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ABSTRACT Network Function Virtualization (NFV) is a system that provides application services
by connecting virtual network functions (VNFs), and is expected to accommodate new service requests
through the development of new VNF and connection with existing ones. Because VNFs are implemented
by software, their design and placement are important problems for the NFV system, which reduce the
current and future system costs. In this paper, we investigate the design principles and the placement
policies that reduce the cost of designing and developing VNFs for accommodating new service
requests. As for the design policy, we introduce a Core/Periphery-Based Design (CPBD) that utilizes
the core/periphery concept for developing VNFs. In CPBD, “core” VNFs are developed in advance and
repeatedly used to accommodate future service requests. While “core” VNFs are common to current and
future service requests, “periphery” VNFs are developed and customized for each service request. Next,
we investigate the placement policies of VNFs for CPBD to fully utilize the nature of their core/periphery
structure. In addition, we examine the Center-Located Core/Periphery placement (CLCP) policy and the
Geographically-Distributed Core/Periphery placement (GDCP) policy, and evaluate the long-term cost of
the NFV system under resource restrictions to run VNFs. Our results show that CPBD reduces the long-term
cost of design and development of VNFs by 23% compared to the design with no core VNFs. Moreover,
in the case of no resource restrictions, both CLCP and GDCP reduce the long-term costs of placing and
connecting VNFs by 15% compared to the existing VNF placement algorithm. With resource constraints,
GDCP reduces the long-term costs over CLCP by 11%.

INDEX TERMS Network Function Virtualization (NFV), Virtual Network Function (VNF), VNF
Placement, Core/Periphery Structure, Software Design, Microservice

I. INTRODUCTION
As service demands become increasingly diverse, Network
Function Virtualization (NFV) is gaining attention. NFV
can implement network functions, such as firewall and
proxy server, as a Virtual Network Function (VNF),
which is developed using software. VNFs can run
on general-purpose hardware shared with other VNFs.
NFV flexibly accommodates various service requests by
connecting VNFs over networks.

In operating NFV systems, it is important to reduce the

costs of accommodating network services. Many previous
studies conducted on NFV have discussed placement
algorithms that minimize the costs of placing VNFs [1],
[2]. For example, Kim et. al. [1] used a genetic algorithm
to minimize the power consumption and satisfy the service
delay requirements of users. Nam et. al. [2] minimized the
end-to-end service time by placing VNFs based on Zipf’s
law which models the frequency of VNFs use. Although
these studies used different algorithms or approaches, they
implicitly assumed that VNFs are developed in advance.
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However, in reality, service requests may change drastically
and require VNFs that have not yet been developed.
Therefore, we need a suitable software design of VNFs
and its placement to accommodate the current and future
service requests at a lower cost. If VNFs are not appropriately
designed, new VNFs will be added frequently depending on
changes in service requests, which will lead to an increase
in their cumulative development cost. Moreover, appropriate
placement of VNFs is required to reduce opportunities for
changing placement, such as adding, moving, and removing
VNFs. In this paper, we investigate a software design and
placement method for VNFs that can reduce long-term
development costs against changes in service requests.

In considering the software design of VNFs, we introduce
a core/periphery structure [3], [4], which has been used
to interpret the behaviors of biological systems, social
networks, and internet systems. Some system components,
called “core”, do not change despite the composition of
the entire system being changed with time and mediate the
connection of non core system elements, called “periphery.”
We interpret VNFs based on a core/periphery structure
and distinguish them into core and periphery VNFs. It is
expected that designing core VNFs such that they can be
repeatedly used will reduce the long-term development cost
for accommodating future service requests. However, the
development cost of each core VNF is higher than that
of each periphery VNF, because core VNFs need to be
generalized to be connected with other VNFs. Therefore,
we introduce a model for deriving the development costs of
NFV software systems and reveal the benefit of introducing
core/periphery structures in VNF software design.

Next, we investigate how to place VNFs designed
based on a core/periphery structure, as the deployment
cost of VNFs can be reduced by appropriately placing
the core VNFs in advance, so that they can be shared
to accommodate future service requests. In fact, the
existing method can reduce the number of VNFs to
be placed by sharing common VNFs among the service
requests [5]. We examineCenter-Located Core/Periphery
placement (CLCP) policy and Geographically-Distributed
Core/Periphery placement (GDCP) policy. CLCP places
core VNFs at the center of physical networks, which
increases the opportunity for core VNFs to accommodate
many service-chain requests. In contrast, GDCP places core
VNFs for each topological cluster, which prevents resource
exhaustion resulting from accommodating service-chain
requests. In addition, simulations are conducted for CLCP
and GDCP, and the long-term cost of the NFV system is
evaluated under resource restrictions to run VNFs.

