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Abstract

Machine learning (ML) models are often adopted in malware detection systems. To en-

sure the detection performance in such ML-based systems, updating ML models with new

data is crucial to minimize the influence of concept drift. After an update, the detection

accuracy is commonly used to validate the new model. However, the detection accuracy

dose not include detailed information regarding the causes of performance changes or

slight changes in updates. When a system does not achieve the detection performance as

expected, these information can explain the changes in updates and help with the further

improvement. We therefore propose a method for understanding ML model updates in

malware detection systems by using a feature attribution method called Shapley additive

explanations (SHAP), which interprets the output of a ML model by assigning an impor-

tance value called a SHAP value to each feature. Since feature attribution will change

as the model changes, we can analyze the model changes by calculating the SHAP value

changes before and after updates. Using our method, we can identify the important fea-

tures related to the performance changes and distinguish the slight changes in models

due to updates. We can also analyze the effects of new data and the tendency of new

predictions.
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1 Introduction

In malware detection systems, machine learning (ML) is a common method to detect

malicious data. Such ML-based malware detection systems adopt ML models to train on

data and give prediction for new data. Due to a phenomenon called concept drift [1],

the detection performance in a ML-based systems gradually degrades as the statistical

characteristics of data change over time [2]. In that situation, adding new data to the

training dataset and updating the ML model can effectively improve detection performance

of the systems.

After the update, the new model is validated using test data in terms of detection

performance [3]. Once the model is successfully validated, it can be deployed in a real

detection system. So far, the detection accuracy of the test data has been used as a metric

to validate the model after a update. However, the accuracy does not include detailed

information such as why performance improved or slight changes in the model affecting

the detection. Such information is beneficial in terms of ML-based systems because we can

improve data collection efficiency based on types of insufficient data, and we can prevent

unexpected detection caused by slight changes in the model.

To obtain detailed information about model updates, we propose a method for iden-

tifying samples whose feature attributions in predictions have significantly changed after

the update. Feature attributions represent the extent of contribution that features have

made to model predictions in a system. When a model is retrained using training dataset

updated by adding new data, it may find important features that were overlooked before

the update. The attributions of such features change significantly. In other words, by

analyzing significant changes in feature attributions, we can identify model changes in

detail. In the proposed method, increasing rates of feature attributions are calculated by

comparing attributions before and after the update to analyze the model changes.

In our experiments, we use Android application data, including 11,649 benign and

1,430 malicious samples, and build models for detecting malicious samples. We evaluate

the effectiveness of the proposed method by analyzing model changes while gradually

adding new data to training dataset. The experimental results show that most changes

were caused by adding malicious samples. The proposed method also identifies slight
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model changes that could not be identified based on the area under the curve (AUC).

Moreover, we conduct a case study to show that information about identified slight changes

is beneficial in terms of ML-based systems in order to confirm that changes have no

negative effect on malware detection.

The remainder of this thesis is organized as follows: Section 2 introduces related work

and the SHAP concept. Section 3 presents the proposed method. Section 4 shows our ex-

periments and results. Finally, Sections 5 and 6 provide a discussion and our conclusions.
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2 Related Works

We propose a method for analyzing model changes to confirm that the performance has

improved after updates. Before presenting our method, in this section we introduce some

other methods for evaluating the appropriateness of models. We also introduce a method

for determining features that contribute to classification.

2.1 Evaluation Methods

2.1.1 Model Evaluation Metric

For evaluating the classification performance of ML models, there are several common

metrics, such as accuracy, precision, recall, F-measure, true positive rate (TPR) and false

positive rate (FPR). Those are used to calculate a value indicating the model performance.

In binary classification distinguishing between positive and negative classes, samples are

divided into 4 different categories based on their predicted and true classes: true positive

(TP), true negative (TN), false positive (FP), and false negative (FN). TPs and TNs

are samples correctly predicted as positive and negative, respectively. FPs and FNs are

samples incorrectly predicted as positive and negative, respectively. In malware detection,

positive and negative samples refer to malicious and benign ones, respectively. The FPs

are benign samples which are incorrectly predicted as malicious.

The accuracy simply computes the ratio of correct prediction number to the total

sample number: TP+TN
TP+TN+FP+FN . The precision is the ratio of correct positive prediction

number to total positive prediction number: TP
TP+FP . The recall (also known as the

TPR) is the ratio of correct positive prediction number to total positive sample number:

TP
TP+FN . The FPR is the ratio of incorrect positive prediction number to total negative

sample number: FP
FP+TN . The F-measure (or F1-score) is the harmonic mean of precision

and recall:

2× precision× recall
precision+ recall

,

.

The model performance can also be shown in receiver operating characteristic (ROC)

curves. ROC curves have the true and false positive rates as vertical and horizontal axes,
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respectively. ROC curves and the area under the curve (AUC) are commonly used to

evaluate the ML model performance in cybersecurity.

Besides those metrics, there are also some criteria to evaluate the model in terms of

other perspectives. To avoid overfitting, two well-known criteria, the Akaike information

criterion (AIC) [4] and the Bayesian information criterion (BIC) [5], are usually used.

They are defined as

AIC = −2 ln(L) + 2K, (1)

BIC = −2 ln(L) +K ln(n), (2)

where K is the number of learnable parameters in the model, L is the maximum likelihood

of the model, and n is the number of samples.

