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Abstract—We propose an identification method of sound
source locations in outdoor areas by employing direction-of-
arrival (DOA) measurements obtained from a microphone array.
In determining the locations of sound sources, at least two
microphones must record the same sound. Existing methods
implicitly assume that sound sources are distributed in an area
surrounded by the microphone arrays. They also imply that the
“sound-observable” range of the microphones should exceed the
maximum distance between microphones. In an outdoor field,
however, microphone-array-deployable areas are limited as just
in our field case. That is, those conditions are not always met, and
accurate microphone positions cannot be obtained. By locating
microphone arrays close to each other, the overlapping area
observed by them is enlarged and also their positions can be
accurately measured. However, since most existing localization
methods do not consider sound sources outside the area sur-
rounded by the microphone arrays, they cannot achieve both
of real-time and accurate localization. We propose a method
with less computational complexity while obtaining high level
of accuracy. Simulation results show that the proposed method
can reduce the computation time by 90% while obtaining the
same estimation accuracy as the existing method. Moreover, our
proposed method achieves a good estimation accuracy with an
average error of less than 60 cm in outdoor experiments.

Index Terms—direction of arrival (DOA), microphone array,
wireless sensor network, real-time computation, animal detection

I. INTRODUCTION

Mathematical models inspired by biological mechanisms
help us to develop robust and adaptive systems in the field
of information communications technology [1]. As part of
this interdisciplinary research progress, mathematical model-
ing research into biological systems has been facilitated by
the development of experimental techniques and enhanced
computer performance. Specifically, various studies have ap-
plied swarm intelligence; i.e., cooperative social behavior
that emerges from the autonomous motion of individuals, to
network control [2]. For that purpose, we are now focusing
on the calling behavior of Japanese tree frogs (Fig. 1), in
which only the males produce successive calls to attract female
frogs and advertise their territory to other males. Previous
indoor experiments have demonstrated that two male frogs
can alternate their calls [3], behavior which is known as anti-
phase synchronization. Recently, we discovered another aspect

Fig. 1. Photograph of a Japanese tree frog calling at the boundary of a rice
paddy

in the chorus of male Japanese tree frogs; that is, over a longer
time-scale than anti-phase synchronization, male Japanese tree
frogs collectively switch between a calling state and a silent
state [4], which is a quite interesting phenomenon, possibly
applicable to the energy-efficient information network control
methods.

For development of mathematical models of such calling
behavior of frogs, we need to automatically get more data on
communication behavior among frogs calling in outdoor areas.
For that purpose, it is necessary to determine which frog is in
the calling state and, which frog is not in the calling state, i.e.,
in the silent state. That is, we need to know when and where
individuals interact with each other. The when can be obtained
from recorded sounds using sound separation techniques such
as independent component analysis (ICA); however, it is
difficult to locate frogs in an outdoor environment because
they are typically small and able to conceal themselves.

For resolving the where problem, it is true that many
sound-source localization methods have been proposed, but the
majority exhibit several limitations, when applied to outdoor
areas such as our field experiments [5], [6], [7], [8]. Our
typical case of experiments is shown in Figure 2. Frogs are
distributed in the field, but the placement area of microphones



無線センサーネットワークによるカエルを対象とした
音源位置推定手法の実装
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• ニホンアマガエル
• 体長 20 mm – 45 mm
• 夜行性
• 鳴き声は 2 kHz, 4 kHz の周波数成分にピーク
• 合唱は長ければ 5分程度
• 鳴いている間は移動しない
• 水田の畔で 1 m 程度の間隔をあけて鳴く習性

• 推定精度 30 cm 程度を目標

• 生物のリアルタイムな定位は生物学者に需要
• 希少生物や外来種の生息範囲の把握や捕獲に利用

• カエルの生態への興味
• カエルには鳴き声を逆相同期させる特徴
• カエルのコミュニケーションのモデル化のためにはカエル
のコミュニケーションの様子の記が有効