The remainder of this paper is organized as follows.
Section II explains our design and placement problems, as
well as related work. Section III explains the software design
of VNFs based on a core/periphery structure and shows
its long-term cost through a numerical analysis. Section IV
develops placement algorithms for VNFs designed based
on the core/periphery structure. Section V presents our

conclusions and future work.

II. DESIGN AND PLACEMENT PROBLEMS OF NFV
SOFTWARE SYSTEMS
A. DESIGN PROBLEM
For the operation of an NFV system, it is important to design
a VNF properly, to reduce costs. The NFV system comprises
many VNFs and connects them to accommodate the service
requests. There are some costs incurred in designing and
developing VNFs, which disturb the flexible accommodation
for service requests. A suitable software design of VNFs can
reduce such costs.

A monolithic software design has been widely used for
software such as networking software. In monolithic software
design, multiple components form a single module [6]. These
components are designed to compose a particular service and
connect specific components. Thus, changing components
can incur changes in other components, and thus, increase the
development cost [7]–[11]. Moreover, tight coupling makes
it difficult to use the components already developed for
accommodating new services. Existing studies [7], [8] have
analyzed how software components have been designed and
developed in the long term, such as Linux and Mozilla, and
indicated that large-scale refactoring to reduce tight coupling
and increase the generality of components will contribute to
fastening the application development.

Recently, in the field of software engineering,
microservices have gained attention due to the possibility
of reducing the development cost [6], [11], [12]. In
microservices, components are well independent and can be
connected with other components to form various services.
The developed components can be used to accommodate
future services; thus, microservices are expected to reduce
the number of components and costs for design and
development.

However, in the case of networked software, such as NFV
systems, sufficient discussions have not been conducted on
software. This paper discusses networked-software designs
that have not attracted enough attention so far. To reduce
development costs, such as those related to microservices,
we design “core” VNFs to be used to accommodate new
service-chain requests.

B. PLACEMENT PROBLEM
Many NFV studies have developed placement algorithms
that can minimize the costs related to VNF placement and
accommodate service requests efficiently . One such method
[1] uses a genetic algorithm to solve the problem that
minimizes power consumption while satisfying the service
delay requirements of users. Another method [2] places VNF
on a physical network based on Zipf’s law, which models the
frequency of use, to minimize the end-to-end service time.
The existing placement algorithm, called affiliation-aware
vNF placement (AaP), can reduce the number of VNFs to be
placed by merging the service requests [5]. AaP places VNFs
on the shortest path between the source and destination nodes
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FIGURE 1: Concept of core/periphery structure

in order of each merged request, for avoiding bandwidth
consumption.

For example, in accommodating two service requests,
such as VNF1 → VNF2 → VNF3 and VNF4 → VNF2
→ VNF5, AaP merges these requests and assumes them as
one service request, such as VNF1 → VNF4 → VNF2 →
VNF3 → VNF5. Here, VNF2 is shared and the number of
VNF2 placements is reduced from 2 to 1. These studies aim
at optimization in terms of power consumption, end-to-end
service time, and bandwidth consumption.

However, considering the long-term operation of an
NFV system, it is more important to reduce costs to
additionally place VNFs and change the VNF location. For
accommodating the service requests, the NFV system places
VNFs into a physical network and connects them in a
suitable order. However, there are some costs incurred in
placeing and connecting VNFs, which are called deployment
costs. In an operating NFV system, service requests may
change variously and require VNFs that have not yet been
placed and connected. These VNFs require additional costs
to newly place and connect them. Moreover, changing the
placement of VNFs, such as adding, moving, and removing
them, suspends their execution and causes a delay in data
communication [13]. Such factors increase the deployment
cost. However, the above mentioned existing placement
methods [1], [2], [5] may frequently change the VNF
placement, because they do not consider changing the
placement depending on the variation in the service requests.
In this paper, we investigate a VNF placement method that
can reduce long-term deployment costs against changes in
service requests.