2.1.2 Cross-validation

Cross-validation evaluates ML models by dividing a dataset into several subsets. To

estimate the model’s classification performance, one subset is used for validation and the

others are used for training. In k-fold cross-validation, a dataset D is randomly split into

k mutually exclusive subsets D1, D2, ..., Dk. The model is then trained and tested over k

rounds. In each round i ε {1, 2, ..., k}, training is performed on subset D \Di and testing

on subset Di. In validation, evaluation metrics such as accuracy and AUC score is usually

used to estimate classification performance. To reduce variability, the validation results are

combined or averaged over all rounds to give a final estimate of classification performance.

In stratified cross-validation, subsets are stratified so that they contain approximately the

same proportions of labels as the original dataset.

Although those evaluation methods can compute indicators reflecting model perfor-

mance, they cannot provide sufficient details of model updates.

2.2 Feature Attribution Methods

To explain predictions by ML models, importance values are typically attributed to each

feature to show its impact on predictions. The importance values of features can be output

by some popular ML packages such as scikit-learn [6], where permutation importance are

frequently used. Permutation importance randomly permutes the values of a feature in
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the test dataset and observes change in error. If a feature is important, then permuting

it should largely increase model error [7].

Another method for interpreting ML models is partial dependence plots (PDPs) [8]. A

PDP can show how a feature affects model predictions by the relation between the target

prediction and feature (e.g., linear, monotonic, or more complex). However, a PDP can

compute two features at most, and it assumes those features are not correlated with other

features. It is thus unrealistic to use PDP for models trained on data containing numerous

features.

Another popular approach is called local interpretable model-agnostic explanations

(LIME) [9]. LIME explains a given prediction by learning a model around that predic-

tion. By computing the feature importance values of a single prediction, we can easily

analyze what made the classifier output that prediction. Instead of explaining the whole

model, LIME explains only a single sample’s prediction result. However, LIME still uses

permutation to compute feature importance values, making LIME an inconsistent method.

Although these methods are meant to provide insight into how features affect model

predictions, the feature attribution methods described above are all inconsistent, mean-

ing that when the model has changed and a feature impact on the model’s output has

increased, the importance of that feature can actually be lower. Inconsistency makes com-

parison of attribution values across models meaningless because it implies that a feature

with a large attribution value might be less important than another feature with a smaller

attribution.

2.3 SHAP

The inconsistency of methods in Section 2.2 makes it meaningless to compare feature

attributions across models, which means we need a consistent method to analyze feature

attribution changes in different models.

SHAP [10] is a method that explains individual predictions based on Shapley values

from game theory. The Shapley value method is represented as an additive feature at-

tribution method (demonstrated in fig.1) with a linear explanation model g, described
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Figure 1: SHAP values explain model output as a sum of the attributions of each feature.

as

g(z) = φ0 +

M∑
i=1

φizi, (3)

where z ε (0, 1)M , M is the number of input features, and φi εR. The zi is a binary decision

variable to represent a feature being observed or unknown, and φi are feature attribution

values.s

Currently, SHAP is the only consistent and locally accurate individualized feature at-

tribution method. According to Ref. [10], SHAP has three desirable properties: local

accuracy, missingness, and consistency. Local accuracy means the sum of feature attribu-

tions equals the output of the model we want to explain. Missingness means that missing

features are attributed no importance, i.e., 0. Consistency means that the attribution

assigned to a feature will not be decreased when we change a model so that the feature

have a larger impact on the model. Consistency enables comparison of attribution values

across models.

When explaining a model f , SHAP assigns φi values to each feature [7] as

φi =
∑

S⊆A\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)], (4)

where fx(S) = f(hx(z)) = E [f(x)|xS ], E [f(x)|xS ] is the expected value of a function

conditioned on a subset S of the input features, S is the set of nonzero indexes in z, and

A is the set of all input features. The hx maps the relation between the pattern of binary

features z and the input vector space.

Since SHAP is the only consistent, locally accurate method for measuring missingness,

there is a strong motivation to use SHAP values for feature attribution. However, there

are two practical problems remaining to be solved, namely,
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1. efficiently estimating E [f(x)|xS ], and

2. the exponential complexity of Eq. 4.

When estimating the predictions of tree models, Lundberg and Lee [7] designed a fast

SHAP value estimation algorithm specific to trees and tree ensembles. This algorithm runs

in polynomial time instead of exponential time, reducing the computational complexity of

exact SHAP value computations for trees and tree ensembles.
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3 SHAP Increasing Rate for Model Update Understanding

When updating a ML model for real-world deployment, detailed information about model

updates is beneficial for preventing unexpected predictions in production. To obtain de-

tailed information, we proposed a method to identify features whose attributions signifi-

cantly changed after the update and samples containing those features.

Since SHAP is a consistent attribution method, meaning that SHAP values are in-

variant regardless of models, we use SHAP values to measure the attribution changes of

features across different models. We investigate changes in models in detail by analyzing

changes in the SHAP values of features.

Figure 2: The SHAP values of features change after updates.

Figure 2 shows an example of the changes in SHAP values before and after an update

regarding predictions of the same sample. A SHAP value is assigned to each feature to

show how important it is. A high SHAP value means that the corresponding feature has

large effect on the prediction, and a SHAP value close to 0 means that the corresponding

feature has almost no effect on the prediction. SHAP values for Features 2 and 4 decreased

to near 0, and Feature 1’s SHAP value increase greatly from a value near 0 after the

update, indicating that the model significantly changed regarding these features. On the

other hand, the SHAP values of Feature 3 has no significant change, meaning the model

did not change regarding this feature.

