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ABSTRACT
Managed security services detect incidents, i.e., successful attacks
such as malware infection, in real time from a large number of
alerts based on vendors’ and security operations center’s (SOC’s)
detection rules. To immediately find incidents, professional analysts
in a SOC prioritize alerts if their indicators, i.e., meta-information
of detection rules in alerts, are highly correlated with incidents.
Indicators are typically divided into two priority levels, i.e., primary
and secondary. However, levels of new indicators are difficult to
accurately determine with a conventional system. Such a system
determines an indicator’s level as primary if the conditional proba-
bility of incidents occurring given an observation of the indicator’s
alert is high. Therefore, we propose a system for accurately deter-
mining levels of new indicators by focusing on alerts not recognized
as incidents. With this system, we analyze the correlation between
indicators made by different vendors then transfer knowledge of
incidents between different vendors with a triplet network. We
evaluate the effectiveness of the proposed system using 4,919,791
alerts collected from a large-scale SOC for one month. Our system
identified 24.3% more primary indicators undiscovered at the time
of data collection than a system without correlation analysis at a
5% false positive rate.

CCS CONCEPTS
• Security andprivacy→ Intrusion detection systems; •Com-
puting methodologies→ Neural networks.

KEYWORDS
alert analysis, security information and event management, metric
learning, deep neural network
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1 INTRODUCTION
Tominimize damage caused by cyber attacks, incidents, i.e., success-
ful attacks such as malware infection, must be immediately detected
after the occurrence. Managed security services (MSS) are aimed at
detecting incidents in real time by monitoring customers’ traffic in
a security operations center (SOC) [20, 22]. To manage large-scale
traffic, MSS leverages three different levels of analysis: security ap-
pliances, security information and event management (SIEM), and
professional analysts. Customer traffic is first analyzed using secu-
rity appliances such as unified threat management (UTM), which
has vendor’s detection rules and a logging function. If attacks are
detected by the rules (e.g., malware hashes, regular expression sig-
natures, machine-learning-based classifications), alerts are sent to
SIEM. In parallel, communication logs, such as HTTP requests, are
also sent to SIEM by the logging function. Next, logs sent from
appliances are analyzed in SIEM with detection rules developed
by a SOC. The SOC’s detection rules are applied to logs from all
customers and enhance the detection capabilities of MSS. If attacks
are detected, alerts are sent to analysts along with alerts from ap-
pliances. Finally, professional analysts in a SOC manually analyze
alerts detected with both vendors’ and SOC’s rules. Since an alert
does not include sufficient information to determine whether an
attack has succeeded, analysts have to manually confirm it. An
alert consists of an indicator and identifier. An indicator is a tuple
of meta-information of a vendor’s or SOC’s detection rule such
as a rule name and communication direction. An identifier is a
tuple of information identifying a communication related to an
alert such as the timestamp and source/destination of a communica-
tion. Analysts manually find attack artifacts in communication logs
related to alerts. If analysts confirm successful malware infection
or exploitation of vulnerability on servers, alerts are recognized
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as incidents. If analysts confirm failure of malware download or
exploitation, alerts are not recognized as incidents.

Incidents must be immediately found from a large number of
alerts to respond to and recover from incidents as soon as possi-
ble [15]. To reduce time required to find incidents, analysts inten-
sively and carefully analyze alerts whose indicators are determined
to be high priority levels. Indicators are typically divided into two
priority levels, i.e., primary and secondary, in terms of correlation
with incidents.

The number of indicators increases on a daily basis because
vendors’ detection rules are frequently updated once new common
vulnerabilities and exposures (CVEs), malware variants, and exploit
kits are discovered [21]. However, levels of new indicators are
difficult to accurately determine with a conventional system [18].
This system can be generalized as that for determining a level of
an indicator on the basis of the conditional probability of incidents
occurring given that an alert of the indicator is observed. If the
conditional probability is high, the level is determined as primary.
In fact, incidents regarding some new indicators do not occur a few
weeks or months after the indicators started to be observed in a SOC
because incidents generally do not frequently occur. In this case,
their conditional probabilities are 0, and their levels are determined
as secondary at this time even if incidents regarding themwill occur
in the near future. We call such indicators, which are determined as
secondary indicators but incidents regarding them will occur in the
near future, potential primary indicators. In the worse case, alerts
of potential primary indicators are not analyzed in a SOC, and the
corresponding incidents remain undetected.

Therefore, we propose a system for identifying potential pri-
mary indicators by focusing on alerts not recognized as incidents,
i.e., failed attacks. Such alerts of potential primary indicators are
definitely observed, and we can infer traits of their indicators from
increase, decrease, and duration of the alerts. Using these alerts,
we analyze the correlation between indicators made by different
vendors then transfer knowledge of incidents between different
vendors. For example, we consider the case in which an incident re-
garding a newly discovered CVE occurred in a customer’s network
using an appliance of a certain vendor, but no incident regarding the
same CVE occurred in other customers’ networks using appliances
of another vendor. Even if both vendors have made indicators re-
garding the CVE, a conventional system determines the indicator of
the former vendor related to an incident as primary but determines
the indicator of the latter vendor as secondary. We identify the lat-
ter vendor’s indicator as a potential primary indicator by inferring
that these indicators are related to the same type of attacks, e.g.,
attacks regarding the same CVE, from the similarity in increase,
decrease, and duration of alerts.

The same types of attacks are observed at different vendors’
appliances, and alerts are triggered by vendors’ detection rules.
However, alerts are biased by customers because the number of
alerts triggered in a customer’s network depends on whether at-
tackers select the customer as targets of the attacks. To compare
indicators of different vendors on the basis of their alerts, we need
to reduce the bias of their alerts. To this end, we aggregate alerts
of the same indicator from different customers. We expect the bias
to be reduced by expanding observation range and increasing the
number of alerts. On the basis of the above insight, we aggregate

alerts from many customers by indicators and extract statistical
traits of indicators from timestamps, sources, and destinations in
the aggregated alerts, e.g., frequency, burstiness, and the number
of unique sources/destinations [11]. We call a numerical vector
consisting of the extracted traits a detection pattern. Even though
biases are reduced by aggregating alerts, detection patterns of dif-
ferent vendors’ indicators regarding the same type of attacks are
not completely identical because different vendors’ appliances are
used by different customers.

