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Abstract

Video streaming services such as YouTube, Netflix, and Hulu, and remote web confer-

encing systems such as Zoom and Cisco WebEx are rapidly gaining popularity, and the

number of users of such services continues to increase every year. Research on improving

the quality of user experience (QoE) in video streaming delivery (hereafter referred to as

video delivery), which is common to these services, has become very important for both

users and service providers. In recent years, most video delivery services have adopted

HTTP adaptive streaming (HAS) in order to provide video delivery with appropriate ser-

vice quality for various service usage environments. Dynamic Adaptive Streaming over

HTTP (MPEG-DASH) is one of the most popular HAS standards, and there has been a

lot of research on developing QoE-based adaptive streaming using MPEG-DASH. QoE is

expected to be used as an indicator to reflect user satisfaction. However, QoE depends

on various user’s external factors and internal factors. In our previous research, we made

a classifier for estimating QoE by using extracting temporal and frequency features from

the user’s EEG, and clarified that the estimation accuracy of the method. In the context

of the QoE-based video delivery control, it is important to accurately estimate the user’s

QoE especially when the video quality changes. Therefore, in this thesis, in addition to

our previous method, we investigate a method to obtain the timing for controlling the

video bitrate. We propose a delivery control method based on the user QoE, using event-

related potentials (ERPs), which are EEGs occurred by a specific event (stimulus) and

are endogenous potentials that reflect the subject’s cognitive attitude toward the stimu-

lus. The P300 is an event-related potential and is known to occur in association with the

presentation of low-frequency stimuli in stimulus-classification tasks such as the oddball

task, but recent studies have reported that it is also evoked when perceiving changes in a
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playback video quality. We collected the EEG and QoE data during video watching, and

evaluated the value of recall when bad label is classified as target, and showed that the

recall value was 76.0% at maximum and the average is 49.3%. And We evaluated the P300

on a threshold basis, detecting and comparing it to the bitrate changes. We also discussed

the design and feasibility of a rate control system using an EEG-based QoE estimation

method.

Keywords

Quality of Experience (QoE), Event Related Potentials (ERP),

Adaptive Streaming, Genetic Algorithm (GA)
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1 Introduction

Video streaming services such as YouTube, Netflix, and Hulu, and remote web conferencing

systems such as Zoom and Cisco WebEx are rapidly gaining popularity, and the number of

users of such services continues to increase every year. Research on improving the quality of

user experience (QoE) in video streaming delivery (hereafter referred to as video delivery),

which is common to these services, has become very important for both users and service

providers. In recent years, most video delivery services have adopted HTTP adaptive

streaming (HAS) in order to provide video delivery with appropriate service quality for

various service usage environments. Dynamic Adaptive Streaming over HTTP (MPEG-

DASH) is one of the most popular HAS standards, and there has been a lot of research on

developing QoE-based adaptive streaming using MPEG-DASH [1, 2]. These studies have

focused on communication quality and video quality such as latency and rebuffering time

to estimate the QoE of a user, the QoE of a user can be affected not only by external

factors that do not originate from the user, such as video quality, communication quality,

viewing environment, and content itself, but also by internal factors that originate from

the user, such as its current mood and personal preferences for videos. For these reasons, it

is actually difficult to estimate QoE using only the quality of communication and a video.

In addition, in order to use the estimated QoE for controlling video delivery, it is necessary

to obtain the QoE of a user who is watching the video in a real-time manner. To solve

these technical problems, we establish a method to estimate QoE using the user’s biometric

data. Particularly we focus on electroencephalogram (EEG), which can be obtained in

real time and it is thought to be able to acquire psychological information about the user.

In our previous research, we developed a method to make a classifier for estimating

QoE of a video viewing user by extracting features in the time domain and the frequency

domain from the user’s EEG. We clarified the estimation accuracy of the method in [3].

For realizing the QoE-based delivery control, it is important to accurately estimate

the user’s QoE when the video quality changes. In this thesis, in addition to our previous

method, we propose a method to obtain another useful information from EEG for video

delivery controls. We use event-related potentials (ERPs), which are EEGs evoked by a

specific event (stimulus) and are endogenous potentials that reflect the subject’s cognitive
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attitude toward the stimulus. The P300, which is one of ERPs, is classically known to oc-

cur in association with the presentation of low-frequency stimuli in stimulus-classification

tasks such as the oddball task, but recent studies have reported that it is also evoked when

perceiving changes in video quality [4]. In this thesis, we use the P300 as an indicator of

the cognition of changes in video quality. By combining the P300 with the estimated QoE

with our previous method, we can obtain the QoE immediately after the user’s cognition

of changes in video quality. In other words, we utilize the P300 as a decision criterion of

the video delivery control. The overview of our proposed video delivery system is shown

in Fig. 1.

