System and application performance of function placement strategies for virtualized mobile fronthaul / backhaul networks

<u>Go Hasegawa (</u>Tohoku Univ. JAPAN) Rina Yamasaki and Masayuki Murata (Osaka Univ., JAPAN)

Mobile fronthaul / backhaul integrated networks

- Network and computing resources are shared by fronthaul network and backhaul network functions based on SDN/NFV technologies
 - Better resource utilization, power consumption and application performance can be expected

Mobile fronthaul / backhaul integrated networks

- Network and computing resources are shared by fronthaul network and backhaul network functions based on SDN/NFV technologies
 - Better resource utilization, power consumption and application performance can be expected

Research motivation and objectives

 Effect of integrated network has been discussed, but almost NO quantitative performance evaluation is found in existing research

- Research objectives:
 - Reveal the advantage of mobile fronthaul / backhaul integrated network by quantitative evaluations
- Methods:
 - Construct mathematical model for performance evaluation of mobile fronthaul / backhaul integrated networks
 - Conduct numerical evaluation of the analysis model
 - Discuss the effect of function placement on power consumption of the network and application performance (latency and packet loss rate)

Network model

- Node
 - Has interface(s) to connect other nodes, constructing network
 - Has processing unit to execute network functions
- Processing unit
 - vBBU, vEPC, eNodeB, MME, Application servers, …
 - A virtual machine is required for executing network functions
- Network Interface
 - Makes point-to-point or point-to-multipoint link to other node(s)
- Link
 - Has bandwidth and propagation delay between interfaces

Power consumption model

[10] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, A Power Benchmarking Framework for Network Devices, pp. 795–808. Springer Berlin Heidelberg, May 2009.

Application traffic performance

- End-to-end Packet loss rate
 - Calculated from packet loss rates at network interface on the path between a UE and an App server
 - M/M/1/K queueing model is applied
- End-to-end latency
 - Sum of propagation delays, node processing time, and queueing delay at network interfaces
 - Propagation delays: Calculated from link distances on the path
 - Node Processing time: Calculated by M/G/1/PS queueing model
 - Queueing delay: Calculated by M/M/1/K queueing model

Numerical evaluation environment

- Straight-line topology with four sites
 - Cell site, Central office, Data center, and Internet
- vBBU, vEPC, Application server are placed to one of the sites
- Upward traffic from a UE to an Application server
 - Packets are processed at vBBU, vEPC, and Application server
- Performance evaluation metric
 - Power consumption of whole system
 - Application traffic performance
 - End-to-end packet loss rate
 - End-to-end latency

Evaluation scenario

- Two applications on a UE generate traffic to application servers
 - App1: 1Mbps
 - App1: 1 100Mbps
- Assess the effect of placements of network functions

Pattern	Cell site	Central office	Data center	Internet
1		vBBU	vEPC1 vEPC2	App1 Server App2 Server
2		vBBU	vEPC1, vEPC2, App1 Server	App2 Server
3		vBBU, vEPC1, App1 Server	vEPC2	App2 Server
4	vBBU, vEPC1, App1 Server		vEPC2	App2 Server

Evaluation results (1): Placement of App1 server

- Power consumption slightly increases by moving App1 functions closer to UE
 - The number of VMs required for network functions increased
- End-to-end latency of App1 greatly reduced, while the performance of App2 remains almost unchanged

Pattern	Cell site	Central office	Data center	Internet
1		vBBU	vEPC1, vEPC2	App1 Server, App2 Server
2		vBBU	vEPC1, vEPC2, App1 Server	App2 Server
3		vBBU, vEPC1, App1 Server	vEPC2	App2 Server

Evaluation results (2): vBBU placement

- Power consumption decreases by placing vBBU at cell site
 - Network traffic between cell site and central office is significantly reduced
- End-to-end latency of App1 greatly reduced by placing all functions at cell site, without sacrificing App2 performance
 - Requires large processing capacity at cell site

Pattern	Cell site	Central office	Data center	Internet
1		vBBU	vEPC1 vEPC2	App1 Server App2 Server
4	vBBU, vEPC1, App1 Server		vEPC2	App2 Server

Conclusions and future work

- Performance analysis model for mobile fronthaul / backhaul integrated networks
- Numerical examples for assessing placement strategies of network functions
 - Power consumption and application performance are significantly dependent on network function placement
- Future work
 - Evaluations for large-scale networks
 - Formulation of function placement problem based on the analysis model