C. APPROACHES WITH CORE/PERIPHERY STRUCTURE
In considering the software design of VNFs, we introduce
a core/periphery structure [3], [4], which has been used to
interpret the behaviors of biological, social, and internet
systems. A system possessing a core/periphery structure
operates stably. This is because some system components,
such as the “core”, do not change despite changes in the
composition of the entire system with time, and mediate
the connection of non core system elements, such as
the “periphery.” Fig. 1 shows the basic concept of a
core/periphery structure.

We interpret VNFs based on a core/periphery structure,

Networked-software system

Periphery function Core function

Service 1
Service 2

Service 𝑛

FIGURE 2: Example of NFV system

and distinguish them into core and periphery VNFs. It is
expected that the additional VNFs and their development
cost will be reduced by designing VNFs such that the core
VNFs can be used repeatedly to accommodate future service
requests. Moreover, the deployment cost can be reduced by
suitably placing VNFs designed based on a core/periphery
structure. To reduce the deployment cost, we place the
core VNFs in advance, so that they can be used repeatedly
to accommodate future service requests, as in the case of
software design. In fact, the above-explained AaP can reduce
the number of VNFs to be placed by sharing common VNFs
among the service requests [5].

III. CORE/PERIPHERY-BASED DESIGN OF NFV
SYSTEMS
A. CORE / PERIPHERY BASED DESIGN
An NFV system has many VNFs and accommodates various
service requests by appropriately connecting them. The
connecting order of VNFs is called a service-chain. In
general, some VNFs are frequently used for accommodating
service-chain requests, and are regarded as core VNFs. Such
a situation occurs when the VNFs are well-implemented,
which is sufficient to be connected with many other VNFs.
The other functions are regarded as periphery VNFs, which
are used only for a specific service-chain request and
implemented sufficiently to be connected with specific
VNFs, such as receiving the process result of a VNF as input
and passing it to another VNF as output. Fig. 2 illustrates the
NFV system with core/periphery functions.

Such a VNF classification is based on a core/periphery
structure, where the core part does not change despite the
changes in service requests and mediates the connection of
other system parts. The periphery part has higher variability
and absorbs changes in service requests. Core VNFs are
used to accommodate multiple service-chain requests and
should not be changed frequently, owing to their generality.
Periphery VNFs are used to accommodate service-chain
requests that cannot be accommodated by core VNFs alone,
and therefore, can absorb changes in service-chain requests.
We call a software design that has both core VNFs and
periphery VNFs as a Core/ Periphery-Based Design (CPBD).

Because core VNFs can be connected to other VNFs,
they have more opportunity to accommodate service-chain
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requests. Preparing many core VNFs will lead to lesser
development costs of periphery VNFs for accommodating
new service-chain requests. This is because most of the
service functionalities would be provided by core VNFs.
However, the development cost of each core VNF will be
higher than that of each periphery VNF because core VNFs
should be generalized to be connected with other VNFs.
Based on this observation, we model the development costs
of NFV software systems, as presented in Sec. III-B, and
compare them with those of CPBD, as presented in Sec.
III-C.

B. COST DEFINITIONS
Let us consider an NFV system that accommodates n
service-chain requests and the j-th service-chain request
requires k(j) VNFs on average. An NFV software system
has fall(n) VNFs, which is the sum of the number of core
VNFs, fc(n), and periphery VNFs, fp(n):

fall(n) = fc(n) + fp(n). (1)

The development cost of an NFV software system, call(n), is

call(n) =

fc(n)∑
i=0

cc(i) +

n∑
j=0

kp(j)cp(j), (2)

where fc(n) is the number of core VNFs and cc(i) is i-th core
VNF’s development cost. Moreover, the j-th service-chain
request requires kp(j) periphery VNFs, and cp(j) is the
development cost of each kp(j) periphery VNF. In Eq. (2),
the first term represents the sum of the development costs
of the core VNFs and the second term represents that of
periphery VNFs because each periphery VNF serves only
one service-chain request and the number of periphery VNFs
equals

∑n
j=1 kp(j).

The variable cc(i) increases because of the ability to
connect with many other VNFs, such as already implemented
core VNFs. Thus,

cc(i) = αi, (3)

where the parameter α determines how the development cost
of newer core VNFs increases with the number of core VNFs.