Figure 1: Overview of our proposed video delivery system.

To evaluate our proposed method, we need a data set which contains the QoE and

EEG of video viewing users. Therefore, we start with data collection experiments. After

obtaining a data set, we evaluate our proposed QoE estimation method and P300 detection

method. Finally, to verify the feasibility of the real-time video rate control with our
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proposed method, we implement an MPEG-DASH player that request a bitrate determined

by using the estimated QoE right after the detection of the P300, to a video server.

The remainder of this paper is organized as follows. In Section 2, we briefly describe

related work about ERPs and QoE-based delivery control methods. In Section 3, we

explain the experiments that we conducted to collect data set for the estimation of QoE.

In Section 4, we present our QoE estimation method and show the evaluation results of

our proposal. Also, in this section, we present a P300 detection method. In Section 5, we

show the detailed design of the video delivery system with MPEG-DASH and a QoE-based

bitrate control. Section 6 gives the conclusion of this thesis.
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2 Related Work

2.1 Event Related Potential in the EEG

Event Related Potentials (ERPs) are voltage fluctuations generated in the brain elicited

by stimuli or events. The P300 is one of the event-related potentials, a positive voltage

fluctuation that appears near the parietal lobe about 300 ms after the perception of a

significant stimulus (e.g., target stimulus in Oddball paradigm [5]). The P300 is often

used in the field of Brain Computer Interface (BCI), such as the P300 Speller.

For the detection of the P300, the additive averaging process is generally applied

to improve the SINR (Signal to Interference and Noise power Ratio) and obtain high

reliability [6]. For single-trial detection of the P300, amplitude threshold-based methods

and linear discriminant analysis-based method have been proposed [7, 8].

The P300 has also been utilized to assess the video quality of multimedia [9, 10]. In

general, it is known that the amplitude of the P300 is smaller in passive task conditions,

where no information about tasks and stimuli are presented to subjects in advance, than

in active task conditions [11]. There is not enough discussion on whether it is possible

to detect the P300 for unexpected changes in video playback such as bitrate changes and

rebufferings.

2.2 QoE Estimation Methods in Video Streaming Services

QoE is a measure of the user’s satisfaction with its enjoying services. QoE is affected by

system factors, context factors and human factors [12]. System factors include communi-

cation delay, packet loss, video resolution and frame rate. References [13, 14] show that

rebufferings in video watching have a large impact on user’s QoE. References [14,15] show

the played bitrate and the bitrate change ratio are also affect the QoE.

Context factors include location, time of day, and type of the tasks. References [16,17]

describe that the QoE is video content dependent, and Ref. [18] discusses the utility of

social network trend analysis for QoE estimation through a case study involving simu-

lation of HTTP adaptive streaming (HAS) and load balancing in a content distribution

network (CDN).

QoE also relies on Human internal factors like gender, age, mood, and cognitive pro-
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cesses expectations. To reflect human cognitive processes for QoE estimation, some studies

use EEG data of users [4, 9, 10]. By combining these multiple factors, it is expected that

QoE can be estimated more accurately and effective control can be achieved.

2.3 Adaptive Video Streaming Techniques

In recent years, HTTP Adaptive Streaming (HAS) has been widely used in video delivery

services. For example, it has been implemented in Microsoft’s Silverlight SmoothStream-

ing (MSS), Apple’s HTTP Live Streaming (HLS), and Adobe Systems’ Adobe HTTP

Dynamic Streaming (HDS). One of the HAS standards is DASH published by MPEG in

2012 [19]. DASH aims to provide users with a smooth video streaming service based on

network conditions and types of client devices. In DASH system, the video content is

encoded into multiple versions at different bitrates, and each encoded video is divided

into segments of a certain length. These segments are stored in the DASH server, and

the server delivers the specified segment in response to a request from a DASH client.