By analyzing features whose SHAP values have significantly changed, we can infer the

cause of model updates and its effect on classification performance.
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Our method defines an increasing rate that indicates the significance of changes in

feature attributions after a model update. Specifically, we compute SHAP values for dif-

ferent models, then calculate the significance of the increase in each feature’s SHAP value

due to the update. This increasing rate also shows whether changes in SHAP values are

increasing or decreasing. As shown in Figure 2, Feature 1 has a significant increase, while

Feature 2 and 4 have significant decrease after update. Unlike these features, Feature 3’s

increasing rate is close to 0 because its SHAP value has no significant change after the

update.

The following describes our definition of the increasing rate. Let D1 be the dataset

on which the model was trained before the update and let D′ be the data added for the

update. After updating, the model will be trained on dataset D2 = D1 ∩ D′. Then, let

the model as trained on D1 and D2 be f1 and f2, respectively. When predicting a label

for data x with model fm, we denote the SHAP value of the i-th feature xi as vmxi .

We define the increasing rate Ixi of a feature xi as the ratio of the SHAP value’s

increase to the smallest absolute SHAP value. Let v1xi be the SHAP value of feature xi

in the old model, and let v2xi be the SHAP value of feature xi in the new model. The

increasing rate is large only if the absolute value of one SHAP value (v1xi or v2xi) is large

and the other is close to zero. In other words, if the absolute values of both SHAP values

are either large or small, the increasing rate is small. We add constant terms c1 and c2 to

make the increasing rate small when both SHAP values are close to zero.

The increasing rate for feature xi is defined as

Ixi =
v2xi − v1xi + c1

min(|v1xi |, |v2xi |) + c2
,

where c2 > 0,

c1 =

 c2, when v2xi − v1xi ≥ 0,

−c2, when v2xi − v1xi < 0.

(5)

In this paper, we set the constant term c2 = 0.01.

The SHAP values of a sample x is an array of size N , where N is the number of

features:

vmx = [vmx1 , vmx2 , ..., vmxi , ..., vmxN ].
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The increasing rate of a sample is also an array of size N :

Ix = [Ix1 , Ix2 , ..., Ixi , ..., IxN ].

The increasing rate indicates the significance of a change in feature attributions due

to a model update. Based on the increasing rate, we identify samples whose feature

attributions have significantly changed. To that end, we use a threshold pair (k1, k2)

to select the high increasing rate and feature number, where k1 and k2 are mutually

independent. We identify a change in feature attributions of a sample x as significant by

counting the number of increasing rates whose absolute values exceed k1 and where the

number of increasing rates is larger than k2. By analyzing features whose absolute values

of increasing rates are larger than k1, we can infer changes in the model caused by the

update.

To investigate types of insufficient data, we count the number of significantly changed

samples for each type of change.

Specifically, we count the number of samples NI+ and NI− in the shared dataset D1,

focusing on increasing rates I > k1 and I < −k1, respectively. The more samples the

dataset D1 contains, the larger NI+ and NI− will be. We thus use ratios NI+/|D1| and

NI−/|D1| to investigate the extent to which a certain data type is insufficient.
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4 Experiments

In this section, we use Android applications to evaluate the effectiveness of the proposed

method. After introducing the dataset and machine learning models used in the exper-

imental setup, we show the experimental results when models are updated by gradually

increasing the training data size.

4.1 Experimental Setup

Dataset. We use samples from AndroZoo [11] to conduct the experiments. AndroZoo

is a collection of Android applications from several sources, including the official Google

Play app market and VirusShare. It contains over ten million Android application package

(APK) files. Each file has been analyzed by over 70 antivirus software packages, providing

knowledge of which are malware. We selected files not detected as malware by any antivirus

software for use as benign samples. For malicious samples, we selected files that were

detected as malware by at least four antivirus software packages.

We collected over 1,000 samples per month from AndroZoo between 2016 and 2018. In

total, we gathered 61,724 benign samples and 11,160 malicious samples. Our experiments

use applications collected from July to December 2017 to consider the stability of antivirus

detection and concept drift. We use applications collected over one year ago because Miller

et al. [12] empirically showed that antivirus detections become stable after approximately

one year. We minimize the influence of concept drift by using applications collected within

six months. We followed Ref. [13] when adjusting the ratio of malicious samples to benign

ones. Specifically, we set the percentage of malicious samples to 10% and benign samples

to 90% in the dataset. The resulting dataset therefore contains 11,649 benign samples and

1,430 malicious samples.

Feature. Before building models, we need to extract features from APK files in order

to apply machine learning. To extract features in our experiments, we use Drebin [14],

a lightweight method for detecting malicious APK files based on broad static analyses.

Features are extracted from the manifest and the disassembled dex code of the APK file.

From these, Drebin collects discriminative strings such as permissions, API calls, and

network addresses. In particular, Drebin extracts following eight sets of strings: four from
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manifests and four from dex code.

1. Hardware components

2. Requested permissions

3. App components

4. Filtered intents

5. Restricted API calls

6. Used permissions

7. Suspicious API calls

8. Network addresses

The features are embedded into an N -dimensional vector space, where each element

is either 0 or 1: Each element corresponds to a string, with 1 representing the presence of

the string, and 0 representing its absence. The extracted feature vector x is denoted as

x = (· · · 0 1 · · · 0 1 · · · ) .

The feature vector can be used as input for a machine learning model.

