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Abstract—The “Internet of things” has become a common
term, and low-power wide-area (LPWA) technology is attracting
much attention as one of its elemental technologies. LPWA
achieves wide-area communication without consuming much
energy, allowing various data sensing and gathering applica-
tions. LoRa is an LPWA communication technology that uses
unlicensed bands. Because it is possible to build a self-managed
network with LoRa, many LoRa-based services will be scattered
in the same area without an overall administrator. As a result,
the communication performance of LoRa may degrade due
to unintended radio interference. Unfortunately, many LPWA
techniques, including LoRa, have low data rates, making it
difficult to gather sufficient control information to avoid such
degradation of communication performance. In this paper, we
propose a method for estimating network congestion states
through successive estimation using Bayesian updates of prior
distributions. Computer simulations show the network state can
be estimated by our proposed method with accumulating a little
control information.

Index Terms—Bayesian attractor model, human cognition
model, state estimation, LPWA

I. INTRODUCTION

Low-power wide-area (LPWA) networks, which realize low-
power and wide-area communication, are rapidly attracting
attention [1] because LPWA techniques facilitate the devel-
opment of the Internet of things (IoT) by simplifying data
collection from multiple users and devices. SigFox, a repre-
sentative LPWA standard, has been rolled out in more than
65 countries as of 2020 [2]. Another representative standard,
LoRa (long range), is available in more than 160 countries,
and the LoRa Alliance was launched in 2015 and now has
more than 500 member companies [3]. One company in each
country is allowed to deploy a SigFox network service as
its network operator, and users must use the public network
operated by this operator. With LoRa, on the other hand,
users can freely build their own networks by using products
standardized by the LoRa Alliance.

When using LPWA, considering only power consumption of
the wireless module, it is possible to operate communication
equipment for several years, even with commercially available
batteries. Regarding communication distances, unobstructed
signals can be delivered to the gateway from about 10 km. By

combining LPWA with a communication module that supports
various sensing devices, it is possible to easily collect infor-
mation from devices. All technologies realizing low power
consumption and wide-area communication are combinations
of existing technologies, but LPWA’s applicability is very high,
and it is therefore expected to advance IoT [4].

Most wide-area networks (WAN) using LPWA devices
construct a star network consisting of a gateway and nodes,
in other words, a many-to-one communication system between
nodes and a gateway [1]. In particular, uplink communications
from node to gateway are considered to be widely used
in IoT applications, occupying most of the traffic. In this
case, because nodes do not need to relay data, they can
power the wireless module only when they want to transmit
data, leaving it unpowered at other times. Such intermittent
communication significantly reduces power consumption of
the wireless module. LPWA is also designed to have a high
link budget, which is one of the reasons it can achieve long-
distance communication. Its elemental technologies include
use of relatively low-frequency bands, a modulation method
that is robust against interference and noise, and an antenna
with high reception sensitivity. In particular, the data rate is
designed to be relatively low (several hundred bps to several
kbps) compared with conventional mobile networks.

However, this low data rate lengthens LPWA data trans-
mission times. LoRa and SigFox use the ALOHA protocol
for the MAC layer, and there are concerns that data frame
collisions will increase as the number of nodes increase [5].
By confirming received signal strengths before transmitting
signals, it may be possible to avoid collisions by detecting a
carrier radio wave like that used in IEEE 802.11. However,
if the IEEE 802.11 clear channel assessment (CCA) threshold
of about −80 dB is used, radio signals with signal strengths
below the threshold can reach the gateway due to the high
antenna reception sensitivity of LPWA nodes, so collisions are
likely, as in the case of using the ALOHA protocol. However,
lower thresholds increase the probability that nodes judge
the wireless channel to be busy, thereby increasing loss of
transmission opportunities.

Users can use LoRa to build private networks with nodes



and gateways [6]. Therefore, there will eventually be an envi-
ronment where many private LoRa wide-area networks (Lo-
RaWAN) will be constructed close to each other. This will
increase the influence of interference due to the resulting
increased number of nodes [7]. In addition to this interference,
communication quality between nodes and their gateway will
fluctuate over various time scales due to various causes, such
as the existence of other systems using the same frequency
band or the occurrence of obstacles. Multiple data rates and
wireless channels are available in LoRa, and the gateway can
cope with fluctuations in communication quality by assigning
to nodes an appropriate data rate and wireless channel. How-
ever, to determine appropriate data rates or wireless channels
according to changes in communication quality, the gateway
must capture changes in communication quality and make
decisions according to those changes at the right time.