Implementing more core VNFs decreases cp(j) because
more service functionalities can be provided by the core
VNFs as compared to the periphery VNFs. Thus,

cp(j) = exp(−βfc(j)), (4)

where β determines how the development cost of a periphery
VNF decreases as the number of core VNFs increases. For
example, if a firewall is implemented as a periphery, its
development cost can be reduced using core VNFs, such
as pattern matching and session management. Such cases
occur more frequently as the number of core VNFs increases.
Note that not all implemented core VNFs can serve for a
service-chain request, thus Eq.4 forms negative exponential.

Then, we represent kp(j) by fc(j) to observe the change
in call(n) against fc(n). We introduce a parameter γ (0 <
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FIGURE 3: The development cost for two design scenarios

γ < 1/fc(j)), which represents how often the fc(j) core
VNFs are repeatedly used among the service-chain requests,
and kc(j) is written as

kc(j) = k(j)γfc(j). (5)

Then, kp(j) is obtained as k=kc(j) + kp(j);

kp(j) = k − kγfc(j). (6)

C. BENEFIT OF CPBD FOR LONG-TERM
DEVELOPMENT COSTS OF NFV SOFTWARE SYSTEM
We consider a scenario in which n increases from 0 to
100, which indicates that new networking services emerge
dynamically over time. In this section, we set k = 10,
α = 0.01, β = 0.001, and γ = 0.002.

We examine two design scenarios – noncore based design
(NCBD) and CPBD – and discuss the development of each
scenario by comparing call(100) values of both NCBD and
CPBD. NCBD uses only periphery VNFs to accommodate
services without designing and developing core VNFs. That
is, NCBD maintains fc(n) = 0 regardless of the value of n.
CPBD designs and develops 100 core VNFs even when n=0;
that is, none of the service-chain requests are accommodated.
Setting k = 10 and γ = 0.002 means that 2 among the 100
core VNFs are used, on average, to accommodate each future
service-chain request.

Figure 3 shows the development cost of the NFV system
call(n) for each n. Note that the figure does not consider
the addition of core VNFs; that is, fc(n) is always 100. The
figure shows that the call(0) of CPBD is 50 times higher than
that of NCBD. This is because CPBD requires more costs
to design and develop core VNFs before accommodating
the service-chain request. However, CPBD can reduce the
development cost by 23% compared to NCBD. This result
suggests that CPBD can reduce long-term development costs
by using the developed core VNFs to accommodate future
service requests.
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IV. PLACEMENT METHODS OF CORE/PERIPHERY VNFS
A. PLACEMENT ALGORITHMS FOR A
CORE/PERIPHERY-BASED SOFTWARE SYSTEM
In the previous section, we revealed that CPBD reduces
long-term development costs. Our next concern is where to
deploy the core and peripheral VNFs in the physical network.

Because core VNFs are developed such that other VNFs
can be reused, their placement is the most crucial problem in
accommodating new service requests with lesser long-term
costs. A method for obtaining a suitable placement of core
VNFs is to solve the optimization problem that minimizes
the deployment cost each time a service-chain request
arises. Here, the deployment cost is the cost to place and
connect VNFs, and not the development cost used in the
previous section. Minimizing the long-term deployment costs
is problematic because the placement of core VNFs affects
the additionally placed VNFs for future service requests.
Therefore, we use the following two heuristics, which focus
on the topology of the physical network, and compare them.
• Duplications of core VNFs are placed at the center

of the physical network. (CLCP: Center-Located
Core/Periphery placement Policy)

• Duplications of core VNFs are distributed over the
physical network. (GDCP: Geographically-Distributed
Core/Periphery placement Policy)

Figures 4 and 5 illustrate the placement of core VNFs in
cases of CLCP and GDCP, respectively, which are detailed in
the following sections.

1) Notations
Table 1 shows the notations used in CLCP and GDCP.

The physical network is represented asG = (V,E), where
V is the node set and E is the link set. Given a G, a path
set P that comprises the shortest paths between each source
destination pair is calculated. Here, Pu,v ∈ P represents the
shortest paths between each source node u ∈ V and each
destination node v ∈ V .

core functioncore function

core functioncore function

core function

FIGURE 5: Example of GDCP

TABLE 1: Table of notations

V node set
E set of links
P set of all pre-calculated shortest path
Pu,v set of shortest paths between u, v ∈ V , and Pu,v ∈ P
t time slot index
T max size of time slot

Cv(t) remined node resources for each node v ∈ V
Be(t) remined bandwidth resources for each link e ∈ E
ĉ node resource consumption when VNF is placed on node
R set of all service-chain requests (r = {sr, dr, br, nr}, r ∈