The DASH client requests segments of suitable quality according to a predefined ABR

algorithm. Various ABR algorithms have been proposed, for example, throughput based

control methods in [20,21] and buffer based control methods in [22,23].
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3 Experiment for EEG Data Collection

To implement and evaluate a method for estimating the QoE of a video viewing user,

we conducted an experiment to collect QoE and EEG during video viewing. 25 healthy

students from our University participated in the experiment. Our experiment received

approval from Osaka University Research Ethics Committee and permission from the

head of our research institution. Considering the recent spread of COVID-19 infection,

we carried out experiments in a ventilated room. Also, both the person conducting the

experiment and the subjects checked own body temperature, disinfected their hands and

fingers.

3.1 Device Configuration

Figure 2 shows the experimental environment. In the experiment, three types of data were

recorded: EEG data, QoE data, and playback start time. Two laptops were used, one for

video playback and the other connected to an EEG sensor (Emotiv EPOC X) for recording

EEG raw data. Each laptop for video playback was connected to a 27-inch monitor and

participants watched a video clip on the 27-inch monitor. Laptops and smartphones (the

details will be described later) were connected to the same network through a wireless

router placed in the same room, and their Operation-system time was synchronized with

an NTP protocol to keep time difference below the order of 10ms. Time synchronization

is sufficient for our system to detect the P300.

3.2 Experimental Protocols

Figure 3 describes the protocol of the experiment we designed. Before the start of the

experiment, the time of each device was synchronized using an NTP. The video view trial

was repeated 30 times, corresponding to the number of total video clips. In order to avoid

participant from fatigue affecting the measurements, a 10-minute break time was provided

every 10 trials.
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Figure 2: Experimental environment.

Figure 3: Protocol of experiments.

3.3 Video Clips

For our experiment, we used the video clips provided in LFOVIA database [24]. LFOVIA

database contains unprocessed video clips and processed video clips. The number of

unprocessed video clips is 18. 18 video clips are processed with two types of rebuffering and

bitrate variation. Therefore, the number of processed video clips is 36. In our experiment,

we used 30 processed video clips from 36 processed video clips. The LFOVIA database

also contains time-series information of the bitrate of each video clip.

Video clips are played by a VLC media player. In order to focus only on the variation

of EEG and QoE in response to the variation of video quality, subjects are prohibited to
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operate a seek bar and pause the video during playback. The time of the start of video

playback is recorded and used for the synchronization with EEG data.

3.4 EEG measurement

EEG data is measured by Emotiv EPOC X and recorded by their software EmotivPro (Emo-

tiv [25]). EPOC X has 14 symmetrical sensor electronodes, which are AF3–4, F7–8, F3–4,

T7–8, P7–8 and O1–2 of the international 10–20 system. The resolution and the sam-

pling rate of EPOC+ are 14 bit and 128 Hz, respectively. The recording of the EEG

started before the start of playing video and stopped after the video was finished. After

measurement, EEG data was trimmed in the time interval the video was playing.

Figure 4: EPOC X for recording EEG in the experiment.

3.5 QoE measurement

The Single Stimulus Continuous Quality Evaluation (SSCQE) [26] was used to evaluate

the quality of the stimuli. In this method, the subject continuously scores on a scale from

0 to 100 while the video is playing. Participants entered QoE scores by manipulating the

slider. The value of the slider is obtained every 0.5 s. In our experiment, we followed the

SSCQE to obtain QoE of subject, but we provided smartphones to subjects for input of

QoE scores. We made an application run on the smartphone to input QoE scores by the

slider (Fig.5).
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During the measurement, the screen of the smartphone is mirrored on the same screen

as the video, by using a mirroring application, so that the subject can check the QoE value

being entered at its hand. In addition, a vibrating function is used to provide feedback

on the grade being entered. When the value being entered is 0 or 100, the device vibrates

to inform the subject. The measured data were sent to the computer playing videos via

WebAPI.

Figure 5: QoE recording application (Runs on iPhone 12)
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4 QoE Estimation method

We propose a method to estimate QoE of video viewing users. We construct an SVM-

based classifier. Following sections explain the methods for constructing the QoE classifier

using EEG data; a preprocessing method of the EEG, a feature extraction method from

the EEG, a feature selection method using a GA, and a classification method.

4.1 Preprocessing of EEG data

A Butterworth bandpass filter was applied to remove irrelevant artifacts such as elec-

tromyogram (EMG) and power supply noises from the measured EEG raw data. We used

MATLAB to apply the bandpass filter to EEG raw data. For subsequent feature extrac-

tion, the bandpass filter was applied in the four bands as shown in Table 1, where Fstop1

is the endpoint frequency of the first blocking band, Fstop2 is the starting frequency of the

second blocking band, Fpass1 is the starting frequency of the passband, and Fpass2 is the

endpoint frequency of the passband. Data contaminated by the subject’s body movements

and the disruption of communication during recording were excluded.