In this paper, we propose a method by which LoRaWAN
gateways can autonomously grasp changes in communication
quality.

Here, wireless communication quality fluctuates temporally,
but nodes do not always observe the communication quality
of available wireless channels. Furthermore, the wireless re-
sources available for information collection are limited, and it
would take a very long time to gather sufficient information
for performing any type of optimal control. Various studies
have proposed methods for overcoming channel fluctuations in
LPWA networks [8], but most approaches involve the physical
layer, which is inflexible.

We therefore focused on the information recognition mech-
anism of the human brain, which performs appropriate in-
ferences even when sufficient information is not available.
It is known that in the process of information cognition in
the human brain, there is a top-down type of information
processing that makes decisions by comparing information
input from various sensory organs with memories stored in
the brain [9]. It has recently been reported that this series of
information processes can be explained by a decision-making
model based on Bayesian inference. In the Bayesian attractor
model (BAM) proposed in Ref. [10], a hidden (decision)
variable representing the decision state of the brain is defined
on the state space, and this variable follows the dynamics
with multiple attractors. In addition, a nonlinear function
for converting the state space of the decision variable into
the feature space is defined. Feature variables are defined
in the feature space and each feature variable corresponding
to each attractor corresponds to a memory in the brain, as
described above. At this time, the Bayesian attractor model
models neural information processing as follows: it (1) ob-
serves sensory information, (2) updates decision variables by
Bayesian inference based on the observed information and the
dynamics of the decision variables, and (3) make a decision.
It is worth noting that the posterior probability distributions
of the decision variables give us an appropriate timing of the
decision making.

In this paper, we assume that multiple LoRaWANs exist
in the same area. At this time, decision variables in the

current 

condition is 

Fig. 1. Autonomous control loop with the Bayesian attractor model.

Bayesian attractor model are associated with the degree of
communication congestion in the wireless channel. Figure 1
shows an overview of our proposal. Each attractor represents a
different congestion degree, mapped to feature values at each
congestion degree by conversion using the above-described
nonlinear function. Our proposal is based on a Bayesian
attractor model operating on a gateway (or a network server
ahead of it), so feature values need to be observable by the
gateway. The gateway periodically calculates the feature values
based on communication with nodes, and inputs the calculated
feature values to the Bayesian attractor model. The decision
variable is then updated according to the input. By performing
this for each wireless channel, it is possible to estimate the
congestion degree of each wireless channel.

The remainder of this paper is organized as follows. In
Section II, we show the detail of the Bayesian attractor model.
In Section III, we present our extension of the BAM at first.
And then we describe the definition of feature values and
how we determine the memories embedded in attractors of
the BAM. In Section IV, we show the performance of our
proposal through the computer simulation. Section V gives
the conclusion of this chapter.

II. BAYESIAN ATTRACTOR MODEL

The BAM uses a Bayesian estimation framework to model
information perception and decision-making by the human
brain. Our group has shown that the BAM can be used to
reconfigure a virtual network in an optical network to create
a virtual network suited to traffic situations [11], and that the
BAM can be used for the rate control of the video streaming
system [12].

The BAM represents the cognition in the brain by a state-
space model where z is a state vector and x is an output
vector. In the BAM, variables representing the internal deci-
sion state of the brain are defined as hidden variables that are
updated according to known dynamics. The decision variable
z approaches one of the attractors existing in the state space,
due to the aforementioned dynamics. The BAM estimates z
based on perceived information. However, since z is a hidden
variable, Bayes’ theorem is used to estimate z.