• カエルの位置をリアルタイムで推定
• 体が小さく保護色であるが、大きな鳴き声
• 水辺に生息しており、観測機器の有線接続は困難

約 1 m

ニホンアマガエル ニホンアマガエルの生息する水田

• 単一音源を対象とした場合
1. 位置推定対象の範囲をグリッドに分割し、各グリッドの
中心位置を計算

2. 各マイクロホンアレイと各グリッドとの角度𝚿を計算
3. コスト関数 σ𝑚=1

𝑀 ሾ𝐴 መ𝜃𝑚, 𝜓𝑚, ሿを最小化する 𝑛を計算
4. 算出したグリッドの位置を推定位置

• 推定精度、計算コストはグリッドの粒度に依存

• 正確な到着角の取得
• 音源が複数の場合

• 環境ノイズ
• 風雨、虫の音

• センサーノード位置の自動取得
• 現在は、センサーノード位置は手作業で測定、入ྙ

• カエルの移動の考慮
• 観測領域の拡大

• 鳴き声が届かないノードを考慮したアルゴリズム

i
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センサーノード

センサーノード 収集情報送信

集約サーバ音声を計測、到着角取得

推定結果
システム概要

[1] Schmidt, Ralph. "Multiple emitter location and signal parameter estimation." IEEE transactions on 
antennas and propagation 34.3, 1986.

• 構成機器とその役割
• センサーノード

• 8 chのマイクロホンアレイを用いて音
• 音した音声を小期間に区切り、各期間について
音声の到着角を計算し、集約サーバへ順次送信

• 到着角の取得にはMUSIC 法 [1]を使用
• 集約サーバ

• 各センサーノードから得た音声の到着角を用いて
音源位置を推定

𝑀 センサーノード数
𝜓𝑚, センサーノード𝑚と

グリッド 𝑛との角度
መ𝜃𝑚 センサーノード𝑚で

観測された音声の到着角
𝐴ሺ𝑋, 𝑌ሻ 𝑋と 𝑌の角距離
𝑝ሺ𝑗ሻ 到着角の組み合わせ 𝑗から

生成した音源位置候補

• コスト関数で重み 𝑤を考慮
• σ𝑚=1

𝑀 ሾ𝑤𝑚𝐴 መ𝜃𝑚, 𝜓𝑚, ሿ

• 重み 𝑤は、得られた到着角の分散
• 信頼できる到着角を重視

• 複数音源への対応が課題 真の到着角

得られた到着角

到着角の分散が小ならば 𝑤 → 1 到着角の分散が大ならば 𝑤 → 0

• 複数音源を対象とした場合
1. 全センサーノードの全到着角の組み合わせ 𝐽を生成
2. 𝑗 ∈ 𝐽について、単一音源の場合の手法を用いて推定位置
の候補 𝐿を生成

3. 各候補 𝐿について、残余 𝑟𝑗 ൌ σ𝑚=1
𝑀 𝐴 መ𝜃𝑚

ሺ𝑗ሻ, 𝜃𝑚 𝑝ሺ𝑗ሻ
2
を

計算
4. 残余の小さいものから推定音源個数を推定位置とする

• 音源個数は一つのセンサーノードが観測した
到着角の最大個数

分散が大きいのか、他のカエル
からの到着角かの判断が困難

実環境で音した
カエルの合唱

Fig. 2. Photograph of a rice paddy where we did experiments

is limited. On the other hand, existing methods assume that the
sound sources are surrounded by microphones, which requires
the sound-observable range of the microphones to exceed
the maximum distance between the microphones. However,
this assumption is typically unavailable in an outdoor setting.
Moreover, because the deployable space for system equipment
is very limited in the outdoor environment, it may be difficult
to locate the devices in their optimal positions.

In this study, we propose and implement a direction-of-
arrival (DOA)-based sound-source localization method. In or-
der to overcome the aforementioned limitations, our proposed
method allocates microphones closer to each other than previ-
ous methods; e.g., on the four corners of a square with sides
measuring 100 cm side length. The method then estimates
locations outside the area surrounded by the microphones.

We implement a localization system with wireless devices
connecting with a microphone to reduce the deployment cost.
This brings advantages that time synchronization is easy
and that the installation of devices can be flexibly changed.
Besides, by locating the microphones near to each other, our
method has three significant advantages: (1) it can accurately
measure the positions of installed microphones, (2) it can
capture the majority of generated sounds with all microphones,
which is a key requirement of sound-source localization meth-
ods, and (3) the system equipment requires less space for
deployment.