R)
Rt set of service-chain requests at each time slot t
sr source node of r ∈ R
dr destination node of r ∈ R
br bandwidth consumption when link is used for

accommodating r ∈ R
~nr service-chain of r ∈ R
M set of all VNF
X core VNF set
Y periphery VNF set
wx the number of duplications of x ∈ X
Um,v the remaining number of service-chain requests that can use

a VNF m placed to node v at each time t
α deployment cost to place a VNF on a node

In each time slot t, Cv(t) represents the remaining node
resources for each node v ∈ V and Be(t) represents the
remaining bandwidth resources for each link e ∈ E. Note
that Cv(0) and Be(0) represent the initially allocated node
and bandwidth resources, respectively.

In each time slot t, λ type of service-chain requests are
generated, and the required VNFs belonging to the set of all
VNFs, M , are placed in the physical network. When VNF
m ∈ M is placed on a node v, ĉm,v node resources are
consumed from Cv(t). In this paper, we assume that ĉm,v

is uniform for any VNF m ∈M and node v ∈ V , and denote
it by ĉ. Moreover, the deployment cost, αm,v , is required to
place VNF m ∈M on a node v. We also assume that αm,v is
uniform for any VNF m ∈M and node v ∈ V , and denote it
by α. Note that the total deployment cost is the sum of αm,v

and increases with the time slot t.
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Rt is the set of new service-chain requests at each time
slot t, and R is a cumulative set of Rt over the time slot.
That is, R = R1, R2, . . . , RT . Each service-chain request
r ∈ R is represented as r = {sr, dr, br, ~nr}, where sr ∈
V is the source node of a service-chain request r, dr ∈ V
is the destination node of r, and br indicates the bandwidth
resources consumed by Be(t) of each link e ∈ E.

Each VNFm ∈M is classified into either the core VNF or
the periphery VNF. Denoting X as the core VNF set and Y
as the periphery VNF set, X and Y satisfy X ∪ Y =M and
X ∩ Y = ∅. For each core VNF x ∈ X , wx represents the
number of duplications of x placed in the physical network.
Um,v(t) is the remaining number of service-chain requests
that can use a VNF m placed at node v without processing
overhead. When VNFm ∈M is placed on node v ∈ V , there
is a limitation on running VNF m on that node. We denote
Um,v(t) as the remaining number of service-chain requests
that can use a VNF m placed on node v. Um,v(0) denotes
the maximum number of service-chain requests that can use
a VNF m on node v.

2) CLCP

Nodes located at the geographic center of the physical
network have more opportunities for paths to go through.
Placing core VNFs on such nodes increases the opportunity
for them to accommodate many service-chain requests.

CLCP places the duplication of core VNFs on nodes
in descending order of their efficiency [14], which is a
metric for measuring how efficiently information exchange
is performed on a node. A node with a high efficiency has
a short hop count from/to other nodes, and is located at the
center of the physical network.

Algorithm 1 shows the CLCP core placement algorithm
of CLCP. For a loop from line 2 to line 10, the core VNFs
are placed. From lines 5 to 7, we obtain a node v that has
the highest efficiency to place x considering the resource
restriction of the node. When placing the core VNF x on node
v, ĉ resources are consumed, and the remaining resource,
Cv(t), decreases by ĉ. When Cv(t) is lower than ĉ, VNF
x cannot be placed on v. When the node v, which exhibits
the highest efficiency, does not satisfy the node resource
restriction or x has already been placed on v, Algorithm 1
sets v to a node with the next highest efficiency. This process
of placing the core VNF x is repeated wx times, which is the
number of duplications of the core VNF x.

Next, we explain where to place the periphery VNFs.
Given the placements of core VNFs by Algorithm 1, we
place and connect periphery VNFs sequentially from the
source node to destination node via nodes where core
VNFs are deployed. Note that a service-chain is composed
of periphery-core-periphery VNFs as depicted in Fig. 2.
Thus, there are three path segments between the source and
destination nodes: a segment for periphery VNFs (source
side), that for core VNFs, and that for periphery VNFs
(destination side).