A. Generative model

In the BAM, the decision variable z for the brain is
represented as a random variable, and z is updated by non-



linear dynamics with K attractors. Given an initial state, z
approaches one of the attractors as

zt = zt−∆ +∆g(zt−∆) +
√
∆wt, (1)

where z is a K × 1 vector, ∆ is the update interval, and
wt is a random number following a normal distribution
N (0, q2/∆), with q representing the magnitude of the process
error included in the generative model. g is winner-take-all
network dynamics, defined as

g(z) = k(Lσ(z) + blin(ϕ− z)), (2)

where k is a constant determining the update scale, ϕ is a
K × 1 matrix, and all elements of ϕ have the same value
ϕg . blin indicates the strength of a goal-state attractor. Also,
L = blat(I − 1), where I is a unit matrix, 1 is a K × K
matrix in which all elements are 1, and blat indicates the
strength of lateral inhibition in the winner-take-all network
dynamics. σ is a sigmoid function, σ(zi) = 1/(1+e−d(zi−o)),
and each element zi of z is normalized to the range [0 1]. d
determines the attenuation characteristic and o determines the
position of an inflection point of the sigmoid function. By
repeating dynamics g, only one element of z converges to ϕg .
By setting o = ϕg/2 and blat/blin = 2ϕg , the other elements
of z converge to −ϕg . In other words, the K attractors in the
dynamics of z are K × 1, where only the ith element is ϕg

and the other elements are −ϕg (i = 0, . . . ,K − 1).
In the BAM, each attractor of the generative model is

associated with a feature vector representing past memory and
experience. A feature vector xt corresponding to a certain
decision variable is generated as

xt = Mσ(zt) + vt, (3)

where M = [µ0 µ1 . . . µK−1] is a feature matrix listing
feature vectors, µ is an m × 1 vector, and M is an m × K
matrix. vt is a random number following the normal distribu-
tion N (0, r2), where r represents sensory uncertainty.

B. Bayesian filter

The BAM estimates the decision variable z based on
the predefined generative model and perceived information.
Because z is a hidden variable and is updated temporally
according to the generative model, a sequential Bayesian filter
is used for estimation. Reference [10] uses a Bayesian filter
called the unscented Kalman filter (UKF) [13]. While the
general Kalman filter has poor estimation performance when
dealing with nonlinear dynamics, the UKF mitigates these
shortcomings, approximating the probability distribution by
using a generative model and a small number of samples called
“sigma points,” which are calculated based on the estimated
standard deviation.

Using the UKF gives the posterior probability distribution
P (zt|xt) of z at time t, allowing calculation of the probability
density for each attractor P (zt = ϕn|xt). The authors of
Ref. [10] refer to this probability density value as confidence,
using it instead of marginal likelihood as a decision-making
index in the BAM because the computational load required for

marginalization increases exponentially when the number of
attractors increases. When the confidence exceeds a predefined
threshold λ, ϕn is determined as the estimation result. Here, ϕn

is a K×1 matrix, and in this paper, the n-th and other elements
are ϕg and −ϕg , respectively (with n = 0, . . . ,K − 1).
Because UKF is used in the BAM, confidence is defined using
the density function of the multivariate normal distribution.
The BAM confidence thus exponentially decreases as the
dimensionality of z increases; therefore, an appropriate value
for λ must be carefully considered in advance.

III. BAYESIAN-BASED CHANNEL ESTIMATION METHOD

In this paper, we propose a method for estimating the degree
of congestion in wireless channels. First, we describe our
extension of the BAM to make it suitable for LoRaWAN
applications. Then, we describe how we designed features and
attractors of the BAM in our proposed method.

A. Extension of the BAM

From an engineering point of view, the BAM can be
regarded as an estimation tool for determining coincidence
between features observed from noise sources and features
memorized in advance. However, there are some issues to ad-
dress when applying the BAM in this way. In general, when the
dimension of z exceeds the dimension of x, estimation of z
by x is an underdetermined problem; that is, solutions are not
uniquely determined. In the BAM, z is updated by dynamics
with attractors, so we can expect z to eventually converge to
one of the attractors. However, the Kalman filter minimizes
variance of the model error, so that once z is estimated at
a position other than the attractor and the estimated variance
at that time has a small value, it will stop at an equilibrium
point other than an attractor. The confidence value is low at
such points, and it is uncertain whether confidence exceeds
the threshold.

