
applied
sciences

Article

SDN-Based Control of IoT Network by Brain-Inspired
Bayesian Attractor Model and Network Slicing

Onur Alparslan * , Shin’ichi Arakawa and Masayuki Murata

Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita,
Osaka 565-0871, Japan; arakawa@ist.osaka-u.ac.jp (S.A.); murata@ist.osaka-u.ac.jp (M.M.)
* Correspondence: a-onur@ist.osaka-u.ac.jp

Received: 31 July 2020; Accepted: 17 August 2020; Published: 20 August 2020
����������
�������

Featured Application: A software defined networking (SDN) application based on a brain-inspired
Bayesian attractor model for identification of the current traffic pattern for the supervision and
automation of Internet of things (IoT) networks that exhibit a limited number of traffic patterns.

Abstract: One of the models in the literature for modeling the behavior of the brain is the Bayesian
attractor model, which is a kind of machine-learning algorithm. According to this model, the brain
assigns stochastic variables to possible decisions (attractors) and chooses one of them when enough
evidence is collected from sensory systems to achieve a confidence level high enough to make a
decision. In this paper, we introduce a software defined networking (SDN) application based on
a brain-inspired Bayesian attractor model for identification of the current traffic pattern for the
supervision and automation of Internet of things (IoT) networks that exhibit a limited number of
traffic patterns. In a real SDN testbed, we demonstrate that our SDN application can identify the
traffic patterns using a limited set of fluctuating network statistics of edge link utilization. Moreover,
we show that our application can improve core link utilization and the power efficiency of IoT
networks by immediately applying a pre-calculated network configuration optimized by traffic
engineering with network slicing for the identified pattern.

Keywords: internet of things; SDN; Bayesian; machine learning; brain

1. Introduction

In conventional networks, networking devices are basically composed of a data plane,
which handles the processing, modifying, and forwarding of packets, and a control plane, which decides
the port when forwarding the data. Software defined networking (SDN), which decouples the data and
control planes while centralizing the control, enables the configuring of the data plane of networking
devices by standards-based and vendor-neutral protocols. In an SDN network, a centralized SDN
controller manages the control plane of all networking devices like a brain. This centralized
control enables fast and agile supervision and automation of networks, which can greatly reduce
OPEX/CAPEX and increase the network efficiency along with the quality of experience (QoE) of the
users. Moreover, the centralization of the control plane enables the dynamic creating and controlling
of virtual networks by slicing a network with an SDN controller [1]. Furthermore, SDN allows
further administrating of the policies of the SDN controller by using applications via application
programming interfaces (APIs). In the past, to add a new networking function like a new routing
protocol, the network administrators usually had to buy specialized hardware or proprietary software
developed by the vendor of the networking hardware in the network. However, SDN enables anyone
to develop applications that can replace or extend the functionalities implemented in the firmware of

Appl. Sci. 2020, 10, 5773; doi:10.3390/app10175773 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0858-3047
https://orcid.org/0000-0002-9376-977X
https://orcid.org/0000-0002-4168-2875
http://www.mdpi.com/2076-3417/10/17/5773?type=check_update&version=1
http://dx.doi.org/10.3390/app10175773
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 5773 2 of 17

networking devices. Therefore, many novel applications for supervision and automation of networks
have been introduced by third party developers.

Recently, networks have become more complex with the deployment of new technologies like
5G, Internet of things (IoT), etc. This increased complexity makes it more difficult to manage and
optimize the networks manually [2]. While SDN makes the configuration of networks much easier,
it requires rules set up by external supervision for managing a network. Machine learning (ML)-based
frameworks are becoming popular for the supervision and automation of networks because they can
identify anomalies in the network, project traffic trends, and make smart decisions. SDN has become
a popular platform for applying ML algorithms to networks. As SDN decouples and centralizes the
control plane, ML applications on SDN can receive and process data from many networking devices,
which can increase the accuracy of identification of problems compared to running the algorithm
in a stand-alone networking device with only local information. Moreover, the solutions proposed
by ML can be applied to all network devices in the network in real-time by the SDN controller [2].
Furthermore, SDN provides a northbound API for applications, which allows the running of the ML
algorithm on specialized external hardware instead of the SDN controller or the networking devices.
Therefore, many ML-based techniques for SDN have been proposed in the literature [2,3].

Traffic engineering can prevent congestion and increase the quality of service (QoS) in dynamic
networks. However, traffic engineering methods usually require up-to-date information about the
traffic matrix. SDN provides some tools for collecting traffic statistics from devices, but estimating the
traffic matrix in a large-scale network is still challenging. There are many proposals in the literature for
estimating the traffic matrix, but they have important trade-offs like training a neural network for a
long time, capturing traffic from the interfaces, high bandwidth or CPU usage etc. [4–7]. The methods
with low error rate have tradeoffs like training a neural network for a long time, capturing traffic from
the interfaces, high bandwidth or CPU requirements etc.

Unlike the traditional IP networks, where the traffic can vary widely, many IoT networks are only
composed of sensors that produce traffic with highly discrete patterns. For example, many sensors
switch between on/off duty cycles. When they are on, many sensors produce traffic at a mean
rate. For example, many audio and video sensors apply constant bit rate (CBR) or average bitrate
(ABR) encoding. CBR ensures that the output traffic rate is fixed, while ABR ensures that the output
traffic achieves a predictable long-term average bitrate. The sensors may choose a bitrate depending
on the time or the environment conditions. As the traffic sources have a limited number of mean
bitrate options, the IoT networks set up with such sensors exhibit a limited number of mean traffic
matrices, which can be determined before running the network. To prevent congestion and increase
the QoS in IoT networks like the surveillance networks that exhibit a limited number of traffic matrices,
we propose an SDN-based traffic engineering framework that uses a different methodology for
estimating the traffic matrix. Instead of the traditional way calculating a traffic matrix analytically,
we propose identifying the latest traffic matrix from a list of possible traffic matrices that the IoT
network may exhibit. We use only the utilization statistics of a limited set of edge links, which can
be easily received via SDN. Our method has a number of advantages. First of all, an identification
may be simpler with less bandwidth and processing requirements than calculating a traffic matrix.
Moreover, the identification is a direct solution. If the identification is correct, it gives the exact mean
traffic matrix directly. On the other hand, the traditional matrix calculation methods usually do not
give the exact solution because of the noise and the variations in ABR traffic, so a calculated traffic
matrix may deviate from all possible traffic matrices that the IoT network may exhibit.

To the best of our knowledge, ours is the first study that tries to identify the traffic matrix from
a list of possible traffic matrices. For the identification, we investigated the feasibility of applying a
brain-inspired Bayesian attractor model (BAM), which is an ML algorithm that models the decision
making process of the brain [8]. Previously, we had applied a BAM for virtual network reconfiguration
of optical networks and showed that it can decrease the number of virtual network reconfigurations to
find a virtual network suitable for the current traffic situation [9]. In this work, we applied a BAM for

Appl. Sci. 2020, 10, 5773 3 of 17

identifying the current traffic pattern by checking the utilization statistics of edge links. The reasons
for choosing BAM are

• Unlike the neural network proposals in the literature, BAM does not require training.
• Unlike the proposals that require partial measurements of traffic matrix or flows, BAM does not

need prior measurements
• BAM is an online algorithm.
• BAM may open the way towards more autonomous networks by adding a more human-like

artificial intelligence to the network.