Reference [9] introduces wireless acoustic sensor net-
works (WASNs) and their application capability in acoustic
monitoring and the authors of [10] propose the sound-source
localization method for WASNs. In this method, a recursive al-
gorithm for reducing the computational cost is adopted. How-
ever, when the sound source is outside the area surrounded
by the microphones, the position estimation accuracy is lower
compared with the one without the recursive algorithm. Of
course without the recursive algorithm, the calculation time
increases. We extend this method for identifying the location
of sound sources outside the area surrounded by the micro-
phones with less computational complexity while obtaining
high level of accuracy. We last note that our proposed method
can be used in other applications, such as robot audition, auto-
matic meeting processing, and sound-source tracking, but it is
especially useful in the outdoor sound monitoring applications
where the device-installation has various restriction [11].

The remainder of this paper is organized as follows. In Sec-
tion II, we describe the sound-source localization method. The
estimation accuracy of our method is evaluated in Section III
and Section IV presents the results of outdoor experiments.
Finally, we present our conclusions in Section V.

II. GRID-BASED LOCALIZATION IN THE OUTDOOR
ENVIRONMENT

A. Grid-based Localization Method
The method of [10] divides an area into N equal-sized cells.

The cell whose direction from the microphones most closely
matches the estimated DOA is then identified. The localization
algorithm is as follows:

1) Discretize the area of interest into N cells and calculate
the coordinates of the center of each cell.

2) Calculate the (M ×N) matrix Ψ whose elements ψm,n

give the angle from the mth microphone array to the nth
cell center (M is the number of microphone arrays).

3) Define a cost function Cost that represents the degree
of coincidence between the true DOA and the calculated
angle in (1)

Cost(n) =
M∑

m=1

[
A
(
θ̂m,ψm,n

)]2
(1)

where θ̂m is the DOA obtained from the mth sensor
node.

4) Find the cell that minimizes the cost function, that is,
n∗ = arg minCost(n).

A(X,Y ) is the angular distance between X and Y . This is
given by

A(X,Y ) = 2 sin−1 | exp(jX)− exp(jY )|
2

. (2)

In this method, the resolution of the grid, which depends
on the number of cells, N , affects the estimation accuracy.
Increasing N will decrease the estimation error but increase
the computational cost. Therefore, the authors of [10] proposed
a recursive search method for the cell that has minimum Cost.

This localization method can deal with multiple sources
given the correct number of sound sources. To determine
the positions of multiple sources, the authors of [10] used
a two-step procedure. First, the set Q containing all possible
combinations of DOAs is calculated. Second, for each cell,
Cost is calculated using a combination of DOAs, denoted by
q (q ∈ Q). The S cells that have the sth minimum Cost are
selected as the source locations (s = 1, 2, · · · , S), where S is
the highest number of DOAs detected by all microphones.

B. Extension of method to outdoor localization
Here, we describe the extension of the grid-based method

proposed in [10]. When we use the original grid-based lo-
calization method to estimate the positions of sound sources
outside the area surrounded by the microphone arrays, a much
higher grid resolution is required to avoid the estimation error.
However, this involves a greater computational cost, which
results in a longer calculation time. With the recursive method
proposed in [10], although the calculation time can be reduced,
the estimation accuracy might decrease. In our method, we first
calculate a directional cost, Costd, for each direction from the
center of the microphone arrays. Then, the direction that has
the minimum Costd can be obtained. The localization server
calculates the Cost defined by Eq.(1) for each cell whose
center is close to the line running from the center of the
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Fig. 3. Schematic showing the method for reducing the number of cells to
be searched

microphone arrays according to this direction. In the following,
we describe the proposed method for an example with only
one sound source.

Our proposed method is divided into two steps. First, we
estimate the direction in which the sound source exists and
then we perform grid-based sound-source localization.

Let θ̂ be an M × 1 vector in which each element θ̂m is the
DOA estimated by the microphone array m. Here, without
loss of generality, we can assume that the coordinates of the
center of the microphone arrays describe the origin. First, we
estimate the direction from the origin to the sound source.
To estimate the sound-source direction, we use the sum of
the angular distances between a vector from the origin to the
direction θs and the estimated DOAs of each sensor node. This
is because incorrect cells in the grid-based localization for an
outside area surrounded by a microphone array often have the
same direction from the origin as the true cell.