We aim at eliminating difference in detection patterns resulting
from vendors by leveraging indicators of a SOC’s detection rules,
which we call SOC-made indicators. We aggregate alerts of SOC-
made indicators by vendors where the originated logs are observed
then extract their detection patterns. Since SOC-made indicators are
applied to all vendors’ logs, we can obtain detection patterns based
on the same indicators but different vendors. By comparing the
detection patterns, we can quantitatively measure the difference in
detection patterns resulting from their originated logs observed at
different vendors’ appliances. We transform detection patterns into
low-dimensional vectors (representations), where we can calculate
similarities between indicators of different vendors without being
affected by the difference resulting from vendors.

To eliminate the difference resulting from vendors but keep other
traits of detection patterns in representations, we simultaneously
conduct the following two optimizations.

(1) preserve the similarity relationship between detection pat-
terns of the same vendor’s indicators

(2) minimize the difference between SOC-made indicators re-
sulting from vendors

For the first optimization, we preserve the order of similarities be-
tween the same vendor’s indicators not to contradict the second
optimization. Optimization with the same setting is studied in met-
ric learning, and a method called a triplet network was proposed [7].
A triplet network optimizes representations that preserve the order
of similarities between samples using similar and dissimilar pairs
of samples. Therefore, we apply a triplet network to our system in
a very unique/new setting in terms of analyzing alerts observed in
a SOC. By adding constraints for the second optimization to the
representation learning of the triplet network, we can obtain the
representations where similarities between indicators of different
vendors can be calculated without being affected by the difference
resulting from vendors.

We evaluate the effectiveness of our system using 4,919,791 alerts
collected from a large-scale SOC for one month. Our system out-
performed a conventional system that identifies potential primary
indicators on the basis of the similarities between detection patterns.
Specifically, our system identified 24.3% more primary indicators
undiscovered at the time of data collection at a 5% false positive rate
(FPR). From analyzing optimized representations, we also show that
identification performance improved by decreasing the difference
between SOC-made indicators resulting from vendors.

We make the following contributions:

• We propose a system that identifies potential primary indi-
cators by transferring knowledge of incidents and show its
effectiveness using alerts collected from a large-scale SOC.



Table 1: Examples of indicators

Indicator Vendor # of incidents # of alerts Level
VA

1 A 20 100 Primary
V B

2 B 1 100 Secondary
V B

3 B 0 10 Secondary

• We show that representations for calculating similarities be-
tween different vendors’ indicators are effectively optimized
with a triplet network.

2 BACKGROUND
In this section, we describe motivating examples, notations, and a
triplet network.

2.1 Motivating Example
To facilitate understanding of our motivation, we explain how we
collect and analyze alerts and how our system works. Figure 1
shows the flow of our alert analysis. Each customer of an MSS
deploys at least one security appliance such as UTM ( 1 ). Gener-
ally, the number and vendors of appliances differ depending on the
customer. For example, in Fig. 1, customers 1 and 2 use appliances
of vendor A, while customer 3 uses an appliance of vendor B. Appli-
ances, which have vendor’s detection rules and a logging function,
send alerts with vendor-made indicators and communication logs
to SIEM ( 2 ). Communication logs include HTTP requests, DNS
queries/responses, and so on. By leveraging the communication
logs, a SOC enhances its detection capability of incidents. SOC’s de-
tection rules are deployed to SIEM and raise alerts with SOC-made
indicators from the communication logs. As a result, alerts with
vendor-made and SOC-made indicators are sent to a SOC ( 3 ). The
circles, squares, and triangles represent different indicators, and
their colors represent the vendors of appliances from which alerts
and logs originate. For example, indicators in blue originate from
traffic observed at the appliances of vendor A, and indicators in
orange originate from that of vendor B. Indicators not filled with
color represent vendor-made ones, and indicators filled with color
represent SOC-made ones. Vendor-made indicators differ depend-
ing on the vendor. For example, all circle and triangle indicators are
in blue and orange, respectively. On the other hand, SOC’s detection
rules are applied to all customers’ logs in SIEM; thus, SOC-made
indicators, i.e., square indicators, are in both blue and orange.

To efficiently analyze alerts in a SOC, indicators are divided into
two levels: primary and secondary. Their levels are conventionally
determined on the basis of their correlation with incidents [18].
For example, alerts regarding an indicator are collected during a
period and confirmed if they are recognized as incidents. If the
ratio of the number of alerts recognized as incidents to that of
collected alerts is high, the indicator is determined as primary. In
other words, the level is determined by a conditional probability of
incidents given an indicator’s alert. The conditional probability p
is defined by the number of incidents ni and the number of alerts
na : p = ni/na . Table 1 shows examples of vendor-made indicators.
V in an indicator denotes a vendor-made indicator, its superscript
denotes a vendor of an appliance from which alerts originate, and

its subscript denotes an index of an indicator. The above conditional
probabilities ofVA

1 andV B
2 are p(VA

1 ) = 20/100 and p(V B
2 ) = 1/100.

Since p(VA
1 ) is high but p(V B

2 ) is low, their levels are determined as
primary and secondary, respectively. The conditional probability of
V B

3 is p(V B
3 ) = 0/10 = 0. Since p(V B

3 ) is low, its level is determined
as secondary. As mentioned above, on the basis of the conventional
system, indicators whose related incidents have not occurred are
determined as secondary. However,V B

3 may be a potential primary
indicator because the number of its alerts is small and sufficient
data (i.e., alerts and related incidents) have not been collected. Its
level will change to primary if its related incidents will occur in the
near future. Our system predicts whether it is a potential primary
indicator on the basis of the correlation with different vendors’
indicators.