Algorithm 1 Core placement algorithm of CLCP

Input: G = (V,E), X , wx

1: if t = 1 then
2: for each x ∈ X in descending order of ĉ do
3: v⇐ node with the highest efficiency
4: for loopcounter = 1 to wx do
5: while Ĉv(t) < ĉ or x has already been placed to

v do
6: v⇐ node with a next higher efficiency
7: end while
8: place x to v
9: end for

10: end for
11: end if

Algorithm 2 calculates a set of available paths for each
path segment, Pavail, and determines the possible nodes
on which core VNFs can be placed, under the resource
restriction of the node in line 7. In addition, it considers
the bandwidth resource restriction in line 13. In using link
e for accommodating a service-chain request r, br bandwidth
resources are consumed by Be(t), which is defined as the
resources remaining on link e. br should not exceed Be(t);
otherwise, r cannot use e because of the lack of bandwidth
resources. When Um,v is 0 for all m and v, or Algorithm 2
cannot obtain Pavail with the remaining bandwidth resources
larger than br, a service-chain request r is rejected.

Algorithm 3 places the periphery VNFs along the Pavail

obtained by Algorithm 2. However, when the hop count
between the nodes in Pavail is too short, periphery VNFs
cannot be placed because there are fewer opportunities to
find a node to run them. To avoid such a situation, we
consider detour paths other than the shortest path for each
path segment from lines 11 to 16 . In more detail, when m
is placed on v, which deploys core VNFs and does not retain
sufficient resources, a detour path, p, is selected using the
neighboring nodes of v.

3) GDCP
By placing the core VNFs at the center of a physical
network, as in CLCP, they can be used more frequently
for accommodating many service-chain requests. However,
using the central nodes that deploy core VNFs and
their neighbors leads to resource exhaustion because
such nodes are intensively used for accommodating
service-chain requests. Therefore, we examine another
placement algorithm that exhibits a distributed placement of
core VNFs on the physical network.

GDCP divides the physical network into clusters to
maximize modularity [15], and place duplication of core
VNFs in each cluster. Modularity is a metric that reflects the
density of the cluster density; a higher modularity leads to an
increased ratio of the number of links between clusters and
that in each cluster. Algorithm 4 shows the core placement
algorithm of GDCP. In line 2, we divide the physical network
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Algorithm 2 Algorithm to obtain available paths to place
periphery VNFs

Input: G = (V,E), X , P , r
Output: Pavail

1: Pavail ⇐ ∅
2: s′r ⇐ sr
3: for each m ∈ ~nr do
4: if m /∈ X then
5: continue
6: end if
7: if Um,v(t) = 0 for all VNF m and node v then
8: reject r
9: end if

10: d′r ⇐ node with the shortest path from s′r, VNF m,
and r̂m(t) < r̃m

11: Obtain ps′r,d′
r
∈ Ps′r,d

′
r

with the highest remaining
bandwidth resources

12: for each e ∈ ps′r,d′
r

do
13: if B̂e(t) < br then
14: reject r
15: end if
16: end for
17: add ps′r,d′

r
to Pavail

18: s′r ⇐ d′r
19: end for
20: d′r ⇐ dr
21: Repeat from lines 11 to 17

into clusters using the Louvain algorithm [16] and obtain
the number of clusters ζ. The Louvain algorithm can obtain
optimized ζ to maximize modularity. Thus, line 3 sets wx,
which is the number of duplications of the core VNF x, to
ζ. Finally, these duplications are distributed to each cluster,
and placed on the node having the highest efficiency in the
cluster in line 6. For the placement of periphery VNFs on
GDCP, Algorithm 3 is used.

B. A MODEL FOR SERVICE-CHAIN REQUESTS
In the simulation for evaluating the algorithms, service-chain
requests are dynamically generated. Each request comprises
k VNFs, which is the sum of the numbers of core VNFs, kc,
and periphery VNFs, kp. Here, kc and kp are obtained using
the Eqs. 5 and 6, respectively.

When the time slot t is incremented, λ new types of
service-chain requests are generated. Both the source and
destination nodes of each service-chain request are selected
by using a uniform random. kc core VNFs are selected from
all |X| types of core VNFs using a uniform random. Note
that service-chain requests do not have duplicate VNFs.