The cost of the sound-source direction for each θs (0 ≤
θs < 2π) is

Costd(θs) =
M∑

m=1

[
A
(
θ̂m, θs

)]2
(3)

where A(X,Y ) is the angular distance defined in (2).
Then, we can estimate the direction of the sound source as

follows:
θ∗ = arg min

θs

(Costd(θs)). (4)

For the second step, the grid-based sound-source estimation
is conducted. We start by dividing the area of interest into
cells with side lengths of x; sets of cells are denoted as
P . The value of x affects the accuracy and computational
cost of our method and is adjusted to meet the required
estimation accuracy. Next, we determine the cell set P ′ that
intersects with a vector whose starting point is the origin and
whose direction is θ∗ (Fig. 3). Accordingly, the computation
cost of our proposed algorithm is O(

√
N), while that of the

original grid-based method is O(N) (or O(log(N)) if the
above mentioned recursive approach is used). Reducing the
computational cost is important for localizing multiple sound
sources because, in most techniques, this requires repeating
the calculation of single sound source localization.

We use the angular distance function (2) to obtain the cost in
each direction. To obtain θ∗ using an algorithm, we discretize
θs by equally dividing the angle of 2π by Nθ. To achieve
high accuracy, we must divide θs finite, which increases the
computational cost. Therefore, we use a recursive algorithm.

TABLE I
SIMULATION PARAMETERS

Parameters Value Description

N
100× 100 Number of cells

1000× 1000
M 4 Number of microphone arrays
Nθ 360/0.05 θs resolution

First, we start with a coarse angle then obtain θ1 and θ2, which
are the minimum and next-lowest Costd values, respectively.
Once θ1 and θ2 have been determined, we repeat this step in
the range θ1 ≤ θs ≤ θ2 (here, we assume that θ1 < θ2). This
results in the desired direction and also reduces the search
cost.

III. SIMULATION ANALYSIS OF LOCALIZATION ACCURACY

In this section, we evaluate the estimation accuracy of the
proposed method by comparing it with the original grid-
based method with and without a recursive approach using
a computer simulation for clarifying the characteristics of our
method. The estimation accuracy is defined as the localization
error that reflects the distance between the true and estimated
positions of a sound source. In the simulation, we also consider
the case where a DOA error occurs. We summarize the
simulation parameters of the evaluation in Table I.

In the simulation, the observation area is an A× A square
and the corners of the area are assigned the coordinates (0, 0),
(0, A), (A,A), and (A, 0). Here, we set A as 10 m. This area
is divided into N square cells; that is, each cell is a square with
sides measuring A/

√
N . A sound source is randomly placed

in the observation area according to a uniform distribution.
Microphone arrays are placed at (−1,−1), (−1, 0), (0, 0), and
(0,−1). In the grid-based method with a recursive approach,
the observation area was divided into 2× 2 square cells, and
the search was performed recursively until the side length of
the cell became less than A/

√
N .

We assume that the DOA error follows the same uniform
distribution regardless of the distance between the microphone
array and the sound source when the microphone array can
obtain a sufficient SNR. This assumption is based on our
actual outdoor measurements. Note that, in the DOA estima-
tion method, an estimated DOA is chosen from predefined
discrete angles [12]. Therefore, we assume that a DOA error
of m, denoted by eDOA

m , follows the discrete uniform distri-
bution whose probability density function P (eDOA

m = k) is
1/(eDOA + 1), where k = 0, 1, · · · , eDOA.

A. Simulation Results
First, we present the estimation accuracy of our proposed

method without DOA errors in Fig. 4 and Table II. In the
figure, we show the cumulative distribution function (CDF) of
the estimation error in the proposed method (red line), the orig-
inal grid-based method (blue line) and the grid-based method
with a recursive approach (green line) when N = 100× 100.
Since there is no significant difference between the results of
N = 100 × 100 and N = 1000 × 1000, we only show the
figure of the former result.

The localization accuracy of the proposed method was the
same as that of the original grid-based method for both average
and maximum error, and it was shown that the localization
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Fig. 4. Localization-error distribution without DOA errors

TABLE II
LOCALIZATION ERROR WITHOUT A DOA ERROR

N
Error (m)

Average Max

Original 100× 100 0.142 1.007
1000× 1000 0.092 0.652

Original (recursive) 100× 100 1.790 8.538
1000× 1000 1.763 8.330

Proposed 100× 100 0.141 0.987
1000× 1000 0.093 0.636

can be performed with a higher accuracy than the grid-based
method with a recursive approach. In the grid-based method
with a recursive approach, when the size of grid division is
rough, the sound source does not necessarily belong to the
cell with the minimum Cost. Thus, although the computation
cost is smaller than that of the original one, the localization
accuracy becomes lower.

Next, we evaluate the localization error by considering DOA
errors. We set eDOA to 1 and 2.