As for the identification time, there may be algorithms that can do identification in fewer steps
than BAM, but the experiments in this paper show that BAM can identify the traffic patterns in a
reasonable time fast enough for traffic engineering purposes. When a new traffic pattern is identified,
our framework optimizes the network by applying a network configuration that is pre-calculated
for the identified traffic pattern. Moreover, our framework supports network slicing, which can
greatly improve the QoS and security in heterogeneous IoT networks by applying slice-specific traffic
engineering and policies [10,11]. We implemented our framework as an SDN application and evaluated
it on an IoT testbed. The experiments reveal that our SDN framework can correctly identify a changing
traffic pattern by BAM and increase the QoS and the energy efficiency by applying an optimized
configuration employing network slicing and traffic engineering.

The paper is organized as follows. Section 2 presents the related works in the literature.
Section 3 presents the Bayesian attractor model. Section 4 explains the architecture of our framework.
Section 5 introduces the testbed. Section 6 explains the experiment scenario and presents the experiment
results. Section 7 concludes the paper.

2. Related Work

The traditional way of measuring a traffic matrix is using NetFlow or sFlow, which collects IP
traffic statistics on all interfaces of a router or switch. While this direct measurement gives precise
information on the traffic matrix, it has a high cost because it consumes high amount of resources.
Therefore, to estimate the traffic matrix many indirect methods, which apply gravity and tomography
models, and limited direct methods, which run NetFlow/sFlow for a limited time or on a limited
number of switches, and hybrid methods, which use a combination of limited direct and indirect
methods, are proposed in the literature.

The initial works [12–14] on traffic matrix estimation assume that the entries in the traffic matrix
have a Gaussian or Poisson distribution. They are called statistical models. However, it is shown the
traffic characteristics change with the new network applications and these models do not capture the
spatial and temporal correlations, so they result in a high estimation error [15]. Roughan et al. [16]
proposed using a gravity model, which assumes that the traffic from an ingress node to an egress node
is proportional to the ratio of traffic exiting the network from the egress node relative to all traffic
exiting the network. Zhang et al. [17] enhanced the gravity model with tomographic methods and
called the new method as tomogravity method. The tomogravity method improves the gravity method
by making use of the routing table and core link utilization information. However, Eum et al. [18]
showed that the assumptions of tomogravity method are violated easily in real practical networks,
which cause unacceptably high errors.

Lakhina et al. [19] proposed a method based on principal component analysis (PCA). PCA is a
dimension reduction technique that reduces the data to a minimum set of new axes while minimizing
information loss. Lakhina et al. [19] found that when the aggregated traffic between edge nodes (flows)
are examined over long time scales, the flows can be described by 5 to 10 common temporal patterns
called eigenflows by PCA. They proposed doing partial measurement of flows (days to weeks) to
capture spatial correlations and estimating the traffic matrix later based on the calculated eigenflows.
A Kalman filter-based estimation using the partial measurement of flows to capture both spatial and

Appl. Sci. 2020, 10, 5773 4 of 17

temporal correlations is proposed in Soule et al. [20] for both estimation and prediction of the traffic
matrix. Papagiannaki et al. [21] proposed a matrix estimation a method using partial measurements
with fanouts, which is the fraction of total traffic sourced at one node and destined to each of the
other egress nodes. Performance comparison of PCA, Kalman fanout and previous statistical methods
shows that Kalman, PCA and fanout methods yield results much better than previous approaches [22].
Zhao et al. [23] estimates the traffic matrix by statistically correlating the link loads and the partial
measurement of flows. Nie et al. [24] proposed a traffic measurement method based on reinforcement
learning, which tries to decrease the load of routers and the burden on the network by activating
NetFlow/sFlow on a subset of interfaces of a small number of routers. It uses Q-learning to select
the interfaces to collect most of the network traffic data. These methods require measuring the traffic
matrix by flow monitors like NetFlow/sFlow for days to weeks, which may be difficult even in a
subset of interfaces due to the cost of measurement, communication, and processing [25].

The introduction of SDN provided built-in features that can be used for estimating the traffic
matrix. SDN applies a flow-based control to the network. The SDN switches keep a flow table,
where each entry in the table is composed of a matching field, a destination port and a counter
for traffic statistics. The SDN controller can receive the flow statistics periodically or on-demand
from the switches. In theory, it is possible to setup a different rule for each flow in the flow table
to measure the individual flow statistics to calculate the traffic matrix. However, the flow table is
usually stored in a fast ternary content-addressable memory (TCAM), which has a small capacity due
to high cost. Therefore, it is not possible to enter an individual entry for each flow when there are
many flows. Moreover, periodically sending the statistics of each flow in the network to the SDN
controller may use too much bandwidth in a flow-rich network. Furthermore, frequently querying the
switches for a estimating a more accurate traffic matrix imposes a high load on the switches. The initial
works OpenTM [26] and DCM [27] tried to decrease the load on the switches by evenly distributing
the statistic queries among all the switches in the network, for estimating the traffic matrix using
SDN. However, they keep track of statistics of each flow on a switch without considering the TCAM
limitations, so they have a scalability problem when the number of flows is large. To overcome the
limitations of TCAM, iSTAMP [28] proposed using aggregated flows and the most informative flows
for the traffic matrix estimation. It applies a sampling algorithm to select only the most informative
flows to monitor by using an intelligent Multi-Armed Bandit based algorithm. Similarly, refs. [29–31]
proposed methods for the aggregation and selection of flows to estimate traffic matric by considering
the TCAM limitations. However, the flows selected by these methods may not always give no new
information about the traffic matrix. Tian et al. [32] proposed a scheme that guarantees that every
selected flow adds new information for estimating the traffic matrix, which improves the TCAM
utilization efficiency and the accuracy of the estimation technique.

There are some neural network-based methods proposed for the traffic matrix estimation.
Jiang and Hu [33] proposed a back-propagation neural network for estimating the traffic matrix by
training the neural network using the link loads as the input and the traffic matrices as the output.
However, Casas and Vaton [34] stated that the methods based on statistical learning with artificial
neural networks like in [33] are unstable and difficult to calibrate, so proposed using a random neural
network instead. Zhou et al. [35] proposed Moore-Penrose inverse based neural network approach
with using both the routing matrix and the link loads as the input. Nie et al. [36] proposed using
deep learning and deep belief networks and showed that their method performs better than PCA.
Emami et al. [37] proposed a new approach, which considers a computer network as a time-varying
graph. It estimates the traffic matrix by a convolutional neural network estimator using link load
measurements and network topological structure information provided by the time-varying graph.