Classification Models. Our experiments use random forest [15], a method that is well

known for its excellent classification performance and can be applied to many tasks, in-

cluding malware detection. Random forest is an ensemble of decision trees. Each decision

tree is built using a randomly sampled subset of data and features. By creating an en-

semble of many decision trees, random forest achieves high classification performance even

when the dimensions of feature vectors exceed the dataset size. Furthermore, the SHAP

package [16] associated to Ref. [7] provides a high-speed algorithm called TreeExplainer

for tree ensemble methods, including random forest.

Hyperparameter Optimization. When training random forest models, we conduct a

grid search for each model to determine the best combination of parameters among the

following candidates:
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1. Number of trees: 10, 100, 200, 300, 400.

2. Maximum depth of each tree: 10, 100, 300, 500.

3. Ratio of features used for each tree: 0.02, 0.05, 0.07, 0.1, 0.2.

4. Minimum number of samples required at a leaf node: 5, 7, 10, 20.

Each candidate combination is validated using five-fold cross validation. Specifically, we

calculate an average of five AUC scores for each combination and select the best combi-

nation in terms of average AUC score as the result of the grid search.

Baseline. We use AUC scores as the baseline and evaluate whether we can obtain more

information with the proposed method than with AUC scores. AUC scores are frequently

used to evaluate classification performance of ML models for malware detection. AUC

scores can evaluate classification performance by considering true positive rates at various

false positive rates.

4.2 Updates by Increasing Data Size

In this experiment, we assume models are updated by gradually increasing the number of

samples in the training dataset. For this end, We split the dataset into training and test

datasets, and prepare nine training datasets with different sizes, as shown in Table 1. The

smallest dataset contains 10% of the randomly selected samples from the adjusted dataset.

We prepare the other datasets by repeatedly adding 5% of the remaining adjusted dataset

by random sampling.

4.2.1 Dataset

During the experiments, we noticed that classification performance no longer increases

after 50% of the adjusted dataset is used, so we decided to stop increasing the dataset

size after 4,077 benign and 501 malicious samples. For the test dataset, we randomly

select 30% of the adjusted dataset (3,495 benign and 429 malicious samples). Note that

the training and test datasets do not overlap. The test dataset is used to evaluate the

classification performance of the models, with all models being evaluated using this test

dataset in the experiments.
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Table 1: Model training data sizes

Malicious Benign

Model 1 101 816

Model 2 151 1,224

Model 3 201 1,631

Model 4 251 2,039

Model 5 301 2,447

Model 6 351 2,854

Model 7 401 3,262

Model 8 451 3,670

Model 9 501 4,077

4.2.2 Experimental Results

We present the results of three experiments. We first introduce the results of a preliminary

experiment for determining the threshold pair in the proposed method. We then compare

the proposed method and the baseline when analyzing model updates using the nine

models. This section concludes with a case study showing how outputs of the proposed

method can be used for further analysis of model updates.

Preliminary Experiment. To determine an appropriate threshold pair for the pro-

posed method, we conduct experiments using different threshold pairs and compare the

results. Specifically, we calculate the increasing rate using Equation (5), and count sam-

ples containing features with high increasing rate based on different threshold pairs. Each

threshold pair contains a threshold k1, which defines the minimum absolute value of the

increasing rate, and another threshold k2, which defines the minimum number of features

whose absolute values of increasing rates is larger than k1. In other words, samples se-

lected based on a threshold pair (k1, k2) are those containing at least k2 features whose

increasing rates are larger than k1 or lower than −k1. We count such samples for each sign

of increasing rate (I ≥ 0 for increase and I < 0 for decrease) and each label (malicious

and benign). In this experiment, an increase in SHAP values (I > 0) means samples are

18



Table 2: Number of samples whose increasing rates significantly changed based on different

threshold pairs

Threshold pair (2,1) (2,3) (2,5) (3,1) (3,3) (3,5) (4,1) (4,3) (4,5) (5,1) (5,3) (5,5)

Models 1&2
I ≥ 0 66/115 12/14 5/1 22/38 5/2 0/0 10/14 1/2 0/0 7/6 1/2 0/0

I < 0 75/146 31/9 4/4 56/36 1/2 0/2 24/16 0/2 0/0 6/5 0/2 0/0

Models 2&3
I ≥ 0 66/77 30/1 8/0 44/10 5/0 5/0 25/3 5/0 5/0 12/1 0/0 0/0

I < 0 97/96 1/0 0/0 12/19 0/0 0/0 1/2 0/0 0/0 1/0 0/0 0/0

Models 3&4
I ≥ 0 60/115 6/16 2/6 29/46 0/7 0/1 8/17 0/5 0/0 1/10 0/5 0/0

I < 0 24/48 0/6 0/6 0/8 0/5 0/4 0/7 0/5 0/0 0/6 0/5 0/0

Models 4&5
I ≥ 0 25/33 4/1 0/0 9/16 0/1 0/0 7/11 0/0 0/0 7/3 0/0 0/0

I < 0 8/36 0/1 0/0 0/4 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0

Models 5&6
I ≥ 0 17/61 1/10 0/3 3/26 0/2 0/0 0/8 0/0 0/0 0/1 0/0 0/0

I < 0 18/22 0/2 0/0 0/2 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0

Models 6&7
I ≥ 0 25/74 4/3 0/2 6/29 4/2 0/0 5/14 4/0 0/0 4/8 4/0 0/0

I < 0 64/61 1/0 0/0 25/8 0/0 0/0 0/3 0/0 0/0 0/3 0/0 0/0

Models 7&8
I ≥ 0 49/61 1/9 0/0 0/19 0/7 0/0 0/12 0/7 0/0 0/8 0/0 0/0

I < 0 78/46 0/1 0/0 1/9 0/0 0/0 0/4 0/0 0/0 0/1 0/0 0/0

Models 8&9
I ≥ 0 21/52 0/3 0/0 3/10 0/0 0/0 0/4 0/0 0/0 0/0 0/0 0/0

I < 0 4/12 0/0 0/0 0/1 0/0 0/0 0/1 0/0 0/0 0/0 0/0 0/0

more likely to be detected as malicious, whereas a decrease in SHAP values (I < 0) means

samples are more likely to be classified as benign.