Bitzer et al. verified characteristics of the BAM as an
information processing model of the brain in [10]. In doing
so, they did not assume situations where the dimension of z
is equal to or larger than the dimensionality of x, or where it
becomes a sub-determination problem. Instead of the UKF
we use a particle filter [14], which is a kind of Bayesian
filter, to make estimations possible even in sub-determined
cases. A particle filter is a state estimation method based
on Bayesian estimation. Probability distributions required for
state estimation are represented as sets of many particles rather
than as mathematical expressions, and posterior probability
distributions are approximated using weighted particles in the
state space. The particle filter performs a sequential Monte
Carlo simulation and weights particles based on the likelihood.
By defining a likelihood function with lower values at non-
attractor positions, we can expect z to have a higher proba-
bility of approaching attractors than staying at a non-attractor
equilibrium point, as described above, and so the estimated
result should be in the vicinity of one of the attractors.



The following shows the particle filter algorithm applied to
the BAM in this paper. We assume that all particles pi (i =
0 . . . NP − 1) are initialized in advance.

1) Update pi according to Eq. (1): pi ← pi +∆g(pi) +w,
where we use a random number following N (0, s2PF )
for each element of w in our evaluation.

2) Calculate the weight of a particle i as Wi = P (y|pi),
where y is observed data. If the distribution of the
observed value y is known, it is used for the likelihood
function P (y|pi). If unknown, use an approximation
with an appropriate distribution.

3) Calculate the weighted average of pi as ẑ =∑NP−1
i=0 W−1Wipi, where W =

∑NP−1
i=0 Wi.

4) Resample pi using a sampling importance resam-
pling (SIR) method [15]. In the SIR method, the current
particle set is replaced by a new particle set that consists
of NP particles selected from the current particle set
with probabilities proportional to their weight, Wi.

In general, increasing the number of particles NP improves
the estimation accuracy, but the calculation time also increases
in proportion to NP .

B. Design of features and attractors

Assuming a communication system using LoRa, we aim
to achieve efficient communication even under unexpected
changes in the quality of wireless communication. Various fac-
tors affect communication quality, such as increased numbers
of private networks using LoRa, increased numbers of devices
using the same wireless frequency band, or blocking structures
that disrupt communication. Information with sufficient gran-
ularity and quantity is required to identify any such factors.
However, as mentioned in Section I, LPWA communication
systems have limited wireless resources for collecting control
information.

If a feature value is unique when an event S occurs, we can
estimate whether the occurring event is S by storing this fea-
ture value in the BAM. Although the event is not necessarily
S for a feature, here we assume one-to-one relations between
features and events. In addition, it is generally difficult to
acquire feature values for a given event before it occurs. It is
also possible that unforeseen events may occur during network
operations, making it necessary to store new features in the
BAM during operations. The problem here is that network
systems can observe features, but not events themselves. We
thus consider that network administrators should observe and
set the event. We assume relations between features and events
to be known and one-to-one; updates of the numbers of
attractors and features is beyond the scope of this study.

Because users can build private LoRaWANs, multiple net-
works can coexist in the same area and congestion of wireless
channels may change. In such cases, we use the BAM to
predict changes in congestion for each wireless channel. The
BAM stores features µi representing the degree of congestion
when there are Ni nodes, where i is the number of states
to remember and is equivalent to the number of attractors.
In this paper, we use data reception and data decode success

rates, which are realistically available to the gateway, as feature
variables. These values are periodically calculated for the
previous interval and input to the BAM. The data reception
rate is obtained by dividing the number of data points actually
received by the gateway and successfully decoded during
the interval by the expected number of received data points.
We assume that the gateway has a known data transmission
schedule for each node. The data decode success rate is the
percentage of data points received during the interval that was
successfully decoded. In addition to these two rates, we use
the ACK reception rate, the rate at which a node does not
receive an ACK after data transmission. Note that the gateway
cannot directly observe this rate; therefore, we assume that
the gateway can approximate this rate by storing in headers of
node-transmitted data information showing whether an ACK
was received for the last data transmission. We use these three
rates because they show different characteristics, the first two
representing degrees of congestion around the gateway and
the third representing degrees of congestion around nodes.
Figure 2 shows an overview of our proposal.