Figure 5 and Table III show the results of simulating DOA
errors. Our proposal showed almost the same accuracy as that
of the original grid-based method. And both of the methods are
superior to the recursive method in terms of the localization
accuracy. Note that in all methods, the localization error
increases when the DOA error was given, but the proposed
method showed slightly better performance than that of the
original grid-based method.

As shown in Section II, the computation cost of our pro-
posed algorithm, the original grid-based method, and the grid-
based method with a recursive approach are O(

√
N), O(N),

and O(log(N)), respectively. Here, the calculation time on
the Laptop PC used for the localization of one sound source
is evaluated. Table IV shows the average calculation time of
these methods when changing the value of N . As shown in
Table IV, when N = 10, 000, there is almost no difference
in the calculation time among the three methods, but when
N = 1, 000, 000, the original method takes about 0.4 s for
localization. In the case of multiple sound-source localization,
as the number of DOA combinations increases, the calculation
time for localizing them increases. Then, it can be said that
our proposed method is more advantageous than the original
from the viewpoint of localization accuracy and calculation
time.
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TABLE III
LOCALIZATION ERROR INCLUDING A DOA ERROR

N eDOA
Average RMSEerror (m)

Original
100× 100

1 0.163 0.404
2 0.293 0.541

1000× 1000
1 0.252 0.71
2 0.399 0.632

Original (recursive)
100× 100

1 1.716 1.310
2 1.715 1.309

1000× 1000
1 1.687 1.299
2 1.670 1.292

Proposal
100× 100

1 0.168 0.410
2 0.291 0.539

1000× 1000
1 0.157 0.397
2 0.288 0.537

TABLE IV
CALCULATION TIME

N = 1002 N = 5002 N = 10002

Original 0.039 s 0.124 s 0.379 s
Original (recursive) 0.038 s 0.036 s 0.038 s

Proposal 0.038 s 0.037 s 0.038 s

IV. OUTDOOR EXPERIMENT

This section presents the experimental results of the pro-
posed method conducted in an outdoor open area. We con-
ducted outdoor experiments to clarify what performance can
be achieved compared to the ideal performance obtained in
the previous section.

A. Devices
First, we describe the devices used in our experiments. To

obtain the DOA of the sound source, we use an 8-channel
microphone array with a height of 12 cm (TAMAGO-03,
System in Frontier Inc. [13]). Each TAMAGO-03 is connected
to a Raspberry Pi 3 Model B with a USB cable (Fig. 6), on
which we implemented the MUSIC [12] method to calculate
the DOA. The TAMAGO-03 digitally converts an analog
sound signal as 24-bit amplitude information at a sampling
frequency of 16 kHz. The Raspberry Pi is equipped with
a wireless LAN adapter (IEEE 802.11b/g/n) as standard. In
the experiment, all Raspberry Pis are wirelessly connected
with each other, constituting an IEEE 802.11 ad-hoc network.
Sound-source localization is conducted on a laptop computer
that collects DOAs from all Raspberry Pis; thus, the lap-top
also belongs to the ad-hoc network. Table V summarizes the
specifications of these devices.



Fig. 6. Raspberry Pi 3 Model B with an 8-channel microphone array
(TAMAGO-03)

TABLE V
SPECIFICATION OF DEVICES

Raspberry Pi 3 Laptop PC
Clock frequency 1.2 GHz, 4 core 1.9 GHz, 2 core

RAM 1 GB 8 GB
OS Raspbian stretch Windows 7

B. Implementation
By connecting the microphone arrays with each other by

wireless communication, it is easy to place and carry the
devices. Localization is conducted according to the following
steps.

1) Time synchronization of Raspberry Pis and the laptop
PC is performed by using the network time proto-
col (ntp) via wireless communication.

2) Each Raspberry Pi records 8-ch sound data received
from a connected microphone array for T s.

3) Each Raspberry Pi divides the sound data into ∆ s and
estimates a DOA for ∆-second sound data.

4) Each Raspberry Pi transmits the estimated DOAs to the
laptop PC.

5) The laptop PC conducts the proposed grid-based local-
ization method utilizing the received DOAs.

All programs for estimating the DOA and sound-source
position are written in C++ language. As mentioned above,
DOAs are estimated using the MUSIC method. We set ∆ to
0.5 so that it is long enough to record the bout length of a
Japanese tree frog of about 0.2 s. For avoiding the influence
of a temporal noise, we set T to 30 and each Raspberry Pi
calculates the mode of generated DOA estimates. Note that
if ∆-s sound data has a very low sound pressure level, the
Raspberry Pi ignores the data and does not conduct DOA
estimation. We used the squared amplitude of the recorded
sound as the threshold.