To analyze the correlation between indicators, we aggregate
alerts from all customers by indicators and vendors ( 4 ) then ex-
tract statistical values representing the traits of indicators (e.g.,
increase, decrease, and duration of attacks) as detection patterns
( 5 ). Detection patterns of different vendors cannot be directly
compared by distance metrics, such as L2 distance, because differ-
ent vendors are used by different customers. Detection patterns of
different vendors originate from different customers’ traffic; thus,
their elements (e.g., increase, decrease, and duration of attacks)
differ resulting from the originated traffic. More precisely, different
vendors are used by different numbers and scale of customers and
used in different network structures. Figure 2(a) shows an example
of a distribution of detection patterns. SOC-made indicators are
drawn in Fig. 2(a) as well as vendor-made indicators. SOC-made in-
dicators are denoted as S . For example, SA1 is a SOC-made indicator
regarding a SOC’s detection rule and vendor A’s communication
logs, and SB1 is a SOC-made indicator regarding the same detection
rule but vendor B’s communication logs. Similarly, SA2 and SB2 are
regarding the same detection rule but originating from vendor A’s
and B’s communication logs, respectively. In this figure, similar
detection patterns are drawn close to each other. SA1 and SB1 are
ideally expected to be similar but in fact dissimilar in detection
patterns due to the difference resulting from vendors. Analogously,
SA2 and SB2 are expected to be similar but are in fact dissimilar. This
difference causes inaccurate similarity calculation between indica-
tors of different vendors.VA

1 andV B
3 seem to be related to the same

attack because both are in the middle of the SOC-made indicators.
To identify similar indicators on the basis of detection patterns,VA

1
andV B

3 are ideally expected to be similar. However, in Fig. 2(a),VA
1

and V B
3 are dissimilar, but VA

1 and V B
2 are similar due to detection

patterns’ differences resulting from vendors.
Our system transforms detection patterns into representations

where similarities of different vendor’s indicators can be calculated
without being affected by the difference resulting from vendors
( 6 ). Figure 2(b) shows an example of an ideal distribution of rep-
resentations optimized so that SA1 and SB1 are similar, SA2 and SB2
are similar, and the similarity relationship between indicators of
the same vendor are preserved. As a result of the optimization, VA

1
and V B

3 become similar in representations. On the basis of these
representations, we can identify potential primary indicators that
are similar to known primary indicators of different vendors ( 7 ).
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To obtain such representations, we need to optimize represen-
tations from two perspectives: (1) preserving the similarity rela-
tionship between indicators of the same vendor and (2) minimizing
the difference between SOC-made indicators resulting from ven-
dors. Since two optimizations need to be conducted at the same
time, we have to design their constraints to not be inconsistent
with each other. Specifically, we cannot define the constraint of
the first optimization using the similarity values between detec-
tion patterns. If we constrain to preserve the distance in detection
patterns between SA1 and SA2 and between SB1 and SB2 for the first
optimization, the second optimization is impossible because the
distance between SA1 and SA2 differs from that between SB1 and SB2 .
Therefore, we preserve the similarity order of the same vendors
for the first optimization. This constraint is sufficient because we
can maintainVA

1 andV B
1 in the middle of the SOC-made indicators.

Optimizations of representations for calculating the similarities
between samples have been studied in metric learning. We apply a
triplet network [7] to our system because it conducts optimization
on the basis of the similarity order of samples. Our system conducts
two optimizations at the same time by adding a constraint of the
second optimization to the optimization of the triplet network.

2.2 Notations
A multi-layer neural network (NN) is denoted as F , and its input
sample, such as a matrix or vector, is denoted as x. An output of
an NN is denoted as h ∈ Rk , which we call representation. A repre-
sentation is a projection of a sample into a k-dimensional vector
and is also known as embedding. A representation is calculated

d+ d-

F

x+

F

x

F

x-

 Ltriplet

h+ h-h
D D

Figure 3: Triplet network

as h = F (x;θF ), where θF is the parameters of the NN. For con-
venience, we use F (x;θF ) and F (x) interchangeably in this paper.
Distance between xi and xj , e.g., L2 distance, is denoted asD(xi , xj ),
and a loss function is denoted as L.

2.3 Triplet Network
We describe a triplet network [7, 25] applied to our system. It was
proposed to optimize a low-dimensional representation given pairs
of similar and dissimilar samples. Specifically, a triplet network
uses combinations of three samples (triplets) as training data X =
{(x, x+, x−)}. Samples x, x+, and x− are called reference, positive,
and negative samples, respectively. Triplets are selected to satisfy a
condition under which reference and positive samples are similar
and reference and negative samples are dissimilar. Using these
samples, representations are optimized so that the distance between
representations of reference and positive samples is smaller than
that between reference and negative samples. Since training data
X include many triplets, representations are optimized to preserve
the distance relationship between many samples. As a result of the
optimization, similarities between samples can be calculated using
their representations with distance metrics such as L2 distance.

Figure 3 shows the NN for optimizing representations. Each
sample of triples x, x+, and x− is input to a shared NN F , and their
representations h, h+, and h− are output, respectively. They are used
for calculating their distances. Specifically, the distance between
representations of reference and positive samples d+ = D(h, h+)



and that between representations of reference and negative samples
d− = D(h, h−) are calculated. On the basis of these distances, a loss
function of the triplet network is defined as follows:

Ltr iplet =
∑
X

max{d+ + α − d−, 0}, (1)

where α is a hyperparameter that controls the differences between
distances of similar and dissimilar pairs. This loss is called triplet
loss. The loss becomes 0 when the distance of a dissimilar pair is
larger than the sum of α and distance of a similar pair. Otherwise,
the loss becomes positive, which depends on the differences be-
tween distances of similar and dissimilar pairs. Representations are
optimized on the basis of the differences between distances, but
distances of representations are not directly optimized. This opti-
mization satisfies the requirement of our representation learning.
Specifically, optimization is conducted on the basis of the similarity
order of samples not similarity values of samples.

3 PROPOSED SYSTEM
We describe our system for identifying potential primary indicators
by dividing it into the following four steps. In step 1, we collect alerts
sent to a SOC ( 1 , 2 , 3 in Fig. 1). In step 2, we extract detection
patterns using the collected alerts ( 4 , 5 ). In step 3, we optimize
representations to calculate the similarities between indicators of
different vendors ( 6 ). In step 4, we identify potential primary
indicators using known primary indicators and the representations
( 7 ).

3.1 Data Collection
In step 1, we collect alerts sent to a SOC. As mentioned in Sec-
tion 2.1, customer traffic is analyzed at security appliances, then
communication logs and alerts triggered by vendors’ detection rules
are sent to SIEM ( 1 ). In SIEM, SOC’s detection rules trigger alerts
if attacks are detected in the communication logs ( 2 ). At the end
of this step, alerts with vendor-made and SOC-made indicators are
sent to a SOC ( 3 ).