IV. RESULTS

A. Simulation settings

In this section we describe a simulation for evaluating our
proposal in a LoRaWAN scenario. Two hundred LoRa nodes
and one gateway are installed in a 5 × 5 km2 area. The
x and y coordinates for a node are determined according
to uniform random numbers in the range 0–5 km, with the
gateway set at (0, 0). Each node periodically generates data at
5-min intervals. The data generation timing is asynchronous
among nodes, with a uniform random timing of −2.5 to 2.5 s
added to the interval to avoid continuous data collisions. The
number of wireless channels available for nodes is set to 4
(c1, c2, c3, c4), and the number of nodes using each wireless
channel is set to 50 at the start of the simulation.

Data and ACK frame sizes are 50 and 10 bytes, respectively,
and the data rate is 1.5 kbps. The nodes and the gateway
perform 5 ms carrier sensing before transmitting data and an
ACK frame. The CCA threshold is set to −83 dB, and frame
transmissions are cancelled when a signal using the same
channel is detected. In data transmissions, nodes retransmit
data only once in total when a wireless channel is detected
to be busy by carrier sensing or when the gateway does not
return an ACK.

In the signal propagation model, we consider only direct
waves as given by the Frisian transfer formula. The frequency
used here is 920 MHz, the attenuation coefficient is 2.5, the
antenna reception sensitivity of the nodes and the gateway is
−131 dB, the transmission power is 13 dB, and the gain of the
transmitting and receiving antenna is 5 dB. For data and ACK,
decoding errors are stochastically generated according to the
signal-to-noise ratio (SNR) at the time of reception. We used
a simple decoding error model in this study, because the bit
error rate will vary greatly in actual applications, depending
on the environment. Specifically, the bit error rate is 100%
when SNR is 0 dB or less, 50% when SNR is 0–5 dB, 10%



Fig. 2. Overview of our proposal.

TABLE I
BAM PARAMETERS.

Parameter Value description
blat 1.7 strength of the lateral inhibition
blin blat/20 strength of a goal state attractor
g 10 distance factor between attractors
r 0.7 slope of sigmoid function
o g/2 center of sigmoid function
∆ 0.004 time difference
k 500 scale of dynamics

when SNR is 5–10 dB, 1% when SNR is 10–20 dB, and 0%
when SNR is 20 dB or more.

The total simulation time is 400 min. When 200 min has
passed in the simulation, 50 additional LoRa nodes are added
at random positions only on the specific wireless channel (c1).
These added nodes do not belong to the same network as the
above-mentioned nodes and gateway. They generate data at the
same interval (5 min), but the gateway does not return ACK
messages to them.

Table I shows parameters for the BAM. We set k for the
BAM to 500, a larger value than that used in [10]. This is
because the particle filter is based on randomly generated
particles, increasing the variability of z itself. The speed and
accuracy of the estimation depend on some parameters, and
here we focus on sPF that determines the degree to which
the particles spread. We set s2PF = 2.5. It is also necessary to
determine the number of particles and the likelihood function.
In this evaluation, the number of particles is set to 1,000. 1,000
particles are enough to estimate the distribution of z that has
three attractors, but when the number of the attractor, K get
larger, more number of particles is needed.

For the likelihood function L of particle pi, a multivariate
normal distribution is used as an approximate distribution of
observed values. Then, L(y|pi) = N (y−Mσ(pi), 2∗Σ) and Σ
is a variance-covariance matrix of observation. The variance-
covariance value in L(y|pi) is set larger than those for feature
observations to make the estimation robust. We use a variance-
covariance matrix of features when the number of nodes using
a given wireless channel (c1) is 100, which is obtained by
simulation in advance. The actual value of Σ used in the
simulation is

Σ =

 0.0043 0.0033 0.0058
0.0033 0.0037 0.0063
0.0058 0.0063 0.013

 , (4)

where Σ11 is the variance of the data reception rate, Σ22 is the
variance of the data decode success rate, and Σ33 is the ACK
reception rate. As the degree of congestion, we derive features
in advance by a simulation in which the number of nodes using
a given wireless channel (c1) is 50, 100, and 150. The features
are stored in the attractors ϕ1, ϕ2, ϕ3. The feature matrix M
used in the simulation is

M =

 0.98 0.97 0.91
0.95 0.94 0.83
0.91 0.90 0.76

 , (5)

where the first column is the data reception rate, the second
column is the data decode success rate, and the third column is
the ACK reception rate. The first, second, and third rows show
values when number of nodes is 50, 100, and 150, respectively.