To estimate a DOA by the MUSIC method, an array
manifold matrix is required, which most closely fits the signal
subspace of a microphone array. The array manifold matrix
of TAMAGO-03 is provided by HARK open source robot
audition software [14]. The DOA estimation resolution is
5◦ when using the original array manifold matrix obtained
from [14]. We use an interpolation method proposed in [15],
which can interpolate the array manifold matrix to any degree
in the time domain and frequency domain. According to this
interpolation method, the Raspberry Pi estimates the DOA to
an accuracy of 1◦. Note that a higher interpolation resolution
increases the size of the array manifold matrix file.
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Fig. 7. Position of sound sources and microphone arrays

C. Experimental Results

In order to evaluate the accuracy of our localization system,
we conducted localization experiments in an outdoor area
with no obstacles near the sound source or devices. The true
positions of the sound source had to be obtained in advance;
however, it is difficult to measure their accurate positions in
an outdoor environment. Therefore, we used a laser distance
meter with an error of approximately 1 mm (Leica DISTO
D210 [16]) and calculated the positions of the sound source
by triangulation. It was also necessary to calibrate the direction
of the microphone arrays in advance, using several localization
results. According to the results from section III, localization
accuracy is higher when the sound source is located near to the
microphone arrays; therefore, for the calibration, we installed
the sound source close to the microphone arrays.

We installed microphone arrays as shown in Fig. 7. For
the sound source, we used a loud speaker that replayed the
advertisement calls of a Japanese tree frog. The maximum
sound pressure level of the replay was approximately about
80 dB. The localization parameters were the same as those in
the simulation shown in Table I.

We show the results in Table VI. The average, maximum,
and minimum values of the localization error are 0.57 m,
1.28 m, and 0.16 m, respectively. Note that when we can obtain
the true DOA estimates, these values are 0.13 m, 0.38 m,
and 0.06 m, respectively. Regarding computational time, DOA
estimation takes approximately 0.07 s for a 0.5-s 8-ch sound
data and location estimation takes approximately 0.1 s.

In the experiment, the estimated DOAs include an average
error of 1.8◦ and a maximum error of 4◦. These errors are
caused by various factors, such as sound reverberation, the
position error of the microphone arrays, and the sound source.
Specifically, the Raspberry Pi connected to the microphone
array has a strong influence on the DOA estimation error,
likely due to sound reflection. For more accurate localization,
increasing the number of microphone arrays is a simple and
robust solution. This is easily achieved because they are
connected by wireless communication.

V. CONCLUSION

In this study, we proposed a sound-source localization
method using a wireless microphone-array network for the
outdoor environment. There is a possibility that the deployable
space for system equipment is very limited in an outdoor
environment. Then, the proposed method allocates microphone
arrays close to each other, which also reduces the position



TABLE VI
RESULT OF LOCALIZATION EXPERIMENT

Position of sound source Estimated result Localization error (m)x y x y
0.31 4.01 0.425 4.125 0.16
2.34 3.98 2.475 4.875 0.91
3.71 3.76 3.325 3.675 0.40
0.40 6.48 0.575 6.075 0.45
2.46 6.30 2.325 6.225 0.15
4.13 6.08 3.925 6.225 0.25
0.36 8.50 0.525 8.325 0.24
2.37 8.38 2.125 7.475 0.98
4.05 7.73 4.125 8.625 0.90
1.72 11.70 1.775 10.425 1.28

error of the microphone arrays, and estimates the location
of a sound source for an outside area surrounded by them.
Simulation results showed that the proposed method can
estimate the position of a sound source with an average error
of 0.29 m for a 10 m × 10 m area when errors related to
the DOA estimation were considered. At the same time, it can
reduce the calculation time by 90% compared with a grid-base
localization method. Therefore, the method provides novel
advantages without significantly reducing the accuracy of the
original grid-based method. However, the method suffers from
a low estimation accuracy with increasing DOA errors as
we showed in outdoor experiments. In the experiments, the
average localization error of our proposed method was 0.57 m.
In order to improve the localization accuracy, it is necessary
to improve DOA estimation, and also it is effective to use
more microphone arrays and to appropriately determine their
installation position. Furthermore, it is essential to realize the
localization of multiple sound sources. These are our future
work.
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