C. RESULTS
We perform simulations to evaluate the CLCP and GDCP.
AaP [5] is used as a placement policy for comparison.
In this section, to reveal the basic characteristics of each

Algorithm 3 The CLCP periphery placement algorithm

Input: G = (V,E), X , P , R
1: for each r ∈ R in descending order of br do
2: call Algorithm 2 and obtain Pavail

3: p⇐ first path of Pavail

4: v⇐ source node of p
5: for each m ∈ ~nr do
6: if m ∈ X then
7: p⇐ next path of Pavail

8: v⇐ source node of p
9: continue

10: end if
11: if v owns any core VNF then
12: while Cv(t) < ĉ do
13: v ⇐ neighbor node of v with the highest

remaining node resource Cv(t)
14: end while
15: add a detour that can reach v to p
16: end if
17: while Cv(t) < ĉ do
18: if v is the destination node of p then
19: reject r
20: end if
21: v⇐ next node of p
22: end while
23: place m to v
24: end for
25: end for

Algorithm 4 Core placement algorithm of GDCP

Input: G = (V,E), X
1: if t = 1 then
2: divide G into ζ cluster by using Louvain algorithm
3: wx ⇐ ζ
4: for each x ∈ X do
5: for loopcounter = 1 to wx do
6: Place a duplication of core VNF x to the

node that has the highest efficiency in the
loopcounter-th cluster

7: end for
8: end for
9: end if

placement policy, we first perform simulations when the
resources are infinite. Next, we consider the case in which
only node resources are finite and become a bottleneck for
accommodating service-chain requests. Finally, we show the
simulation results when both the bandwidth resources and
node resources are finite.

1) Results with no resource restriction
We use a 7 × 7 grid network as the physical network,
where both the initial node resources Cv(0) and bandwidth
resources Be(0) are infinite. The number of VNFs
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TABLE 2: Average hop counts of paths used by each
placement policy

setting placement policy average hop count
CLCP 6.65

|X| = 500, γ = 0.001 GDCP 7.15
AaP 6.50

CLCP 6.63
|X| = 500, γ = 0.0015 GDCP 6.70

AaP 6.49

comprising a service-chain request, that is, chain length k,
is decided by using a uniform random from the range [4, 8].
When t is incremented, new λ = 10 service-chain requests
are generated. Because the Louvain algorithm divide the 7 ×
7 grid network into five clusters, we set wx of both CLCP
and CDCP to 5. The deployment cost, α, is decided using a
uniform random from the range [1, 1.2].

Figure 6 shows the deployment cost of each placement
policy when CLCP and GDCP place |X| = 500 core
VNFs in advance, which are used for accommodations at a
frequency of γ = 0.001. When the resources are infinite,
the deployment costs of the CLCP and GDCP are the same,
and thus, both are indicated by the CLCP / GDCP line
in the figure. At t ≤ 80, the deployment cost of AaP is
lower, but at 80 ≤ t, the deployment cost of CLCP / CDCP
reduces below that of AaP. This is because CLCP and GDCP
reduce the number of additional VNFs to be placed, by
using the already placed core VNFs to accommodate new
service-chain requests.

Placing more core VNFs in advance reduces the
deployment costs of CLCP and GDCP. Figure 7 shows the
deployment cost of each placement policy at |X| = 700; that
is, CLCP and GDCP place more core VNFs in advance. The
deployment costs of CLCP/GDCP at t = 150 are 12.76%
less than those of AaP. This is because placing more core
VNFs increases the opportunity to use them to accommodate
a service-chain request and reduce the opportunity to use
periphery VNFs. Moreover, the parameter γ affects the
deployment costs of CLCP and GDCP. As γ increases, the
core VNFs are used more frequently to accommodate the
service-chain requests.

Table 2 shows the average hop count of paths used by each
placement policy to accommodate the service-chain requests.
The average hop count of CLCP is smaller than that of GDCP.
CLCP places core VNFs at the center of a physical networ,
which has, on average, a short hop count from any node.
In addition, it tends to use shorter paths through nodes that
deploy core VNFs as compared to GDCP. Note that AaP is
the placement policy with the shortest hop count because it
uses the shortest path from the source node to destination
node, while CLCP and GDCP use a detour path.