There are some proposals that target specific network types. Huo et al. [38] proposed a traffic
matrix estimation method for IoT networks, which require a different traffic measurement method
from traditional Internet network traffic measurement, because the large amount of data in some IoT
networks is very short and time sensitive. Their method measures the coarse-grained traffic statistics of

Appl. Sci. 2020, 10, 5773 5 of 17

flows and fine-grained traffic of links directly by OpenFlow and uses a simulated annealing algorithm
to estimate the fine-grained network traffic. Nie et al. [39] proposed using convolutional neural
networks in VANET, where the topology changes rapidly due to the quick movement of vehicles.
Hu et al. [40] proposed a method based on network tomography for data center networks, where the
traffic flows have totally different characteristics than traditional IP networks and there are large
number of redundant routes that further complicates the situation.

While there are many methods in the literature that can calculate the traffic matrix in a short
time, most of them have requirements like partial measurement of flows, training a neural network,
high processing power etc. For IoT networks that exhibit limited set of traffic matrices, identification of
a traffic matrix may be simpler than trying to calculate it. In this work, we investigated the feasibility
of applying a brain-inspired Bayesian attractor model (BAM) and showed that it can identify the traffic
in a reasonable time without such requirements.

3. Bayesian Attractor Model

Bayesian inference-based approaches are widely used in modelling the brain’s cognitive abilities
and human behaviors when making decisions. They can model the brain’s ability to extract perceptual
information from noisy sensory data. The BAM combines the concept of Bayesian inference and
attractor selection, which allows changing decisions based on the changes in real-time noisy sensory
data and computes an explicit measure of confidence that can be compared numerically when making
decisions. During the accumulation of data by observations, the brain updates the posterior probability
of attractors. This part of the model is called the cognitive process. Then, the brain makes a decision
among the attractors when the posterior probability (confidence) of a decision (attractor) is high
enough. This part of the model is called the decision-making process. Bitzer et al. [8] presents a
detailed description of the BAM. Here, we present the basics of the BAM as follows:

The BAM has several fixed points φi, each of which corresponds to a decision alternative i with
the long-term average ~µi. The decision state is stored in variable~z, which is updated according to an
internal generative model. When a new observation is made at time t, the BAM calculates the posterior
distribution of the state variable~zt denoted by p(~zt | ~X∆t:t) using the observations until time t denoted
by ~X∆t:t where ∆t is the step size of the observation time.

The BAM uses a different generative model than the pure attractor model. Unlike the pure
attractor model, where there is no feedback from the decision state to the sensory evidence, the decision
state in the BAM affects both the internal predictions and gain. The generative model in the BAM,
which assumes that the observations are governed by the Hopfield dynamics, updates the decision
state~z at time t by the equation

~zt −~zt−∆t = ∆t f (~zt−∆t) +
√

∆t~wt, (1)

where f (~z) is the Hopfield dynamics, and ~wt is the Gaussian noise variable with distribution ~wt ∼
N (~O, ~Q), where ~Q = (q2/∆t)~I is the covariance of the noise process, and q is the parameter for
dynamics uncertainty. The noise ~wt shows the propensity of the state variables to change. Higher noise
means more frequent switches between the decision alternatives.

Given a decision state ~z, the probability distribution over observations is predicted by the
generative model with the equation

~x = ~M ~σ(z) +~v, (2)

where ~M = [~µ1, · · · ,~µN] is the set of the mean feature vectors, and ~σ is the sigmoid function,
which maps all state variables zi to values between 0 and 1. The noise variable ~v has the normal
distribution N (~0, ~R), where ~R = r2~I is the expected isotropic covariance of the noise on the
observations, and r is the sensory uncertainty. A higher r means that higher noise is expected in
the observations.

Appl. Sci. 2020, 10, 5773 6 of 17

The BAM infers the posterior distribution p(~zt | ~X∆t:t−∆t) ≈ N (~̂zt, ~̂Pt) of state variable ~zt by
using the unscented Kalman filter (UKF) [41]. While other filters like the extended Kalman filter
(EKF) could be used, the UKF was selected as it has a good tradeoff between approximation deviation
and computational time. The unscented transform is used to approximate the decision state and the
predicted distribution of the corresponding next sensory observation. The prediction error between
predicted the mean ~̂xt and the actual observation ~xt is calculated by

~εt = ~xt − ~̂xt. (3)

Then, the decision state prediction ~̂zt and its posterior covariance matrix ~̄Pt are updated via a
Kalman gain ~Kt:

~̄zt = ~̂zt + ~Kt~εt, (4)

~̄Pt = ~̂Pt − ~Kt ~̂CT
t . (5)

The Kalman gain is calculated by
~Kt = ~̂Ct~̂Σ−1

t , (6)

where ~̂Ct is the cross-covariance between predicted decision state ~̂zt and predicted observation ~̂xt,

and ~̂Σt is the covariance matrix of the predicted observations.
Bitzer et al. [8] used posterior density over the decision state evaluated at the stable fixed point

φi, is used as a confidence level metric of each attractor i. However, we used the state value zi as
the confidence metric in this work, because zi is less oscillatory and more clearly bounded than the
posterior density p(~zt = φi | ~X∆t:t). As for the decision criterion, we used the difference between
the state value zi of attractors. After sorting the state values from highest to the lowest, let’s say the
attractor j has the highest and the attractor k has the second highest state value. If the difference
between the state values of these two attractors becomes higher than a threshold λ, then the attractor j
is identified as the new state. That is

zj − zk > λ. (7)

4. Architecture

We propose the SDN-based network architecture shown in Figure 1. Our BAM-based traffic
engineering framework is implemented as an SDN application in the application layer. It runs on top of
OpenDaylight SDN controller. By using the REST API of the OpenDaylight controller, our application
receives up-to-date information like the network architecture and the traffic statistics. Our framework
is implemented as a standalone application that is communicating with the SDN controller via the
REST API, so it can be extended to work with other SDN controller software platforms by updating
the API library of our application.

Concurrent IoT applications may have diverse QoS requirements, which may be difficult to
satisfy on the same network. For example, let us assume that there is an IoT network of autonomous
cars. If the cars’ high definition video sensors and the control systems are on the same network,
a congestion in the network due to video transmission may disrupt control communication and result
in a car accident [10]. Network slicing solves this problem by creating separate logical networks
upon a shared physical network. By logically separating their networks, network slicing can facilitate
IoT services with diverse requirements on the same physical infrastructure while satisfying their
QoS requirements. Moreover, network slicing allows the isolation of IoT device communications for
security [11]. Our framework supports network slicing through SDN, so it can improve the QoS and
security of IoT networks.

Appl. Sci. 2020, 10, 5773 7 of 17

BAM
Application

Northbound API

Southbound API
(OpenFlow)

VTN Coordinator
Application

OpenDaylight Controller

Application Plane

Control Plane

Data Plane

Switch

Switch

Switch

VTN Manager Module

API
(REST)

Figure 1. The proposed SDN-based network architecture.