Table 2 shows the results when using different threshold pairs. In the Table 2, the

number before / represents the number of malicious samples, and the number after /

represents the number of benign samples. When the thresholds are too high (e.g., k1 = 5

or k2 ≥ 3), most sample numbers are 0, which are nonsensical results. When the threshold

k1 is too low (e.g., k1 = 2), the sample numbers are always high, regardless of model

updates because increasing rates are larger than 2 even when changes in SHAP values are

small. These two are nonsensical results. The threshold pair is appropriate if the proposed

method selects only samples whose SHAP values significantly changes without ignoring

most samples. We therefore chose the threshold pair (3, 1) when conducting the following

experiments.

Comparison with Baseline. As baseline results, Table 3 and Figure 3 show the receiver

operating characteristic (ROC) curves and AUC scores for each model.
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Table 3: AUC scores for models 1–9

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

AUC 0.9389 0.9588 0.9607 0.9664 0.9695 0.9709 0.9740 0.9735 0.9745

Figure 3: ROC curves for models 1–9.

Table 3 show that the AUC scores gradually increased and the amount of increase

was relatively large for models 1–4 compared with models 4–9. This is because the ef-

fect of added data decreased as the training dataset size increased. Figure 3 also shows

that ROC curves of models 4–9 were close without depending on false positive rates. In

contrast, the ROC curves of models 1–4 were not close when the false positive rate is

larger than 0.01. These results are useful for knowing the extent to which adding new

data improves classification performance. However, we cannot know why classification

performance improved.

Table 4 shows results under the proposed method when using the threshold pair (3, 1).

In that table, the number of samples selected by the proposed method drastically decreased

after updating model 5. This result is the same as in the baseline. In other words, the

effect of adding data decreased as the training dataset size increased, but the proposed
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Table 4: Number and ratio of samples selected by threshold pair (3,1)

Malicious Benign Ratio

Models 1 & 2
I ≥ 0 22 38 0.065

I < 0 56 36 0.100

Models 2 & 3
I ≥ 0 44 10 0.039

I < 0 12 19 0.023

Models 3 & 4
I ≥ 0 29 46 0.041

I < 0 0 8 0.004

Models 4 & 5
I ≥ 0 9 16 0.011

I < 0 0 4 0.002

Models 5 & 6
I ≥ 0 3 26 0.011

I < 0 0 2 0.001

Models 6 & 7
I ≥ 0 6 29 0.011

I < 0 25 8 0.010

Models 7 & 8
I ≥ 0 0 19 0.005

I < 0 1 9 0.003

Models 8 & 9
I ≥ 0 3 10 0.003

I < 0 0 1 0.000

method more clearly shows the change in that effect.

Table 4 also shows ratios of selected samples to the number of training dataset samples

for each sign of increasing rate (I ≥ 0 and I < 0). An increase in SHAP values (I >

0), meaning samples are more likely to be detected as malicious, is caused by adding

malicious data, and a decrease in SHAP values (I < 0), meaning samples are more likely

to be classified as benign, is caused by adding benign data. Consequently, a high ratio

for positive increasing rate indicates that adding malicious data improves classification

performance, whereas a high ratio for negative increasing rate indicates that adding benign

data improves performance. Referring to Table 4, the classification performance of models

4–6 is improved mainly after adding malicious data, whereas the performance of models

2, 3, and 7 improved after adding both malicious and benign data. Adding data did not
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Table 5: Features with increasing rates exceeding the threshold k1 = 3

Feature I Family Number

Models 1 & 2

android.app.activitymanager:get running tasks I < 0 * 23

android.media.ringtonemanager:set actual default ringtone uri I < 0 tachi 13

android.nfc.tech:NDE formatable.format I < 0 * 13

Models 2 & 3

android.nfc.tech:Ndef formatable.format I > 0 * 20

android.media.ringtonemanager:set actual default ringtone uri I > 0 tachi 17

android.permission:change wifi state I < 0 piom 5

Models 3 & 4

android.locationmanager:get provider I > 0 * 18

android.permission:send sms I > 0 * 6

servicelist:com.stub.stub05.stub02 I > 0 jiagu 5

Models 4 & 5

servicelist:com.stub.stub02.stub04 I > 0 jiagu 6

android.launcher.permission:read settings I > 0 * 2

servicelist:com.stub.stub01.stub01 I > 0 drtycow 1

Models 5 & 6
Ndef formatable.connect I > 0 * 2

android.provider.settings$system:put string I > 0 gappusin 1

Models 6 & 7

android.permission:write external storage I < 0 fakeapp 24

android.permission:vibrate I < 0 fakeapp 21

servicelist:com.stub.plugin.stub03 I > 0 jiagu 4

Models 7 & 8 android.telephony.telephonymanager:getline1number I < 0 * 1

Models 8 & 9 android.permission:read user dictionary I > 0 * 3

Feature: Features extracted from Android applications.

Number: Number of samples containing the feature.

Family: Family to which the samples belong.