2) Results with restrictions on computing and bandwidth
resources
First, we consider a case in which only the node resources are
finite and become a bottleneck to accommodate service-chain
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FIGURE 6: Deployment costs of each placement policy
(|X| = 500, γ = 0.001)
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FIGURE 7: Deployment costs of each placement policy
(|X| = 700, γ = 0.001)

requests. A 7 × 7 grid network is again used for the
physical network. We set the initial node resources Cv(0)
to 100 for each node v ∈ V and the initial bandwidth
resource Be(0) to infinity for each link e ∈ E. The node
resource consumed by a placed VNF, ĉ, is decided using a
uniform random from the range [0.4, 1]. The upper number
of service-chain requests that can use a VNF m placed at
node v without processing overhead, Um,v(0), which is the
maximum number of service-chain requests that can use a
VNF m placed at node v, is set using a uniform random from
the range [4, 40]. When the time slot t is incremented, λ = 10
service-chain requests are newly generated. The chain length,
k, is decided using a uniform random from the range [4, 8],
and the deployment cost for each VNF, α, is decided using a
uniform random from the range [1, 1.2].

Figure 8 shows the deployment cost of each placement
policy when |X| = 500, γ = 0.001 and wx = 5. In
the figure, the deployment costs per service-chain request
accommodated by CLCP and GDCP decreases as t increases.
This result indicates that CLCP and GDCP reduce the
deployment cost by repeatedly using the core VNFs.
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FIGURE 9: Amount of node resources consumed by the
placed VNFs: Cv = 100, Be is infinite, |X| = 500, γ =
0.001, wx = 5

Note again that a reduction in the deployment
costs appears when many service-chain requests are
accommodated (t ≥ 90). Otherwise, the initial costs to
deploy the core VNFs are significant; the deployment cost
of AaP at t = 1 is 6.82, whereas that of CLCP and GDCP is
278.69.

The deployment costs of GDCP are lower than those
of CLCP, because they accommodate different numbers of
service-chain requests due to the node resource restriction.
CLCP places core VNFs only on nodes at the center of
the physical network and intensively uses these nodes to
accommodate service-chain requests; thus, node resource
restrictions are likely to occur. In contrast, GDCP distributes
core VNFs on the physical network, and thus, can
use geographically distributed nodes and accommodate
more service-chain requests than CLCP. This can be
observed from Figure 9, which shows the amount of node
resources consumed by the placed VNFs per accommodated
service-chain request.

Next, we consider the case in which both the bandwidth
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FIGURE 10: Deployment cost: Cv = 100, Be = 500, |X| =
500, γ = 0.001, wx = 5
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FIGURE 11: Amount of node resources consumed by the
placed VNFs: Cv = 100, Be = 500, |X| = 500, γ =
0.001, wx = 5

resources and node resources are finite. Other settings are
the same as those in the case where only the node resources
are finite. Figure 10 shows the deployment cost of each
placement policy. We set Be to 500, keeping all other
parameters same as those in Fig. 8. Looking at t = 150
in Figure 10, the deployment cost per service-chain request
by GDCP exhibits the lowest value. The deployment cost
of CLCP is 12.99% larger than that in Figure 8, while
that of GDCP is only 4.26% larger. Figure 11 shows the
amount of node resources consumed by the placed VNFs
per accommodated service-chain request. In CLCP, nodes at
the geographic center of the physical network are intensively
used; thus, the links that can reach these nodes are also
intensively used. As compared to CLCP, GDCP can use
geographically distributed nodes and incurs fewer bandwidth
resource restrictions. We have conducted simulations on 9 ×
9 grid network, 49-node BA networks, and 40-node ternary
trees, which are not shown here. Similar tendencies are
observed for AaP/CLCP/GDCP.

Our results show that GDCP mostly reduces the
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deployment costs for CPBD when there are many
service-chain requests. As CPBD also reduces the
development costs, the core/periphery-based software
design and distributed placement are suitable for NFV
systems for accommodating future service-chain requests.

V. CONCLUSION
In this paper, we investigated the software design and
placement method of VNFs to reduce the long-term
development and deployment costs against the change in
service requests. We first considered designing an NFV
system based on a core/periphery structure, and repeatedly
used core VNFs to accommodate future service requests.
Our evaluation results indicated that such software design
based on the core/periphery structure can accommodate
service-chain requests with lower development costs than
that without core VNFs. Moreover, we investigated where to
place the core VNFs in the physical network by examining
CLCP and GDCP. Our results showed that GDCP is the best
placement policy that can accommodate many service-chain
requests with low deployment cost, and the difference
between GDCP and CLCP is significant when there are
resource constraints on nodes and/or links.

In this paper, the incremental development of VNFs was
considered. However, in reality, some of core VNFs would
be no longer necessary as the time proceeds, because of the
changes in service-chain requests. One of the future works is
to consider removing the not required VNFs from the nodes.
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