To create and manage the network slices on the physical network, we use the SDN-based virtual
tenant network (VTN) feature. The VTN feature allows the setting up of multiple isolated virtual
networks with different routing tables at each network slice, so it is possible to do slice-specific traffic
engineering for optimizing QoS. Moreover, it allows limiting the data traffic to a different subset
of links at each VNT slice. The physical links that are not used by any virtual links in slices can
be disabled for decreasing the power consumption, which is important for some networks using
low-power IoT devices.

The VTN feature is composed of the VTN coordinator application and VTN manager. The VTN
coordinator is an external SDN application that realizes VTN provisioning and provides a REST
interface to enable the use of OpenDaylight VTN virtualization. The VTN manager is an OpenDaylight
module that interacts with other modules to implement the components of the VTN model. The VTN
coordinator application translates the REST API commands from other applications and sends them to
the VTN manager. The VTN coordinator supports coordinating multiple VTN managers, so virtual
networks spanning across multiple OpenDaylight controllers can be created and managed by a single
VTN coordinator. By using the REST API of the VTN coordinator, our application can set up and
modify the network slices.

Due to the large number of source-destination pairs and large number of flows, estimating the
traffic matrix precisely in a large IP network is extremely difficult, and it has been recognized as a
challenging research problem [23]. Compared to traditional IP networks, SDN has some important
advantages for traffic measurements. First of all, the SDN controller has a global view of the SDN
network topology. Second, the SDN controller can collect flow-level and port (link)-level statistics from
the SDN switches by using a southbound protocol like OpenFlow [42]. However, the traffic matrix
estimation is still challenging even with SDN. Instead of trying to estimate the overall traffic matrix
from flow statistics in such networks, our BAM-based traffic engineering framework tries to identify
the traffic pattern by using only the utilization level of a set of edge links. The number of ports in a
network is usually much lower than the number of flows, so transmitting the link utilization statistics
requires much less bandwidth. The OpenDaylight controller automatically collects the port statistics

Appl. Sci. 2020, 10, 5773 8 of 17

of switches every three seconds by OpenFlow and provides the port statistics to the SDN applications
via the northbound REST API.

Initially, a list of possible traffic patterns is given as Bayesian attractors to our application.
The BAM assigns stochastic variables to these attractors that indicate the confidence level of each
attractor. Together with the traffic patterns, pre-calculated network slice topologies and routing
tables optimized for each traffic pattern are given to our application by its API. Our SDN application
periodically receives the utilization statistics of a set of edge links from the OpenDaylight controller.
The BAM updates the confidence level of attractors each time when there is a new observation of these
fluctuating and noisy statistics. By comparing these confidence levels, the application tries to identify
the current traffic pattern from a list of stored patterns. In the case of a change in the identified traffic
pattern, the application sends the network slice VNT configuration and the routing tables in each
network slice, which were pre-optimized for the identified traffic, to the VTN coordinator application
via the REST API. The VTN coordinator application translates the requested configuration and sends
it to the VTN manager module in the corresponding OpenDaylight controller, which controls the
SDN network that is to be modified. The VTN manager module updates the configuration of the
OpenDaylight controller for setting up the new logical network. Finally, the OpenDaylight controller
pushes down the changes to the switches by the southbound OpenFlow API. In case of a change in
the traffic patterns to be identified, the new list of traffic patterns can be given to the application,
which restarts the BAM. As BAM is an online algorithm and it does not require training, BAM can
identify the new patterns after getting a few samples of utilization statistics.

5. The Testbed

To show that our SDN framework can identify the changing traffic patterns and increase the QoS
of an IoT network by immediately applying a pre-calculated network configuration optimized to the
new pattern, we implemented our framework as an SDN application on OpenDaylight and tested
it on an SDN testbed. A photo of the testbed is shown in Figure 2. A plot of the testbed topology
is shown in Figure 3. In the testbed, there were 9 SDN core switches, where eight were MikroTik
RouterBOARD 750Gr3 switches with 1 Gbps ports, and the other one was a Pica8 SDN switch with
1 Gbps and 10 Gbps ports. A Spirent hardware traffic generator was used for generating realistic
traffic and analyzing the traffic statistics like packet drop rate and delays. The Spirent hardware traffic
generator sent the generated traffic to a non-SDN Dell switch through a 10 Gbps optical link. The Dell
switch distributed the generated traffic to MikroTik switches. The Pica8 switch forwarded the collected
traffic to the sink of the Spirent traffic generator through a 10 Gbps optical link. To make the MikroTik
switches SDN-capable, their firmware was replaced with an OpenWRT embedded operating system
and Open vSwitch switching software. Our SDN application, the Spirent TestCenter application,
the VTN Coordinator application, and the OpenDaylight SDN controller were installed on a computer
that communicates with the SDN switches and the traffic generator via a separate network for the
out-of-band control of the testbed.

Figure 2. A photo of the testbed.

Appl. Sci. 2020, 10, 5773 9 of 173 7 42 8 51 9 6Dell Switch (non-SDN)Spirent TestCenterMikrotik SDN SwitchPica8 SDN Switch 1 Gbps link10 Gbps linkTraffic Generator Traffic Receiver
Figure 3. The topology of the testbed.

6. The Experiment

In the experiment, we emulated an IoT network of a crowd surveillance system around a building
using two different types of video sensors generating surveillance data, e.g., visible-light video,
infrared video etc. Recently, IoT-based crowd surveillance systems have become popular due to their
cost effectiveness in many applications like public safety (against terrorist attacks, demonstrations,
natural disasters, etc.) and smart cities [43–46]. The IoT network topology and the initial traffic rate
of sensors is shown in Figure 4. In the IoT network, there were six dumb edge nodes, each carrying
two types of sensors, and nine SDN core switches with the same numbering as in Figure 3. The dumb
edge nodes were not SDN-capable. The Spirent hardware traffic generator generated realistic sensor
traffic by emulating twelve sensors, where six of them are type 1 sensors, and six of them are type
2 sensors. Each sensor generated and sent one-way traffic to an IoT gateway node that forwards
the data generated in the IoT domain to the wide-area network (WAN). The IoT gateway node was
emulated by the traffic receiver of Spirent TestCenter, which measured the network statistics from the
arriving packets. 2 31 46 5798E EE E EE50 Mbps Gateway50 Mbps20 Mbps20 Mbps 20 Mbps20 Mbps10 Mbps10 Mbps10 Mbps10 Mbps10 Mbps10 Mbps SDN core switchSensor type 1Sensor type 2IoT Gateway nodeEdge nodeE

Figure 4. The IoT network topology and the initial traffic rate of sensors when the crowd was close to
the edge of core node 1.

Appl. Sci. 2020, 10, 5773 10 of 17

In the experiment scenario, there was a gathering of a crowd around a building. The sensors of
the crowd surveillance system were placed at six places around the building. The bitrate of traffic
generated by a sensor increased with the number of people in the vicinity of the sensor due to increased
activity. For simplicity, we set the generated data rate of both sensor types to be equal to each other in
the experiment. Due to the SDN packet processing speed limitations of MikroTik switches, we could
not fully utilize the links to cause link congestion. We chose the sensor traffic rates to limit the traffic
on the core links to 200 Mbps to prevent crashing of MikroTik switches due to CPU over-utilization.
Each of the sensors that were closest to the center of the crowd, like the sensors connected to the edge
node of core node 1 in Figure 4, identified fast-paced movement of many people so they generated
traffic using an ABR video codec with a high bitrate of 50 Mbps to keep the video quality high.
The sensors that were in the vicinity but not so close to the center of the crowd, like the sensors
connected to the edge node of core nodes 2 and 6 in Figure 4, identified less movement, so they used a
codec that generated 20 Mbps ABR traffic. The sensors that were far away from the crowd did not
identify much movement, so they used a codec that generated 10 Mbps ABR traffic.