We describe an alert in detail. An alert consists of an indicator
and identifier:

alert = (indicator , identi f ier ).

We assume that an indicator consists of the following four at-
tributes:

indicator = (name,direction,action,vendor ),

where name is a detection rule name defined by a vendor or SOC,
direction is communication direction, action represents whether
a communication is blocked by an appliance, vendor is a vendor
name of a security appliance where the alert originates. Communi-
cation directions are divided into outbound (from a customer to the
Internet), inbound (from the Internet to a customer), and internal
(in a customer’s network). We use direction to define an indicator
because its severity greatly differs depending on the communication
direction even if the same attack is detected [13, 18]. For example,
an indicator regarding network scan is severe when the direction is
outbound because it indicates that a possible malware-infected host
exists in the customer’s network. We also use an action because
blocked communication indicates a failure of an attack. We include

Table 2: Detection pattern

Type No. Features
Timestamp 1 Number of total alerts

2 Burstiness of alerts
Source 3 Number of unique sources

4 Ratio of sources
represented as multiple IP addresses

5 Burstiness of unique sources
Destination 6 Number of unique destinations

7 Ratio of destinations
represented as multiple IP addresses

8 Burstiness of unique destinations

vendor in the definition of an indicator because we aggregate alerts
of SOC-made indicators by vendors. This definition of an indicator
simplifies the following part of the paper.

We assume that an identifier consists of the following three
attributes:

identi f ier = (timestamp, source,destination),

where timestamp is the time when an alert is raised, and source/
destination are source/destination of a communication. A source
and destination are typically represented as IP addresses. In some
alerts regarding network scan or denial of service (DoS) attack,
multiple IP addresses are aggregated and used as a source and
destination.

3.2 Detection-Pattern Extraction
In step 2, we calculate a detection pattern of an indicator using the
collected alerts. First, we aggregate alerts by indicators ( 4 ) then
extract detection patterns ( 5 ).

We aggregate alerts related to the same indicator. As a result, we
obtain a set of alerts Ai regarding indicatori :

Ai = {alertj | indicator j = indicatori }.

From Ai , we extract a detection pattern representing traits of
an indicator. We focus on statistical traits such as burstiness and
frequency to distinguish attacks related to indicators. For example,
attacks regarding some indicators burst for a short period after
the related CVEs are discovered, but attacks regarding other indi-
cators are constantly observed. For another example, a malware
sample launching network scan communicates with multiple exter-
nal hosts, but a malware sample stealing confidential information
communicates to a C&C server. We make sets of each identifier’s
attribute from Ai and extract eight traits; two are extracted from a
set of timestamps, three are from a set of sources, and three are from
a set of destinations, as shown in Table 2. From a set of timestamps,
we extract the number of total alerts and burstiness of alerts. To
calculate burstiness [5], we split a collection period of alerts by
time windows of sizeW and count the number of alerts in each
window. The burstiness bW is defined using an average µW and

variance σ 2
W of the number of alerts in each window: bW =

σ 2
W
µW .

We use a day as the time window to ensure that a few alerts are
included in each time window on average. This is because a mean-
ingful value is not extracted if no alert is included in many time
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windows. From sets of sources and destinations, we extract the
number of unique sources/destinations, ratio of source/destinations
represented as multiple IP addresses, and burstiness of the number
of unique sources/destinations. Because extracted values of some
indicators are very large, we use log scale for elements of detection
patterns. In other words, when an extracted value is xi , the element
of the detection pattern is log(xi ). We extract an 8-dimensional
vector as a detection pattern of an indicator. Note that each element
of a detection pattern is normalized so that its average and standard
deviation are 0 and 1, respectively, when it is input to an NN.

3.3 Representation Learning
In step 3, we optimize representations so that (1) they preserve
the similarity order of the detection patterns of the same vendor
and (2) the difference in SOC-made indicators resulting from ven-
dors decreases ( 6 ). Since we conduct the optimization from two
perspectives, we use two datasets for training. For the first opti-
mization, we use a triplet network. Hence, we prepare triplets as
the first dataset by selecting three indicators whose vendors are
the same. These indicators are assigned to reference, positive, and
negative samples (indicators) on the basis of the similarities of their
detection patterns. In this manner, we prepare a sufficient number
of triplets as a triplet dataset Xtr iplet . For the second optimization,
we prepare a dataset consisting of pairs of SOC-made indicators that
are different in vendors but the same in the other attributes (e.g.,
name). We call it the SOC-made indicator dataset XS = {(xS1, xS2)},
where the vendor of S1 and S2 is different, but the other attributes
are the same. We calculate the distance of pairs in the SOC-made
indicator dataset and use it as a loss function. On the basis of the
above two optimizations, we can obtain representations where the
similarity relationship of detection patterns of the same vendor are
preserved and the difference in SOC-made indicators resulting from
vendors is small. Using these representations, we can calculate the
similarities of indicators made by vendors without being affected
by the difference resulting from vendors.

We use the two NNs shown in Fig. 4 for representation learning.
Since the shared NN F needs to project a detection pattern to a
representation in a different manner depending on the vendor, we
include a vendor of an indicator in an input of F . More precisely, de-
tection patterns of SOC-made indicators typically differ depending
on the vendor. To make their representations similar, projections of
detection patterns must differ depending on the vendor. Therefore,
we input a vector consisting of a detection pattern x and a vector

representing a vendor v ∈ RNv to F , where Nv is the number of
vendors. We use one-hot encoding for v. Each element of v corre-
sponds to each vendor. An element corresponding to a vendor of
an indicator is 1, and the others are 0. A representation is calcu-
lated using a vendor of an indicator as well as a detection pattern:
h = F (x, v). To calculate the distance of representations, we use L2
distance: D(h1, h2) = | |h1 − h2 | |22 .

