delay between using the edge

server and using the cloud was 474.3 [ms]. The difference of RTT

between PC-to-Edge and PC-to-Cloud is 140 [ms], and the differ-

ence of application-level delay is about 3 times larger. Therefore,

deploying core functions on edge servers is significant.

Combining with the results shown in Section3. 3. 1, the service

— 5 —

 0

 10

 20

 30

 40

 50

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

L
in

e
s

Number of Device Types

Direct
Core/Periphery

(a) Connection establishment part

 0

 50

 100

 150

 200

 250

 0 1 2 3 4 5 6

N
u

m
b

e
r

o
f

L
in

e
s

Number of Device Types

Direct
Core/Periphery

(b) Messaging part

Figure 6: Number of lines of source code.

 0

 2

 4

 6

 8

 10

Direct Core on Edge

D
if
fe

re
n
c
e
 o

f
A

p
p
-l
e
v
e
l
D

e
la

y
 [
m

s
]

Figure 7: Difference of application-level delay.

design based on Core/Periphery structure enables to reduce the im-

plementation cost without deteriorating responsiveness of the ser-

vice much.

4. Conclusion

In this paper, we introduced a Core/Periphery structure, and de-

signed and implemented a network-oriented mixed reality service

based on the Core/Periphery structure. Furthermore, we evaluated

the effect of the design based on Core/Periphery structure by our

experiment environment in our laboratory. Our experiment revealed

that the application-level delay due to the edge server was 5.7 [ms].

Taking advantage of Core/Periphery structure enables to divide ser-

vice functions appropriately and place the functions in MEC envi-

ronment appropriately, so that implementation cost is reduced with

little penalty.

As future works, we will evaluate the implementation cost and

for object detection and feedback to robots, for sharing information

among robots. Furthermore, implementation and evaluation of the

service using different devices such as robots rather than Pepper is

needed.

Acknowledgment A part of this work was supported by Na-

tional Institute of Information and Communications Technology

(NICT) in Japan.

References
[1] “ANA Avatar.” https://ana-avatar.com.
[2] Z. Zhang, Y. Xiao, Z. Ma, M. Xiao, Z. Ding, X. Lei, G. K. Karagian-

nidis, and P. Fan, “6G wireless networks: Vision, requirements, ar-
chitecture, and key technologies,” IEEE Vehicular Technology Mag-
azine, vol. 14, pp. 28–41, Sept. 2019.

[3] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys Tutorials, vol. 19,
pp. 2359–2391, June 2017.

[4] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing a key technology towards 5G,” ETSI White Paper,
Sept. 2015.

[5] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5G net-
work edge cloud architecture and orchestration,” IEEE Communica-
tions Surveys Tutorials, vol. 19, pp. 1657–1681, May 2017.

[6] P. Csermely, A. London, L.-Y. Wu, and B. Uzzi, “Structure and dy-
namics of core-periphery networks,” Journal of Complex Networks,
vol. 1, pp. 93–123, Sept. 2013.

[7] V. Miele, R. Ramos-Jiliberto, and D. P. Vázquez, “Core–periphery
dynamics in a plant–pollinator network,” bioRxiv, July 2019.

[8] Y. Tsukui, “On network function virtualization for dynamically
changing service requests based on a core/periphery structure,” Mas-
ter’s thesis, Graduate School of Information Science and Technology,
Osaka University, Feb. 2020.

[9] “OpenCV.” https://opencv.org.
[10] J. Redmon and A. Farhadi, “YOLOv3: An incremental improve-

ment,” CoRR, vol. abs/1804.02767, Apr. 2018.
[11] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask R-CNN,” in

Proceedings of 2017 IEEE International Conference on Computer
Vision (ICCV), pp. 2980–2988, Oct. 2017.

[12] “Microsoft HoloLens.” https://www.microsoft.com/ja-jp/
hololens.

[13] “FFmpeg.” https://www.ffmpeg.org/.
[14] “Eclipse Mosquitto.” https://mosquitto.org.
[15] “Node-RED.” https://nodered.org.
[16] “Pepper the humanoid robot - SoftBank Robotics.”

https://www.softbankrobotics.com/emea/en/pepper.

— 6 —