There were six edge nodes in the network, so we selected six possible traffic patterns where the
crowd is closest to one of the six edge nodes. In the experiment, we tested a scenario where a crowd
moves back and forth between the edge sensors of core node 1 as in Figure 4 and the edge sensors
of core node 5 as shown in Figure 5. The sensors generated random traffic with a lognormal size
distribution with a mean as in Figures 4 and 5. OpenDaylight fetched traffic rate information from
SDN core devices by OpenFlow every three seconds, and our application fetched these edge link traffic
rate statistics from OpenDaylight via the northbound API. Our application tried to identify the latest
traffic matrix by using the BAM. 2 31 46 5798E EE E EE10 Mbps Gateway10 Mbps10 Mbps10 Mbps 20 Mbps20 Mbps50 Mbps50 Mbps20 Mbps20 Mbps10 Mbps10 Mbps SDN core switchSensor type 1Sensor type 2IoT Gateway nodeEdge nodeE

Figure 5. The traffic rate of sensors after the crowd moved to the edge of core node 5.

The average traffic rate on the edge links in each scenario was stored as a BAM attractor in the
application. For example, the BAM attractor of the pattern shown in Figure 4, when the crowd is
around the edge of core node 1, was simply an array [100 40 20 20 20 40] in terms of Mbps, where the
array index is the core node number where the edge link was connected. As the traffic is entering the
SDN network through six core routers and the IoT traffic in the experiment was one-way, the size of
each BAM attractor was 1× 6. It is possible to add more traffic patterns as attractors, but we limited the
number of traffic patterns to six in this experiment for a more clear presentation of attractor dynamics.

For each of the selected traffic patterns, we pre-computed the VNT configurations and routing
tables of the network slices optimized for the traffic scenario and stored them in our application
along with the corresponding BAM attractor. As an example, the VNT configuration of network slices
optimized for the traffic pattern in Figure 4 is shown in Figure 6a. VNT configuration of another

Appl. Sci. 2020, 10, 5773 11 of 17

pattern in Figure 5 is shown in Figure 6b. In the network, the traffic of sensor type 1 was assigned
to network slice 1, and the traffic of sensor type 2 was assigned to network slice 2. To minimize the
maximum link utilization and maximize the power efficiency in the experiment, we optimized the
VNT configuration in two steps. In the first step, for a selected traffic pattern, the set of routing tables
at each network slice that minimizes the maximum link utilization in the physical network was found.
Then, among the solutions of the first step, a solution that uses the minimum number of physical links
when routing the aggregate traffic is selected to minimize the power consumption as the links that are
unused in all slices can be set to idle. For example, four physical links in Figure 6a were set to idle
because none of the VNTs used them. While VNT was the same in both slices in Figure 6a, the slices
had different routing tables to minimize the overall maximum link utilization of the physical network.
For example, the traffic from the edge of core node 1 to the edge of core node 9 followed the path 1→9
on slice 1, while the traffic between the same edge nodes followed the path 1→2→8→9 on slice 2 as
shown with arrows. The VNTs on slices may also differ depending on the placement of sensors and
the traffic matrix on each slide.2 31 46 5798 PhysicalNetworkE EE E EE Slice 1 VNTSlice 2 VNT2 31 46 598E EE E EE2 31 46 598E EE E EESDN core switchSensor type 1Sensor type 2IoT Gateway node E Edge switchActive Physical Core LinkIdle Physical Core Link Edge Link

(a)

2 31 46 5798 PhysicalNetworkE EE E EE Slice 1 VNTSlice 2 VNT2 31 46 598E EE E EE2 31 46 598E EE E EESDN core switchSensor type 1Sensor type 2IoT Gateway node E Edge switchActive Physical Core LinkIdle Physical Core Link Edge Link77
(b)

Figure 6. The VNTs in the network slices and the active/idle link configuration in the physical topology
optimized for the initial traffic matrix when the crowd was close to (a) the edge of core node 1 and
(b) the edge of core node 5.

The edge link traffic rate statistics fetched by our application via the northbound of SDN controller
in the experiment are shown in Figure 7. The edge links are numbered according to the number of
the core node that they are connected to. The traffic of sensors started in the first 3 s. The first edge
link traffic statistic were fetched at time 3 s. Initially, the crowd was around the sensors connected
to core 1, so those sensors were producing the highest traffic and the edge link 1 had the highest
link utilization as seen in Figure 4. Figure 8 shows the traffic rate on the link from core node 6 to
core node 9 and the link from core node 1 to core node 9, which are the most congested core links
in the network. Initially, the network configuration was not optimized for this traffic pattern, so the
link from core node 1 to core node 9 started to carry high amount of traffic at time 10 s. The BAM
algorithm in our application tried to identify the traffic pattern by using the traffic rate statistics of

Appl. Sci. 2020, 10, 5773 12 of 17

the edge links. Each time a new observation of statistics was fetched, BAM updated the confidence
level of the attractors. The confidence level of the attractors calculated by BAM during the experiment
is shown in Figure 9. Initially, the confidence level of all attractors were zero. After getting only two
traffic statistics, the confidence level of attractor 1 became the highest and the confidence difference
between the highest and the second highest attractors passed the threshold λ set to 0.5, so attractor 1
was correctly identified as the new state. The attractor identified as the current traffic pattern by BAM
is shown in Figure 10. The attractors number 1 and number 5 denote the traffic patterns when the
crowd is around the edge sensors of core node 1 and core node 5, respectively. The time when BAM
identified a new traffic pattern is denoted by IT (Identified Traffic) and shown with blue dashed lines
in the experiment results.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200 220 240

IT RF TC IT RF TC IT RF TC IT RF

E
d
g
e
 T

ra
ff
ic

 R
a
te

 (
M

b
p
s
)

Time (seconds)

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6

Figure 7. The edge link traffic rate statistics fetched by our application from OpenDaylight.

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140 160 180 200 220 240

IT RF TC IT RF TC IT RF TC IT RF

C
o
re

 T
ra

ff
ic

 R
a
te

 (
M

b
p
s
)

Time (seconds)

Link 6−9
Link 1−9

Figure 8. The traffic rate on the links from core node 6 to core node 9 and core node 1 to core node 9.

−6
−4
−2
 0
 2
 4
 6
 8

 10
 12
 14

 0 20 40 60 80 100 120 140 160 180 200 220 240

IT RF TC IT RF TC IT RF TC IT RF

C
o
n
fi
d
e
n
c
e

Time (seconds)

Attr. 1 Attr. 2 Attr. 3 Attr. 4 Attr. 5 Attr. 6

Figure 9. The confidence level of the attractors.