In the optimization of F , we minimize the weighted sum of two
loss functions:

min
θF

Ltr iplet + βLS , (2)

whereLtr iplet is a loss function regarding the triplet dataset,LS is
a loss function regarding the SOC-made indicator dataset, and β is
a hyperparameter that controls the effect of LS . Ltr iplet is a triple
loss defined by (1) and calculated using the NN shown in Fig. 4(a).
The loss function of SOC-made indicator dataset LS is defined as
the distance of the representations of a pair in this dataset. Given
hS1 = F (xS1, vS1), and hS2 = F (xS2, vS2), LS is defined as follows:

LS =
∑
XS

D(hS1, hS2). (3)

Note that the hyperparameters of losses can be optimized as men-
tioned in Section 4.1.

3.4 Potential Primary Indicator Identification
In step 4, we identify potential primary indicators using the rep-
resentations and levels of indicators determined by a SOC ( 7 ).
Potential primary indicators are determined as secondary by a SOC
because no relevant incident has occurred yet. Therefore, we iden-
tify potential primary indicators from SOC’s secondary indicators.
For each secondary indicator, we identify the most similar primary
indicator among primary indicators of different vendors and use
the similarities between them as the score. Secondary indicators
that have high scores are identified as potential primary indicators.

Let a set of primary and secondary indicators be PI and SI , one
of indicators in the sets be pii and si j . Their detection patterns are
denoted as xpii and xsi j , their vendors are denoted asvpii andvsi j ,
and their representations are denoted as hpii and hsi j . The score
of the secondary indicator ysi j is defined as follows:

ysi j = max
pii ∈P I ,vpii ,vsij

sim(hpii , hsi j ), (4)

where sim is a function for calculating a similarity of representa-
tions. Specifically, we define sim using the distance of representa-
tions as follows: sim(h1, h2) =

1
1+D(h1,h2)

. Finally, a set of secondary
indicators whose scores are higher than a threshold t are obtained
as a set of potential primary indicators PPI :

PPI = {sii | ysii > t, sii ∈ SI }. (5)

We do not apply supervised machine learning to our system
because the task of our system is to identify potential primary
indicators among secondary ones, not to classify primary and sec-
ondary indicators. Specifically, indicators are labeled as primary or
secondary by professional analysts in a SOC. These labels of sec-
ondary indicators are not accurate and cannot be used for training
of supervised learning because potential primary indicators whose
labels should be primary may be included in secondary ones. There-
fore, we selected an algorithm based on only primary indicators



Table 3: Number of indicators of every vendor

Originated Vendor-made SOC-made
vendor Alerts Indicators Alerts Indicators

A 1,903,123 1,568 6,437 72
B 1,558,267 1,012 228,061 137
C 751,245 506 158 8
D 192,454 323 13,400 56
E 196,223 181 761 13
F 7,652 7 55,352 85
G 5,835 44 85 3
H 14 2 724 30

that have already been accurately labeled. Note that professional
analysts may accidentally label secondary indicators as primary
ones, but we expect that such a possibility is very low.

4 EVALUATION
We evaluated the effectiveness of our system using alerts collected
in a large-scale SOC and levels of indicators assigned by profes-
sional analysts in the SOC. We describe the evaluation setup then
present the evaluation results. We conducted the evaluation using
an Ubuntu machine with 8-core CPU and 32-GB RAM. All NNs
were implemented with Keras [3].

4.1 Evaluation Setup
Dataset.We collected alerts sent to a SOC in Jan. 2019 and prepared
triplet and SOC-made indicator datasets. The total number of alerts
was 4,919,791, number of unique indicators was 4,047, and number
of vendors was 8. Table 3 shows the number of alerts and indica-
tors counted by vendor and type of indicator (i.e., vendor-made or
SOC-made). The numbers of alerts and indicators of SOC-made indi-
cators were counted by the vendor of the security appliance where
their originated communication logs are observed. All vendors’ ap-
pliances were used by multiple customers and some customers used
multiple vendors’ appliances. To protect privacy, no information
identifying customers was recorded.

Using these alerts, we prepared two datasets for representation
learning. For the triplet dataset, combinations of three indicators
of the same vendor were prepared as triplets. When we prepared
a triplet, we randomly selected three indicators whose originated
vendor was the same. Indicators were selected from both vendor-
made and SOC-made indicators. Then, we assigned each indicator
to a reference, positive, or negative indicator on the basis of their
similarities. More precisely, we made three pairs from the three
selected indicators and identified the most similar pair and most
dissimilar pair. The indicator included in both pairs was assigned
to a reference indicator, the other of the most similar pair was as-
signed to a positive indicator and the other of the most dissimilar
pair was assigned to a negative indicator. To calculate similarities,
we used the similarities of detection patterns because vendors of
the three indicators were the same and can be compared using
detection patterns. To consider both the size and direction of detec-
tion patterns in calculating similarities, we used L2 distance and
cosine similarity. We selected this metric because norms of some

detection patterns are small. Similarities between them cannot be
adequately calculated with L2 distance because the L2 distances
between vectors of small norms are almost zero. Therefore, we also
use cosine similarity to take their direction into account. Both of
L2 distance and cosine similarity were normalized so that their
maximum value was 1 and minimum value was 0, and their average
was used. The similarity of detection patterns xi and xj is denoted
as simx (xi , xj ) and defined as follows:

simx (xi , xj ) =
1
2

(
1

1 + | |xi − xj | |22
+

cos(xi , xj ) + 1
2

)
. (6)

In the training of a triplet network, a similar pair is assumed to
be apparently more similar than a dissimilar pair. Therefore, we
included a triplet in the triplet dataset if the similarity of a similar
pair was 0.1 or larger than that of a dissimilar pair. We decided the
criterion by referring to a distribution of similarities of detection
patterns. In this manner, we prepared a sufficient number of triplets,
and the triplet dataset consisted of 1,133,139 triplets. Note that
we confirmed that the number of triplets is sufficient because the
optimized representations are stable without depending on random
seeds for selecting triplets.