*Sample cannot be associated with a certain family, or is associated with multiple families.

improve the classification performance of models 8 and 9. The proposed method can thus

identify why classification performance improved.

Moreover, the proposed method can identify features that contribute to the perfor-

mance improvement by updates, namely, those with increasing rates exceeding the thresh-

old k1. The following describes some important features of multiple samples in Table 5.

For reference, we give at least three features in each update, although the total number of

features was less than three for updates to models 6 and models 8–9. These features and

their increasing rates demonstrate importance changes for classification. For example, the

feature
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android.app.activitymanager:get running tasks

becomes important when adding benign data. If these features are associated with a

certain malware family, we can obtain even more information about the dataset. For

example,

android.media.ringtonemanager:set actual default ringtone uri

becomes important when adding samples of the “tachi” family.

Case Study. Table 4 shows an interesting result regarding the update between models 6

and 7: the ratio of negative increasing rates is significantly larger than those for updates

of models 3–6 and 7–9. This indicates an unusual change between models 6 and 7, so we

conduct a more detailed analysis as a case study.

We first focus on the most distinct samples, namely, malicious samples with negative

increasing rate. Analyzing their features, we find that 24 of the 25 samples contain both

or one of the following features:

1. android.permission.vibrate

2. android.permission:write external storage

The update significantly changed the SHAP values of these features, the former decreasing

from 0.2134 to 0.0377 and the latter decreasing from 0.0924 to 0.0171. These changes

show that features become much less important for classification after the update between

models 6 and 7. Further analysis focusing on malware families showed that these features

are associated with the “fakeapp” family, which might become more difficult to detect

by these features. In other words, the update between models 6 and 7 might decrease

true positive rates for the “fakeapp” family. We therefore investigate ROC curves for the

“fakeapp” family.

Figure 4 shows that the ROC curve does not degrade after the update between models 6

and 7. This analysis confirms that there is no negative effect on classification performance

by these features.

Next, we focus on malicious samples with positive increasing rates. Four of the six

samples contain the following features:
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Figure 4: ROC curves of the “fakeapp” family for models 1–9.

1. com.stub.plugin.stub03

2. com.stub.plugin.stub02

3. com.stub.plugin.stub01

SHAP values of all these features increased from 0.000 to at least 0.1383, indicating that

they are not important for model 6 but become important when detecting malicious sam-

ples for model 7. Given that these features are associated with the “jiagu” family, it may

become easier to detect after the update between models 6 and 7.

Figure 5 shows the ROC curves of the “jiagu” family. The true positive rate for model

7 is much higher than that for model 6, with false positive rates from 0.00 to 0.04. This

analysis showed that classification performance for the “jiagu” family is improved by the

three features above after the update between models 6 and 7, despite the change in AUC

being small (see Table 3).

As this case study showed, the proposed method is useful to find unusual changes in

models, identify their cause, and estimate their effects even if the change only slightly

affects AUC scores.
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Figure 5: ROC curves of the “jiagu” family for models 1–9.

4.3 Update with Biased Dataset

4.3.1 Dataset

When the newly collected data is limited and biased, the model performance after updates

can be influenced by the data bias. In this experiment we analyze the feature attribution

changes in a update using biased dataset.

In real-world applications, the ML models are often updated as time goes by, which

means the added data used in updates should be newer than the original dataset. Thus,

we construct the update process using a model called sliding windows [17].

As shown in Figure 6, in each update, the data from next period of six months will be

added to the training set and the older half in the original training set will be removed.

Inside each period, we collect dataset with different biases and use our proposed method

to see how different biases affects the model update. In each update, the training set is

composed by the first half unbiased data from the former period, and the second half with

different biases from the new period. Specifically, we collect datasets with three different

kinds biases and one unbiased set as comparison:

1. Unbias: An unbiased set in which the samples are from each month averagely and

randomly is used as comparison set to determine the feature attribution change
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Figure 6: Sliding Windows (a: First half of the year. b: Second half of the year.)

pattern in regular circumstance.

2. Time: This biased set is a dataset that includes only samples from the latest one

month of the update period.

3. Family: In this set, the malicious samples are all collected from less than 3 major

families while there are more than 40 small families in total. The benign samples

are same as the “unbias” dataset.

4. Antivirus number: In this set, we collect only malicious samples that are easy to de-

tected. We use the number of antivirus software by which the sample is successfully

detected in the VirusTotal [18] to determine that. In this experiment, we use mali-

cious samples over 20 detection. The benign samples are also same as the “unbias”

dataset.

Each training dataset has a similar size of approximately 3,900 benign samples and 430

malicious samples. And we use the data from the following period as test set to evaluate

the model’s ROC and AUC scores. The test set contains approximately 5,322 benign

samples and 595 malicious samples.

4.3.2 Experimental Results

We conduct experiments using our method and the datasets described in Section 4.3.1.
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Table 6: Cross-validation scores and AUC for models trained on different biased datasets

Update 1 Update 2 Update 3

Before update
CV score 0.9673 0.9722 0.9522

AUC 0.9095 0.8932 0.9163

Unbias
CV score 0.9722 0.9522 0.9573

AUC 0.9425 0.9273 0.9493

Time
CV score 0.9729 0.9538 0.9693

AUC 0.9509 0.9513 0.9439

Family
CV score 0.9809 0.9687 0.9739

AUC 0.9313 0.8976 0.9296

Antivirus number
CV score 0.9812 0.9727 0.9696

AUC 0.9157 0.8731 0.9320

First, we use cross-validation and AUC tested with data from the next period to

evaluate the updates. Table 6 shows the best scores evaluated by cross-validation and

the AUC scores of each model. As we can see, the CV results are much better than AUC

tested by actual dateset from a newer period, which is more similar to the situation in real-

world. The result indicates that the cross-validation could be inappropriate when model

is updated along time because the evaluation result may be over-optimistic. Figure 7

shows the ROC curves of each model and each update. The performance improves after

updates by “unbias” and “time”, and almost stay unchanged after updates by “family”

and “antivirus number”.