Appl. Sci. 2020, 10, 5773 13 of 17

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100 120 140 160 180 200 220 240

IT RF TC IT RF TC IT RF TC IT RF

A
tt
ra

c
to

r
ID

Time (seconds)

Figure 10. The identified traffic pattern by the decision algorithm.

After identifying the new traffic pattern, our SDN application sent the VNT and routing table
configuration optimized for traffic pattern 1 to the VTN coordinator by using its REST API. The VTN
coordinator translated the configuration request of the application, updated its VTN configuration
database, and sent it the OpenDaylight controller via the VTN manager. Finally, the OpenDaylight
controller applied the new configuration to the SDN network by updating the flow tables of the
switches by OpenFlow. This network reconfiguration process took around 10 s and finished at time
20 s, which is denoted by RF (Reconfiguration Finished) and shown with green dashed lines in the
experiment results. After RF, the network started to run using a configuration optimized for this
identified traffic matrix, so the maximum link utilization in the network decreased as seen in Figure 8.

Later, the crowd moved near the edge sensors of core node 5 and the traffic rate of the sensors
changed as shown in Figure 5. As a result, there was an abrupt change in the traffic of edge and
core links at time 58 s, which is denoted by TC (Traffic Changed) and shown with red dashed lines
in the experiment results. The traffic rate on the edge link 5 became the highest as seen in Figure 7.
The utilization of core link from node 9 to node 1 increased around two times as seen in Figure 8
because the network configuration was not optimized for the new traffic matrix. After the traffic
change, the confidence level of attractor 1 started to decrease and the confidence level of attractor 5
started to increase as seen in Figure 9. At time 70 s, the confidence of attractor 5 passed that of
attractor 1, and the BAM identified the traffic pattern of attractor 5 as the new traffic pattern as seen in
Figure 10. Therefore BAM required fetching edge link traffic statistics only 5 times to identify the new
traffic matrix. After identifying the new traffic pattern, our SDN application reconfigured the network
to a configuration optimized for the identified traffic matrix, which took around 10 s and finished at
time 80 s. After the reconfiguration finished, the maximum link utilization in the network decreased
by two times.

We repeated the traffic changes by moving the crowd to near the edge sensors of core node
1 at time 125 and then core node 5 at time 188 s. Again, BAM correctly identified the new traffic
matrices after 5 iterations of fetching traffic statistics and our framework decreased the maximum link
utilization by two times by reconfiguring the network via SDN.

Our SDN application was run on a laptop with an Intel i7-3820QM CPU. Even though our BAM
implementation was not so optimized, the application used less than 10% of the single core of the
laptop CPU produced in year 2012, which can be considered as a low CPU usage. Due to the budget
constraints we couldn’t set up a bigger testbed and we couldn’t find a reference in the literature that
evaluates the processing requirements of BAM, so the processing requirements of BAM on larger
networks is not clear. In case the computation cost of the BAM becomes high, it may be decreased by
replacing UKF with EKF, which is known to have a lower computational cost than UKF [47,48], in the
BAM implementation. Bitzer et al. [8] says that they used the UKF in the BAM, because it provides a
suitable tradeoff between the precision and computational efficiency. However, Bitzer et al. [8] states
that EKF, which is faster but less precise than UKF, can also be used in the BAM.

Appl. Sci. 2020, 10, 5773 14 of 17

7. Conclusions

In this paper, we presented a framework based on the Bayesian attractor model and SDN for
optimizing the IoT networks that exhibit a limited number of traffic patterns. We implemented the
framework as an SDN application and investigated its feasibility on an SDN testbed. The experiment
results showed that our application can identify the traffic pattern with a few observations of edge link
traffic statistics, which should be fast enough for most networks, and can apply an optimized network
configuration for the identified traffic pattern by SDN. To the best of our knowledge, ours is the first
work that tries to directly identify a traffic matrix from a known list of traffic matrices using only link
utilization statistics, so we could not find another algorithm in the literature for direct comparison
in the experiments. There may be even faster identification algorithms, but using the BAM for the
identification has important merits like the BAM is an online algorithm and it does not require training
or partial measurements of traffic matrix. Moreover, the BAM-based application had a low CPU
utilization in the experiment. Furthermore, the BAM may open the way towards more autonomous
networks by adding a more human-like artificial intelligence to the network. We showed that our
application can apply network slicing-based traffic engineering for optimizing the utilization and
power efficiency of core links. As a possible limitation, the CPU requirements and the identification
time may increase with increasing number of nodes and limit the size of the controllable network.
For future work, we will set up a bigger testbed to evaluate the performance of the framework on
large networks. Moreover, we will work on adding support for using other SDN controller software
platforms like ONOS. As other areas of application, the framework may be also applied to other
types of networks like cellular networks. We will investigate its applicability to other networks in our
future work.

Author Contributions: Conceptualization, O.A., S.A. and M.M.; methodology, O.A., S.A. and M.M.; software,
O.A.; validation, O.A.; formal analysis, O.A., S.A. and M.M.; investigation, O.A.; resources, O.A. and S.A.;
data curation, O.A.; writing—original draft preparation, O.A.; writing—review and editing, O.A.; visualization,
O.A.; supervision, S.A. and M.M.; project administration, S.A. and M.M.; funding acquisition, S.A. and M.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This research and development work was supported by Ministry of Internal Affairs and Communications
of Japan.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Jain, R.; Paul, S. Network virtualization and software defined networking for cloud computing: A survey.
IEEE Commun. Mag. 2013, 51, 24–31. [CrossRef]

2. Xie, J.; Yu, F.R.; Huang, T.; Xie, R.; Liu, J.; Wang, C.; Liu, Y. A Survey of machine learning techniques applied
to software defined networking (SDN): Research issues and challenges. IEEE Commun. Surv. Tutor. 2019,
21, 393–430. [CrossRef]

3. Latah, M.; Toker, L. Artificial intelligence enabled software-defined networking: A comprehensive overview.
IET Netw. 2019, 8, 79–99. [CrossRef]

4. Queiroz, W.; Capretz, M.A.; Dantas, M. An approach for SDN traffic monitoring based on big data techniques.
J. Netw. Comput. Appl. 2019, 131, 28–39. [CrossRef]

5. Hsu, C.Y.; Tsai, P.W.; Chou, H.Y.; Luo, M.Y.; Yang, C.S. A flow-based method to measure traffic statistics
in software defined network. In Proceedings of the Asia-Pacific Advanced Network, Bandung, Indonesia,
20–24 January 2014; Volume 38, p. 19. [CrossRef]

6. Li, M.; Chen, C.; Hua, C.; Guan, X. CFlow: A learning-based compressive flow statistics collection scheme for
SDNs. In Proceedings of the 2019 IEEE International Conference on Communications (ICC), Shanghai, China,
20–24 May 2019; pp. 1–6. [CrossRef]