The gateway calculates features (the data reception rate and
data decode success rate) each minute, inputting them to the
BAM immediately after calculation.

B. Channel quality estimation results

Figure 3 shows a sequence of input features y and an
exponential moving average of ȳ obtained in one LoRaWAN
simulation trial. ȳt is calculated as (1−α)ȳt−1+αyt−1, setting
α to 0.02. First of all, it can be seen that the observed features
fluctuate with time. The use of moving averages smooths out
this fluctuation, but does not allow us to estimate the degree
of congestion.

We show the change in confidence of the BAM when the
features yt obtained from the LoRaWAN gateway in Fig. 4
are observed every minute. As the BAM repeats observations,
confidence for ϕ1, which corresponds to the current congestion
degree, increases and stabilizes. Although this confidence may
temporarily fluctuate, it remains sufficiently large compared
with those for ϕ2 and ϕ3. After 200 min, when the congestion
changes, the confidence corresponding to ϕ1 gradually de-
creases and the confidence corresponding to ϕ2 increases, with
that for ϕ2 exceeding that for ϕ1 at 248 min. The proposed
method can appropriately estimate the posterior distribution
by repeating observations with Bayesian estimation, and the
degree of congestion can be estimated using the confidence.

We also show the change in the probability density of
ȳ, calculated as L(ȳ|z = ϕk) with k = 1, 2, 3. Since
L is defined with the distribution of the observed features
measured in advance, it well grasps the network state. The
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Fig. 3. Input values used in Fig. 4.

TABLE II
ESTIMATION TIME AND ACCURACY.

Method Time Accuracy
BAM (s2PF = 1.8) 83.7 min 86.6 %
BAM (s2PF = 2.5) 61.3 min 79.0 %

Moving average (α = 0.010) 103.5 min 90.5 %
Moving average (α = 0.015) 70.7 min 80.6 %
Moving average (α = 0.020) 53.0 min 75.3 %

probability density L(ȳ|z = ϕ1) is highest up to 200 min, and
can therefore be used to estimate the degree of congestion.
However, there is a problem that after 200 min, the values of
L(ȳ|z = ϕ1), L(ȳ|z = ϕ2), and L(ȳ|z = ϕ3) get closer, which
makes it difficult to set an appropriate threshold in advance
for the naive probability density.

Table II summarizes the estimation time and accuracy of
the two methods described above as average values over 50
simulation trials. The estimation time is the time required to
first estimate the degree of congestion corresponding to ϕ2

after 200 min. After the estimation result outputs this value,
we calculate the rate of time for which the confidence of ϕ2

is highest, defining this as the estimation accuracy.
It can be seen that the BAM could adjust the estimation

time and accuracy by changing the value of sPF . This is
similar to changing α of the moving average. Both of them use
the same function L, so the performance is almost the same
level. The BAM can make a decision based on confidence,
and by changing sPF , the estimation time and the accuracy of
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Fig. 4. Results of sequential state estimation.

the estimation can be flexibly adjusted. This is an important
advantage of our method for applying it to various control
methods.

V. CONCLUSION

In this paper, we proposed a method for estimating the
degree of wireless channel congestion in LoRaWAN using
the Bayesian attractor model (BAM), which is based on a
human cognitive mechanism model. By using the confidence
output from the BAM, we can flexibly determine the timing
of decision making according to the amount of observed
information and the magnitude of fluctuation in observed
information. To make the BAM easier to apply to LoRaWAN
scenarios, we used a particle filter instead of the unscented
Kalman filter that was adopted in the original BAM work.
Using the BAM, our proposal can predict changes in the
degree of wireless channel congestion with comparatively little
information but without being greatly affected by temporary
fluctuations in observed values. This should allow adaptive and
stable control of a LoRaWAN system. In future research, we
will combine our method with channel assignment control and
compare it with other methods to demonstrate the advantages
of the proposed method, especially in terms of communication
performance.
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