Figure 7 shows some abnormal changes which are not shown in Table 6. In update

1, the curve of “family” has fell after update, while the curve of “antivirus” keeps almost

unchanged or even becomes worse, and the curves of “unbias” and “time” achieve better

performance. Therefore, we focus on the “family” model in update 1 and conduct a case

study to better understand this update.

Case Study. We select features with significant attribution changes. Both of the amount

of attribution changes and the number of samples including the features are important
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Figure 7: ROC curves of models trained on different biased datasets

metric. Thus, for this case study, we calculate a score using:∑
I≥k1 I

S
,

where I is the increasing rate, and S is the size of corresponding dataset (i.e.malicious

dataset or benign dataset).

Table 7 and Table 8 show the features with top scores for malicious and benign data,

respectively. By comparing the scores, we can identify the key features affecting the update

in each dataset. We use k1 = 3 in this experiments.

We can conclude from the Table 7 and Table 8 that the well-trained models, like

“unbias” and “time”, have similar output features. For example, the top features with

increased attributions are mostly related to

28



android.widget.videoview.

Several features are frequently shown as top features with decreased attribution, such as

1. android.permission.read phone state,

2. android.permission.access wifi state,

3. android.permission.write external storage.

However, in the result of “family”, the top features with increased attributions are all

related to

com.qihoo.util,

which may because the malware used in this update are all from the same family. The top

two scores of decreased features for the malicious samples in “family” are very high, which

indicates this update has decreased the number of detection. In benign data of “family”,

the results also show features that should have more negative attributions, such as

1. android.permission.read phone state,

2. android.permission.access wifi state,

3. android.permission.write external storage,

have more positive attribution, which can also be the reason of bad performance.

Table 7: Features with highest scores in malicious data

Feature I score

Unbias

restrictedapilist android.widget.videoview.setvideopath I ≥ 0 1.59

restrictedapilist android.widget.videoview.stopplayback I ≥ 0 0.99

restrictedapilist android.widget.videoview.pause I ≥ 0 0.88

restrictedapilist android.widget.videoview.start I ≥ 0 0.72

requestedpermissionlist

com.android.launcher3.permission.uninstall shortcut I ≥ 0 0.44

requestedpermissionlist android.permission.write external storage I < 0 0.69

requestedpermissionlist android.permission.read phone state I < 0 0.65
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Table 7: Features with highest scores in malicious data

Feature I score

suspiciousapilist landroid/telephony/telephonymanager.getdeviceid I < 0 0.3

requestedpermissionlist android.permission.access wifi state I < 0 0.3

requestedpermissionlist android.permission.vibrate I < 0 0.07

Time

restrictedapilist android.widget.videoview.setvideopath I ≥ 0 1.27

restrictedapilist android.widget.videoview.pause I ≥ 0 1.22

restrictedapilist android.widget.videoview.start I ≥ 0 1.1

restrictedapilist android.widget.videoview.stopplayback I ≥ 0 1.06

usedpermissionslist android.permission.internet I ≥ 0 0.51

requestedpermissionlist android.permission.read phone state I < 0 0.85

requestedpermissionlist android.permission.access wifi state I < 0 0.85

requestedpermissionlist android.permission.write external storage I < 0 0.67

restrictedapilist android.os.powermanager$wakelock.acquire I < 0 0.11

usedpermissionslist android.permission.access wifi state I < 0 0.1

Family

activitylist com.qihoo.util.commonactivity I ≥ 0 1.0

servicelist com.qihoo.util.updateservice I ≥ 0 0.74

contentproviderlist com.qihoo.util.commonprovider I ≥ 0 0.73

servicelist com.qihoo.util.commonservice I ≥ 0 0.69

broadcastreceiverlist com.qihoo.util.commonreceiver I ≥ 0 0.35

requestedpermissionlist android.permission.access wifi state I < 0 3.86

requestedpermissionlist android.permission.write external storage I < 0 2.02

requestedpermissionlist android.permission.read phone state I < 0 0.95

usedpermissionslist android.permission.access wifi state I < 0 0.9

suspiciousapilist landroid/telephony/telephonymanager.getdeviceid I < 0 0.31

Antivirus

requestedpermissionlist android.permission.get accounts I ≥ 0 0.93

requestedpermissionlist android.permission.read sms I ≥ 0 0.74

activitylist com.e4a.runtime.android.startactivity I ≥ 0 0.63

requestedpermissionlist android.permission.write sms I ≥ 0 0.53

urldomainlist 211.154.151.196 I ≥ 0 0.5

requestedpermissionlist android.permission.access wifi state I < 0 0.68

intentfilterlist android.intent.action.lanucher I < 0 0.25

requestedpermissionlist android.permission.write external storage I < 0 0.15

broadcastreceiverlist .svcdownload$svcdownload br I < 0 0.14
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Table 7: Features with highest scores in malicious data