7. Malboubi, M.; Peng, S.M.; Sharma, P.; Chuah, C.N. A learning-based measurement framework for traffic
matrix inference in software defined networks. Comput. Electr. Eng. 2018, 66, 369–387. [CrossRef]

http://dx.doi.org/10.1109/MCOM.2013.6658648
http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.1049/iet-net.2018.5082
http://dx.doi.org/10.1016/j.jnca.2019.01.016
http://dx.doi.org/10.7125/APAN.38.3
http://dx.doi.org/10.1109/ICC.2019.8761224
http://dx.doi.org/10.1016/j.compeleceng.2017.11.020

Appl. Sci. 2020, 10, 5773 15 of 17

8. Bitzer, S.; Bruineberg, J.; Kiebel, S.J. A Bayesian attractor model for perceptual decision making.
PLoS Comput. Biol. 2015, 11, e1004442. [CrossRef]

9. Ohba, T.; Arakawa, S.; Murata, M. Bayesian-based virtual network reconfiguration for dynamic optical
networks. IEEE/OSA J. Opt. Commun. Netw. 2018, 10, 440–450. [CrossRef]

10. Kafle, V.P.; Fukushima, Y.; Martinez-Julia, P.; Miyazawa, T.; Harai, H. Adaptive virtual network slices for
diverse IoT services. IEEE Commun. Stand. Mag. 2018, 2, 33–41. [CrossRef]

11. Esaki, H.; Nakamura, R. Overlaying and slicing for IoT era based on Internet’s end-to-end discipline.
In Proceedings of the 2017 IEEE International Symposium on Local and Metropolitan Area Networks
(LANMAN), Osaka, Japan, 12–14 June 2017; pp. 1–6. [CrossRef]

12. Vardi, Y. Network tomography: Estimating source-destination traffic intensities from link data. J. Am.
Stat. Assoc. 1996, 91, 365–377. [CrossRef]

13. Tebaldi, C.; West, M. Bayesian inference on network traffic using link count data. J. Am. Stat. Assoc. 1998,
93, 557–573. [CrossRef]

14. Cao, J.; Davis, D.; Wiel, S.V.; Yu, B. Time-varying network tomography: Router link data. J. Am. Stat. Assoc.
2000, 95, 1063–1075. [CrossRef]

15. Medina, A.; Taft, N.; Salamatian, K.; Bhattacharyya, S.; Diot, C. Traffic matrix estimation: Existing techniques
and new directions. In Proceedings of the ACM SIGCOMM 2002 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication, Pittsburgh, PA, USA, 19–23 August 2002;
Volume 32, pp. 161–174. [CrossRef]

16. Roughan, M.; Greenberg, A.; Kalmanek, C.; Rumsewicz, M.; Yates, J.; Zhang, Y. Experience in measuring
backbone traffic variability: Models, metrics, measurements and meaning. In Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet Measurment, Marseille, France, 6–8 November 2002; Association for
Computing Machinery: New York, NY, USA, 2002; pp. 91–92. [CrossRef]

17. Zhang, Y.; Roughan, M.; Duffield, N.; Greenberg, A. Fast accurate computation of large-scale IP traffic
matrices from link loads. In Proceedings of the International Conference on Measurements and Modeling of
Computer Systems, SIGMETRICS 2003, San Diego, CA, USA, 9–14 June 2003; pp. 206–217. [CrossRef]

18. Eum, S.; Murphy, J.; Harris, R.J. A failure analysis of the tomogravity and EM methods. In Proceedings of
the TENCON 2005—2005 IEEE Region 10 Conference, Melbourne, Australia, 21–24 November 2005; pp. 1–6.

19. Lakhina, A.; Papagiannaki, K.; Crovella, M.; Diot, C.; Kolaczyk, E.D.; Taft, N. Structural analysis of network
traffic flows. In Proceedings of the Joint International Conference on Measurement and Modeling of
Computer Systems, New York, NY, USA, 12–16 June 2004; Volume 32, pp. 61–72. [CrossRef]

20. Soule, A.; Salamatian, K.; Nucci, A.; Taft, N. Traffic matrix tracking using Kalman filters. In Proceedings of
the 2005 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
Banff, AB, Canada, 6–10 June 2005; Volume 33, pp. 24–31. [CrossRef]

21. Papagiannaki, K.; Taft, N.; Lakhina, A. A distributed approach to measure IP traffic matrices. In Proceedings
of the 2004 ACM SIGCOMM Internet Measurement Conference, Taormina, Italy, 25–27 October 2004;
pp. 161–174. [CrossRef]

22. Soule, A.; Lakhina, A.; Taft, N.; Papagiannaki, K.; Salamatian, K.; Nucci, A.; Crovella, M.; Diot, C.
Traffic matrices: Balancing measurements, inference and modeling. In Proceedings of the 2005
ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems,
Banff, AB, Canada, 6–10 June 2005; Volume 33, pp. 362–373. [CrossRef]

23. Zhao, Q.; Ge, Z.; Wang, J.; Xu, J. Robust traffic matrix estimation with imperfect information: Making use of
multiple data sources. In Proceedings of the Joint International Conference on Measurement and Modeling
of Computer Systems, Saint Malo, France, 26–30 June 2006; Volume 34, pp. 133–144. [CrossRef]

24. Nie, L.; Wang, H.; Jiang, X.; Guo, Y.; Li, S. Traffic measurement optimization based on reinforcement learning
in large-scale ITS-oriented backbone networks. IEEE Access 2020, 8, 36988–36996. [CrossRef]

25. Kumar, A.; Vidyapu, S.; Saradhi, V.V.; Tamarapalli, V. A multi-view subspace learning approach to Internet
traffic matrix estimation. IEEE Trans. Netw. Serv. Manag. 2020, 17, 1282–1293. [CrossRef]

26. Tootoonchian, A.; Ghobadi, M.; Ganjali, Y. OpenTM: Traffic Matrix Estimator for OpenFlow Networks.
In Passive and Active Measurement; Krishnamurthy, A., Plattner, B., Eds.; Springer: Berlin/Heidelberg,
Germany, 2010; pp. 201–210.

http://dx.doi.org/10.1371/journal.pcbi.1004442
http://dx.doi.org/10.1364/JOCN.10.000440
http://dx.doi.org/10.1109/MCOMSTD.2018.1800018
http://dx.doi.org/10.1109/LANMAN.2017.7972161
http://dx.doi.org/10.1080/01621459.1996.10476697
http://dx.doi.org/10.1080/01621459.1998.10473707
http://dx.doi.org/10.1080/01621459.2000.10474303
http://dx.doi.org/10.1145/964725.633041
http://dx.doi.org/10.1145/637201.637213
http://dx.doi.org/10.1145/885651.781053
http://dx.doi.org/10.1145/1012888.1005697
http://dx.doi.org/10.1145/1111572.1111580
http://dx.doi.org/10.1145/1028788.1028808
http://dx.doi.org/10.1145/1071690.1064259
http://dx.doi.org/10.1145/1140103.1140294
http://dx.doi.org/10.1109/ACCESS.2020.2975238
http://dx.doi.org/10.1109/TNSM.2020.2983329

Appl. Sci. 2020, 10, 5773 16 of 17

27. Yu, Y.; Qian, C.; Li, X. Distributed and collaborative traffic monitoring in software defined networks.
In Proceedings of the Third Workshop on Hot Topics in Software Defined Networking, Chicago, IL, USA,
17–22 August 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 85–90. [CrossRef]

28. Malboubi, M.; Wang, L.; Chuah, C.; Sharma, P. Intelligent SDN based traffic (de)aggregation and
measurement paradigm (iSTAMP). In Proceedings of the IEEE INFOCOM 2014—IEEE Conference on
Computer Communications, Toronto, ON, Canada, 27 April–2 May 2014; pp. 934–942.