We prepared the SOC-made indicator dataset using pairs of SOC-
made indicators that differ in vendors but the same in the other
attributes. However, all pairs could not be used for the SOC-made in-
dicator dataset because some SOC-made indicators in our collected
data depend on alerts from appliances. The rules regarding such
indicators detect different traffic depending on the vendor. Hence,
vendor-dependent indicators are not suitable for the SOC-made
indicator dataset. The difference in detection patterns of vendor-
dependent indicators is larger than that of vendor-independent ones
because vendor-dependent indicators have a difference resulting
from vendors’ detection rules as well as traffic observed at vendors’
appliances. Therefore, we selected relatively similar pairs for the
SOC-made indicator dataset to include vendor-independent pairs.
Specifically, we used pairs of SOC-made indicators whose similar-
ities are in the top 20%. In this manner, the SOC-made indicator
dataset included 109 pairs of SOC-made indicators. Note that the
threshold of similarities was optimized as mentioned in Section 4.1.
Conventional System. To evaluate the effectiveness of our sys-
tem, we used a baseline system that identifies potential primary
indicators on the basis of the similarities of detection patterns simx .
The baseline does not project detection patterns into representa-
tions and calculates scores directly using detection patterns. Given
a detection pattern of a secondary indicator xSIj and a detection
pattern of a primary indicator xP Ii , the score of the secondary
indicator is calculated as follows:

ysi j = max
pii ∈P I ,vpii ,vsij

simx (xpii , xsi j ). (7)

We compared our system with this baseline to confirm whether
representation learning is necessary for our system to achieve high
identification performance. We used only this baseline in our eval-
uation because, to the best of our knowledge, no system has been
proposed for the same purpose in the literature.
Hyperparameter Optimization. We describe how to optimize
the hyperparemeters of our system and architecture of the shared
NN F . Our system optimizes representations from two perspectives:



(1) preserving the similarity order of the same vendors’ indicators
and (2) minimizing the difference in SOC-made indicators resulting
from vendors. High similarities of pairs in the SOC-made indicator
dataset indicate the success of the latter optimization. However,
high similarities can be achieved even if representations of all indi-
cators are similar. Apparently, such representations do not preserve
the similarity order of the same vendors’ indicators. If the similar-
ity order is preserved, the similarities between the same vendor’s
indicators are relatively smaller than that between pairs in the SOC-
made indicator dataset. On the basis of above insight, we selected
hyperparameters with which similarities between pairs in the SOC-
made indicator dataset were the largest compared with similarities
between the same vendor’s indicators. The index for selection is
defined as follows: ∑

(xi ,xj )∈XS sim(hi , hj )∑
xk ∈X,xl ∈X,vk=vl sim(hk , hl )

, (8)

where X is the set of all detection patterns.
The selected hyperparameters of our system were α = 1.0 and

β = 1.0. The architecture of the F consisted of three layers. The
first layer was a fully connected layer whose output size was 10 and
activation function was rectified linear units (ReLU) with L2 regu-
larization. The second layer was a batch normalization layer [10].
The third layer was a fully connected layer whose output size was
5 and activation function was an ReLU with L2 regularization. The
batch size was 512, number of epochs was 50, and optimizer was
Adam [12].

4.2 Evaluation Results
We report the results from two evaluations. One was conducted
to investigate whether transferring knowledge between vendors
is effective for identifying potential primary indicators in detail.
We also analyzed representations learned with our system to show
the reason of the results. The other evaluation was conducted to
investigate whether our system can identify primary indicators
discovered in the future.
Effectiveness of Transferring Knowledge Between Vendors.
We investigated whether transferring knowledge between vendors
is effective for identifying potential primary indicators in detail. To
this end, we assumed that primary indicators of a vendor are undis-
covered (i.e., potential primary indicators) and evaluated whether
our system can identify primary indicators of the vendor using the
primary indicators of the other vendors. In this manner, we can
evaluate our system using a sufficient number of potential primary
indicators for precise analysis. Levels of indicators were assigned
by the SOC at the same time of collecting alerts, i.e., in Jan. 2019.
When calculating evaluation metrics, we treated primary indicators
as positive samples and secondary indicators as negative samples.

We compared our system and the baseline in terms of an area un-
der a receiver operating characteristic (ROC) curve (AUC). Table 4
shows the AUCs of our system and the baseline based on scores
calculated by (4) and (7), respectively. No indicator of vendor H
was assigned to a primary indicator; thus, the AUCs of vendor H
were filled in with NA. The AUCs greatly differed depending on
the system and vendor. From the results of the baseline, the AUC
of vendor C was the highest, and that of vendor D was the lowest.

Figure 5: ROC curves of knowledge-transfer evaluation

A
B
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(a) (b)

Figure 6: Distributions of (a) detection patterns and (b) rep-
resentations visualized with t-SNE

From the results of our system, the AUC of vendor A was the high-
est, and that of vendor E was the lowest. Our system outperformed
the baseline in terms of AUCs of all vendors except for vendor C.

We elucidated the reason that AUCs differed depending on ven-
dors. The AUC of vendor D largely was improved by our system, but
that of vendor C was not improved. Since the effect of LS depends
on the number of indicators in the SOC-made indicator dataset, we
investigated the number of indicators of each vendor in this dataset
and its ratio to all indicators of the vendor (i.e., vendor-made and
SOC-made indicators originating from the vendor), as shown in
Table 5. The number of SOC-made indicators of vendor D was large,
but that of vendor C was small. This is why the effect of LS on
vendor C was small, and its AUC was not improved by our system.
The number of SOC-made indicators of vendors E and G was also
small, but the ratio of vendors E and G was larger than that of
vendor C. Consequently, the effect of LS on vendors E and G was
larger than that on vendor C. For this reason, the AUCs of vendors
E and G were improved by our system. For more analysis results,
please refer to Appendix A.

We compared the overall identification performance of our sys-
tem with the baseline by drawing ROC curves using all vendors,
as shown in Fig. 5. The ROC curve of the baseline was worse than
the random prediction (i.e., diagonal line in the figure). This shows
that identifying potential primary indicators is very difficult. Our
system significantly outperformed the baseline in the range of low
FPR. To investigate this, we analyzed the distributions of detection
patterns and representations obtained from our system. Figure 6
shows the visualization of the detection patterns and representa-
tions by using t-SNE [14]. Almost all regions of detection patterns
include multiple vendors, as shown in Fig. 6(a). In contrast, some
regions of representations include multiple vendors, but the other
regions consist of indicators of one vendor, as shown in Fig. 6(b).