Feature I score

servicelist .svcdownload I < 0 0.11

Table 8: Features with highest scores in benign data

Feature I score

Unbias

restrictedapilist android.widget.videoview.setvideopath I ≥ 0 0.19

restrictedapilist android.widget.videoview.stopplayback I ≥ 0 0.14

restrictedapilist android.widget.videoview.pause I ≥ 0 0.11

restrictedapilist android.widget.videoview.start I ≥ 0 0.1

restrictedapilist android.app.downloadmanager.enqueue I ≥ 0 0.06

restrictedapilist android.app.activitymanager.getrunningtasks I < 0 0.4

requestedpermissionlist android.permission.access wifi state I < 0 0.24

requestedpermissionlist android.permission.read phone state I < 0 0.23

requestedpermissionlist android.permission.access network state I < 0 0.11

restrictedapilist android.app.downloadmanager.enqueue I < 0 0.1

Time

restrictedapilist android.widget.videoview.pause I ≥ 0 0.16

restrictedapilist android.widget.videoview.stopplayback I ≥ 0 0.15

activitylist com.google.android.gms.ads.adactivity I ≥ 0 0.13

restrictedapilist android.widget.videoview.start I ≥ 0 0.13

restrictedapilist android.widget.videoview.setvideopath I ≥ 0 0.13

restrictedapilist android.app.activitymanager.getrunningtasks I < 0 0.8

requestedpermissionlist android.permission.read phone state I < 0 0.41

requestedpermissionlist android.permission.access wifi state I < 0 0.39

restrictedapilist android.app.downloadmanager.enqueue I < 0 0.28

suspiciousapilist lorg/apache/http/client/methods/httppost I < 0 0.12

Family

requestedpermissionlist android.permission.access network state I ≥ 0 0.06

requestedpermissionlist android.permission.read phone state I ≥ 0 0.03

activitylist com.google.ads.adactivity I ≥ 0 0.03

requestedpermissionlist android.permission.access wifi state I ≥ 0 0.02

restrictedapilist android.os.vibrator.vibrate I ≥ 0 0.02

requestedpermissionlist android.permission.access wifi state I < 0 0.79

restrictedapilist android.app.activitymanager.getrunningtasks I < 0 0.6
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Table 8: Features with highest scores in benign data

Feature I score

requestedpermissionlist android.permission.read phone state I < 0 0.48

restrictedapilist android.app.downloadmanager.enqueue I < 0 0.17

suspiciousapilandroid/telephony/telephonymanager.getdeviceid I < 0 0.14

requestedpermissionlist android.permission.get accounts I ≥ 0 0.04

requestedpermissionlist android.permission.read sms I ≥ 0 0.03

Antivirus

requestedpermissionlist android.permission.access network state I ≥ 0 0.02

requestedpermissionlist android.permission.write sms I ≥ 0 0.02

requestedpermissionlist android.permission.change configuration I ≥ 0 0.02

restrictedapilist android.app.activitymanager.getrunningtasks I < 0 0.58

requestedpermissionlist android.permission.access wifi state I < 0 0.46

restrictedapilist android.app.downloadmanager.enqueue I < 0 0.18

requestedpermissionlist android.permission.access fine location I < 0 0.12

requestedpermissionlist android.permission.access network state I < 0 0.11
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5 Discussion

Application of the Proposed Method. Though this thesis is targeting mainly in

malware detection systems, our method should be applied to all kinds of machine learn-

ing tasks. The SHAP method provides algorithms for estimating SHAP values for any

ML model, allowing application to any ML model regardless of dataset or model. For

example, our method can be applied to suspicious URL detection [19], malicious web-

site detection [20], and malware family classification [21]. In multiclass classifications, we

can identify changes in important features by analyzing feature attribution changes while

focusing on each class.

Our method measures the changes in models by counting samples in which important

classification features have changed, and also output key features which is related to the

model performance changes. When the dataset used in updates are biased, our method

can analyze the key features in the updates and inform the users the feature component,

allowing users to understand what cause the performance changes.

Future Work. The experiments described above performed only malware detection for

Android applications using a random forest classification. Although the increasing rate

can theoretically be computed for any model, we still need to perform further experiments

on different models. And because appropriate thresholds are crucial for our method, how

to best choose the threshold pair is also a major task.

We currently analyze model changes mainly by counting the number of samples, but

in practice the extent of value change can also be useful to understand model updates. In

future work, we will try to obtain more detailed model information through changes in

feature attributions.
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6 Conclusion

ML methods have been widely applied to many tasks. In practical use, it is necessary to

regularly update the model to maintain its classification performance. AUC and accuracy

are generally used to validate models to confirm their performance after updates. However,

it is difficult to gain sufficiently detailed information for understanding model updates, such

as what causes performance improvements and the slight changes in models that affect

predictions for a small amount of data.

We therefore proposed a method for determining samples in which the features impor-

tant for classification have significant changes. By analyzing those samples and features,

we can know more about why performance improved or how an update influences a par-

ticular malware family. For the feature contribution computation, we used a consistent

importance value called the SHAP value, due to property that SHAP values are compa-

rable across different models. Our proposed method calculates increasing rates of SHAP

values after updates to reflect changes in feature importance. We conducted experiments

demonstrating that the causes of performance changes by model updates can be iden-

tified with the proposed method. Through the case studies, we manually analyzed the

model update based on the output of the proposed method, finding that it can distinguish

slight changes for a particular malware family, and reflect bias data in the training set.

Currently, we have analyzed the results by selecting samples with significant SHAP value

changes, and identified key features for model changes by analyzing attribution changes.

In future work, we will gather more information and try to conduct qualitative analyses

of the results.
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