29. Gong, Y.; Wang, X.; Malboubi, M.; Wang, S.; Xu, S.; Chuah, C.N. Towards accurate online traffic matrix
estimation in software-defined networks. In Proceedings of the 1st ACM SIGCOMM Symposium on
Software Defined Networking Research, Santa Clara, CA, USA, 17–18 June 2015; Association for Computing
Machinery: New York, NY, USA. [CrossRef]

30. Liu, C.; Malboubi, A.; Chuah, C. OpenMeasure: Adaptive flow measurement inference with online learning
in SDN. In Proceedings of the 2016 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), San Francisco, CA, USA, 10–14 April 2016; pp. 47–52.

31. Polverini, M.; Baiocchi, A.; Cianfrani, A.; Iacovazzi, A.; Listanti, M. The power of SDN to improve the
estimation of the ISP traffic matrix through the flow spread concept. IEEE J. Sel. Areas Commun. 2016,
34, 1904–1913. [CrossRef]

32. Tian, Y.; Chen, W.; Lea, C. An SDN-based traffic matrix estimation framework. IEEE Trans. Netw. Serv. Manag.
2018, 15, 1435–1445. [CrossRef]

33. Jiang, D.; Hu, G. Large-scale IP traffic matrix estimation based on backpropagation neural network.
In Proceedings of the 2008 First International Conference on Intelligent Networks and Intelligent Systems,
Wuhan, China, 1–3 November 2008; pp. 229–232.

34. Casas, P.; Vaton, S. On the use of random neural networks for traffic matrix estimation in large-scale
IP networks. In Proceedings of the 6th International Wireless Communications and Mobile Computing
Conference, Caen, France, 28 June–2 July 2010; Association for Computing Machinery: New York, NY, USA,
2010; pp. 326–330. [CrossRef]

35. Zhou, H.; Tan, L.; Zeng, Q.; Wu, C. Traffic matrix estimation: A neural network approach with extended
input and expectation maximization iteration. J. Netw. Comput. Appl. 2016, 60, 220 – 232. [CrossRef]

36. Nie, L.; Jiang, D.; Guo, L.; Yu, S. Traffic matrix prediction and estimation based on deep learning in large-scale
IP backbone networks. J. Netw. Comput. Appl. 2016, 76, 16 – 22. [CrossRef]

37. Emami, M.; Akbari, R.; Javidan, R.; Zamani, A. A new approach for traffic matrix estimation in high
load computer networks based on graph embedding and convolutional neural network. Trans. Emerg.
Telecommun. Technol. 2019, 30, e3604. [CrossRef]

38. Huo, L.; Jiang, D.; Lv, Z.; Singh, S. An intelligent optimization-based traffic information acquirement
approach to software-defined networking. Comput. Intell. 2020, 36, 151–171. [CrossRef]

39. Nie, L.; Li, Y.; Kong, X. Spatio-temporal network traffic estimation and anomaly detection based on
convolutional neural network in vehicular ad-hoc networks. IEEE Access 2018, 6, 40168–40176. [CrossRef]

40. Hu, Z.; Qiao, Y.; Luo, J. ATME: Accurate traffic matrix estimation in both public and private datacenter
networks. IEEE Trans. Cloud Comput. 2018, 6, 60–73. [CrossRef]

41. Wan, E.A.; Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings
of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium,
Lake Louise, AB, Canada, 4 October 2000; pp. 153–158. [CrossRef]

42. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.; Rexford, J.; Shenker, S.; Turner, J.
OpenFlow: Enabling innovation in campus networks. In Proceedings of the SIGCOMM 2018, Seattle, WA,
USA, 17–22 August 2008; Volume 38, pp. 69–74. [CrossRef]

43. Pathan, A.S.K. Crowd Assisted Networking and Computing; CRC Press: Boca Raton, FL, USA, 2018.
44. Motlagh, N.H.; Bagaa, M.; Taleb, T. UAV-based IoT platform: A crowd surveillance use case. IEEE Commun.

Mag. 2017, 55, 128–134. [CrossRef]
45. Memos, V.A.; Psannis, K.E.; Ishibashi, Y.; Kim, B.G.; Gupta, B. An efficient algorithm for media-based

surveillance system (EAMSuS) in IoT smart city framework. Future Gener. Comput. Syst. 2018, 83, 619–628.
[CrossRef]

46. Gribaudo, M.; Iacono, M.; Levis, A.H. An IoT-based monitoring approach for cultural heritage sites:
The Matera case. Concurr. Comput. Pract. Exp. 2017, 29, e4153. [CrossRef]

http://dx.doi.org/10.1145/2620728.2620739
http://dx.doi.org/10.1145/2774993.2775068
http://dx.doi.org/10.1109/JSAC.2016.2559178
http://dx.doi.org/10.1109/TNSM.2018.2867998
http://dx.doi.org/10.1145/1815396.1815472
http://dx.doi.org/10.1016/j.jnca.2015.11.013
http://dx.doi.org/10.1016/j.jnca.2016.10.006
http://dx.doi.org/10.1002/ett.3604
http://dx.doi.org/10.1111/coin.12250
http://dx.doi.org/10.1109/ACCESS.2018.2854842
http://dx.doi.org/10.1109/TCC.2015.2481383
http://dx.doi.org/10.1109/ASSPCC.2000.882463
http://dx.doi.org/10.1145/1355734.1355746
http://dx.doi.org/10.1109/MCOM.2017.1600587CM
http://dx.doi.org/10.1016/j.future.2017.04.039
http://dx.doi.org/10.1002/cpe.4153

Appl. Sci. 2020, 10, 5773 17 of 17

47. St-Pierre, M.; Gingras, D. Comparison between the unscented Kalman filter and the extended Kalman filter
for the position estimation module of an integrated navigation information system. In Proceedings of the
2004 IEEE Intelligent Vehicles Symposium, Parma, Italy, 14–17 June 2004; pp. 831–835.

48. Fiorenzani, T.; Manes, C.; Oriolo, G.; Peliti, P. Comparative Study of Unscented Kalman Filter and Extended
Kalman Filter for Position/attitude Estimation in Unmanned Aerial Vehicles; Technical Report; The Institute for
Systems Analysis and Computer Science: Rome, Italy, 2008.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Bayesian Attractor Model
	Architecture
	The Testbed
	The Experiment
	Conclusions
	References