Table 4: AUC of each vendor in knowledge-transfer evaluation

Vendor A B C D E F G H
Baseline 0.4053 0.4704 0.6699 0.1746 0.3734 0.5798 0.5777 NA
Proposed 0.8949 0.7916 0.6216 0.6190 0.5863 0.7831 0.7555 NA

Table 5: Number of SOC-made indicators in SOC-made indi-
cator dataset

Vendor # Ratio Vendor # Ratio
A 36 2.19% E 7 3.60%
B 43 3.74% F 28 30.43%
C 7 1.36% G 3 6.25%
D 26 6.86% H 13 40.62%

Table 6: Identification performance of potential primary in-
dicator

FPR=1% FPR=5% FPR=10%
TP TPR TP TPR TP TPR

Baseline 0 0.0% 0 0.0% 0 0.0%
Proposed 2 1.9% 26 24.3% 50 46.7%

Such representations are learned because SOC-made indicators
are optimized to be similar to different vendors’ SOC-made indi-
cators due to LS , but other indicators are not forced to be similar
to different vendors’ indicators. At the same time, we optimized
representations so as to preserve the similarity order of indicators
of the same vendor. This indirectly forces some indicators that are
similar to SOC-made indicators to be similar to indicators of differ-
ent vendors. Consequently, indicators of different vendors become
similar only if they are similar to SOC-made indicators. As a result,
our system reduces FPs and outperformed the baseline.
IdentifyingPrimary IndicatorsDiscovered in Future.Weeval-
uated whether our system can identify potential primary indicators
that will be discovered as primary indicators by the SOC in the
future. We identified potential primary indicators using data and
levels in Jan. 2019 and confirmed whether the identified potential
primary indicators were determined as primary by the SOC in May
2019. Table 6 shows the numbers of true positives (TPs) and true
positive rates (TPRs) at FPRs of 1, 5, and 10%. Since the baseline
produced many FPs, it could not identify any potential primary
indicator in the range of 1–10% FPRs. On the other hand, our system
identified 2, 26, and 50 undiscovered primary indicators at FPRs
of 1, 5, and 10%, respectively. Note that the actual TPRs could be
higher than those of this evaluation because some indicators could
be determined as primary after May 2019.

We analyzed the TPs at an FPR of 5% to investigate what type
of attacks they are related to. All TPs are related to attacks to
servers such as cross site scripting and SQL injection. Vendors are
continuously developing new detection rules to keep up with new
attacks and vulnerabilities. As a result, new indicators are being
made everyday and multiple indicators are related to the same type
of attack. TPs identified with our system are inferred to be newly
developed indicators. They were not determined as primary by the

SOC because enough incidents related to them did not occur in
Jan. 2019. In May 2019, enough incidents had occurred, and they
were determined as primary. Since our system identifies potentially
primary indicators using alerts not recognized as incidents, we can
identify primary indicators four months earlier than a SOC.

5 DISCUSSION
Identification Performance. Our system outperformed the base-
line but could not identify potential primary indicators without
FPs. Although its accuracy might seem low, our system can con-
tribute to MSS. Specifically, in an actual SOC, analysts spend a large
amount of time analyzing alerts of more than 10% of secondary
indicators so as not to miss incidents. Therefore, an FPR of 10% is
acceptable, and our system achieved sufficiently high identification
performance to reduce the time for finding incidents by analyzing
alerts of indicators predicted as potential primary prior to alerts of
the other indicators compared with that of an actual SOC, where
secondary indicators are analyzed in the order of detection time.
Moreover, our representations can be used for identifying similar
indicators of different vendors. By displaying the similar indicators
to analysts in SOCs, they can infer severity and traits of indicators
if they are not familiar with the indicators. Therefore, our system
can enhance the efficiency of alert analysis in SOCs.
Data Collection. To achieve high identification performance, we
need to collect alerts for a certain period, e.g., one month, because
our system leverages detection patterns consisting of statistic values.
By increasing the collection period, we can improve the identifica-
tion performance of our system. Conversely, we need longer time
to obtain predictions of our system. In the evaluations, we collected
alerts for a month; thus, we need a month to obtain reliable predic-
tion after indicators are observed for the first time. Even though we
needed a month for prediction, our system identified primary indi-
cators earlier than the SOC. This shows that the collection period
of our system does not matter to achieve our goal.
Limitation and Future Work. As shown in Section 4.2, repre-
sentations of a vendor are not well optimized if the number of
indicators in the SOC-made indicator dataset is small. The reason
of this is that only a few types of communication logs are sent to
SIEM from the security appliances of the vendor. In this case, the
number of observed SOC-made indicators is small. Consequently,
the number of indicators in the SOC-made indicator dataset is small.
Although our system cannot improve identification performance
of such vendors, it can improve the performance of many other
vendors. In terms of overall identification performance, our sys-
tem can outperform the baseline. Future work includes designing
constraints of representation learning considering more informa-
tion such as detection rule names, correlation of communication
source/destination, and co-occurrence of alerts. The above future
work will facilitate associating indicators of different vendors and



mitigate the limitation of our system. As a result, identification
performance of our system is expected to improve.

6 RELATEDWORK
6.1 Alert Analysis
To enhance the efficiency and detection capabilities of SOCs, some
systems have been proposed for analyzing alerts. The most related
system is for finding undiscovered incidents on the basis of the
relationship between past incidents and indicators [18]. With this
system, a bipartite graph is constructed whose vertices are indi-
cators/hosts and edges are alerts regarding indicators and hosts.
On this graph, the relationship between incidents and indicators
is analyzed with random walk with restart [23]. Random walks
start from vertices of hosts where incidents are discovered, then
highly related vertices, i.e., indicators and hosts, are identified on
the basis of arrival probabilities. Highly related hosts are identi-
fied as undiscovered incidents and highly related indicators are
identified as primary indicators. This system infers the relation-
ship of indicators using past incidents, but our system infers the
relationship of indicators on the basis of aggregated alerts of indi-
cators without using past incidents. Other systems for SOCs are
mainly aimed at reducing the labor of analyzing enormous amount
of alerts. Since many alerts regarding one incident are sent to a
SOC, systems for grouping alerts related to the same attack have
been proposed [16, 17, 19, 24]. If alerts are similar in terms of the
timestamp, source, and destination, they are aggregated into one
meta-alert. From a different perspective, a system was proposed for
predicting whether an appliance is useful for finding incidents [2].
None of these systems are for identifying potential primary indica-
tors.

To extract traits of aggregated logs, a system was proposed that
extracts log-generation patterns, such as frequency and burstiness,
and predicts the status of appliances [11]. By converting aggregated
alerts into a numerical vector, we can easily apply statistical analysis
such as machine learning. Therefore, we design detection patterns
of our system by referring to log-generation patterns [11].

6.2 Metric Learning
To calculate similarities between data, such as images, sentences,
and graphs, metric-learning methods have been actively studied.
Since deep NNs have achieved significantly high classification per-
formance in many tasks [4, 6], many metric-learning methods are
based on NNs, and are called deep metric learning. The basic idea of
metric learning was proposed as a Siamese network [1]. Given sim-
ilar and dissimilar pairs of samples, representations are optimized
to increase the similarities of similar pairs and decrease those of
dissimilar pairs. A drawback of a Siamese network is the require-
ment of a carefully prepared dataset to stabilize its training. To
overcome this drawback, a triplet network was proposed [7]. As
described in Section 2.3, a triplet network accepts triplets consisting
of reference, positive, and negative samples and optimizes represen-
tations so that similar pairs are more similar than dissimilar pairs.
Applications of a triplet network include collaborative filtering [8]
and transfer learning [9]. In this study, we used a triplet network
so as not to heavily depend on the selection of the triplet dataset.

7 CONCLUSION
To identify potential primary indicators, we propose a system that
transforms detection patterns into representations where we can
calculate the similarities between indicators of different vendors
without being affected by the difference resulting from vendors. On
the basis of the representations, we identify potential primary indi-
cators from secondary indicators if secondary indicators are similar
to primary indicators of different vendors. In representation learn-
ing, we simultaneously conduct the following two optimizations
with a triplet network: (1) preserving the similarity order of detec-
tion patterns of the same vendor’s indicators and (2) minimizing
the difference between SOC-made indicators resulting from ven-
dors. We evaluated the effectiveness of our system using 4,919,791
alerts collected from a large-scale SOC for a month. Our system
outperformed a conventional system that identifies potential pri-
mary indicators on the basis of the similarities between detection
patterns. Specifically, our system identified 24.3% more primary
indicators undiscovered at the time of data collection at a 5% FPR.
Furthermore, by analyzing optimized representations, we show
that indicators of different vendors become similar only if they are
similar to SOC-made indicators. Consequently, our system reduced
FPs and improved identification performance.
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A ANALYSIS RESULTS ON AUC DIFFERENCE
We investigated the reason the AUCs of the baseline differed de-
pending on the vendor. Particularly, the AUC of vendor D was
significantly low. We calculated the scores on the basis of the sim-
ilarities between the indicators of different vendors. If primary
indicators of vendor D are significantly distant from the indicators
of the other vendors among indicators of vendor D, identifying the
primary indicators is quite difficult. We investigated whether it is
the reason the AUC of vendor D was low. To this end, for each
indicator of a vendor, we identified the most similar indicator of a
different vendor and then calculated their similarities. Note that we
identified the most similar indicator from all indicators (i.e. both
primary and secondary indicators) of different vendors not primary
indicators of different vendors to conduct comparison in terms of
the distance to distributions of different vendors’ indicators. For
comparing primary and secondary indicators in terms of the above
similarities, we calculate a ratio of an average of the primary indi-
cators’ similarities to that of the secondary indicators’ similarities.
Sets of vendor A’s primary and secondary indicators are denoted
as PIA and SIA, and a set of indicators of vendors other than A is
denoted as I Ā. The ratio of vendor A is calculated as follows:

1
|P IA |

∑
pii ∈P IA maxj ∈I Ā simx (xpii , xj )

1
|SIA |

∑
sik ∈SIA maxl ∈I Ā simx (xsik , xl )

. (9)

Table 7 shows the ratio of every vendor. The vendor D’s ratio was
the lowest among all vendors’ ratios. In other words, the primary in-
dicators of vendor D are particularly distant from the other vendors’
distributions compared with the other indicators of vendor D. On
the other hand, the ratio of vendor C was the highest. These results
indicate that an AUC of vendor D can be improved by adjusting
the distribution of this vendor.

Table 7: Ratios of primary indicators’ to secondary indica-
tors’ averages.

vendor Detection pattern Representation
A 0.8766 1.8767
B 0.9249 1.1870
C 1.0508 1.1257
D 0.8154 0.9796
E 0.9737 1.0937
F 0.9029 1.4917
G 0.9969 1.1092
H NA NA

Table 8: Similarities of SOC-made indicators

Vendor Baseline Proposed Ratio
A 0.7612 0.2033 0.2671
B 0.7429 0.2184 0.2939
C 0.7023 0.1846 0.2628
D 0.7769 0.2522 0.3246
E 0.6309 0.1607 0.2548
F 0.7647 0.2073 0.2710
G 0.5811 0.2167 0.3729
H 0.7647 0.2023 0.2645

Our system improved the AUC of vendor D. We confirmed
whether the improvement was due to change in distributions. Ta-
ble 7 also shows the ratio calculated using representations as fol-
lows:

1
|P IA |

∑
pii ∈P IA maxj ∈I Ā sim(hpii , hj )

1
|SIA |

∑
sik ∈SIA maxl ∈I Ā sim(hsik , hl )

. (10)

Vendor D’s ratio became similar to other vendors’ ones. This shows
that vendor D’s distribution of representations became suitable for
identifying potential primary indicators and improved the AUC of
vendor D. We further investigated whether such representations
were obtained with our representation learning. To this end, we
analyzed the similarities between pairs in the SOC-made indica-
tor dataset. Table 8 shows averages of the similarities between
detection patterns, those between representations, and ratios of
representations’ to detection patterns’ averages. Larger ratios indi-
cate relatively larger increase in similarities between pairs in the
SOC-made indicator dataset. The ratio of vendor D was larger than
those of most other vendors. This shows that vendor D’s distribu-
tion of representations was relatively largely affected by LS . For
this reason, the AUC of vendor D was inferred to be significantly
improved by the optimization of our system.
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