Table 1: Bandwidth of the Butterworth bandpass filter

Bandwidth Fstop1 Fpass1 Fpass2 Fstop2

total 3.8 4 30 31

θ 3.8 4 8 8.2

α 7.8 8 12.5 12.7

β 12.3 12.5 30.5 31.7

4.2 Feature Extraction

After removing the artifacts from the measured EEG using a bandpass filter, four kinds

of features were extracted every 2-s non-overlapping hamming window. The extracted

features are Band power, Power Spectral Density (PSD), and Distributed Wavelet Trans-

form (DWT), which have been commonly used in earlier studies [9,27]. We used MATLAB

to remove artifacts and also to compute these features. From PSD and level 2 to 4 com-
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ponents of DWT, four types of features are calculated; median, maximum, minimum and

variance.And the normalized frequency at which the power of the signal is maximized was

also calculated from PSD. We calculated Band Power, PSD and DWT features for each

of the four frequency bands; 1) theta 4–8Hz, 2) alpha 8–12.5Hz, 3) beta 12.5–31Hz and

4) total 4–31Hz. In addition, the ratios of Band power from 1) to 3) and Band power from

4) were also calculated. We calculated each of features on the 14 channels of the EEG

sensor, so the dimension of the total features is 546.

4.3 Feature Selection

We limit the number of features to be used for QoE estimation to reduce the calculation

time. To achieve better accuracy even with a limited number of features, we used a GA

to find a good set of features. A GA is a meta-heuristic algorithm inspired by the process

of natural selection, where the optimal individual is selected by selecting highly adapted

individuals from the population and repeating the mating and mutation processes. We

used a GA to explore the best combination of features for training the classifier. We used

DEAP library in Python to implement a GA.

Individuals of the GA in our proposal were represented as a permutation of integers

from 0 to 545, where each integer corresponded to a type of feature. The fitness of an

individual was defined as the average accuracy of the three-part cross-validation by an

SVM with a Radial Based Function. For calculating the fitness, the features from the first

to the third, fifth and tenth genes in individuals were used. The number of individuals

and generations of the GA was set to 30 and 100, respectively. And the mutation and

crossing probabilities of the GA were set to 0.01 and 0.6, respectively, and the mutation

probability was raised to 0.5 every 100 generations to prevent convergence to a local

solution. The selection function used the tournament system. In the tournament system,

a certain number of individuals are randomly selected from the population and the one

with the highest fitness is selected for the next generation.

The crossover function used the partial matching crossover method. Partial matching

mating is a method of mating in which a gene for mating is randomly selected from two

individuals and the genes are rearranged so that the sequence of the selected gene is the

same as that of the other individual. The mutation function used a translocation method
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in which the gene arrangement within an individual was randomly switched.

4.4 QoE Classification Method using Support Vector Machine

As a baseline classification method, we used an SVM with a Radial Based Function (RBF)

kernel as a classifier. The RBF Kernel has two parameters; C determines the penalty of

misclassified data and γ determines the width of the RBF kernel. We used scikit-learn

library in Python to implement an SVM. The kernel parameters were set to C = 1.0, γ =

1/546.

The QoE ratings collected in the experiment were used to label for learning. The

labeling was done for each video. First, the QoE quartiles were calculated and the bottom

25% were labeled Bad and the top 25% were labeled Good. To determine the performance

of the classifier in estimating the event of QoE decline, which is important for delivery

control, we trained the classifier as a binary classification problem using only Good and

Bad data. We trained the SVM for each participant and evaluate the recall of Bad label.

We divided the data from the 30 trials into test data and train data evenly.

4.5 Evaluation of QoE Classification

We evaluated the performance of the QoE classifier regarding the recall for different feature

selection methods.

Figure 6 shows the recalls for each subject. The maximum value is 74%, the mean

value is 49.3%, and the minimum value is 19%. As shown in Fig. 6, there is a large

difference in the recall values among the subjects. This is due to individual differences

in QoE criteria of subjects, and it is necessary to verify the classification results when

combined with other information such as content characteristics and QoE trends.

4.6 P300 Detection

To detect the user’s perception of changes in video quality, we describe the method to

detect the P300 from the EEG data. At first, a band-pass filter of 0.7-7 Hz was applied to

the EEG Raw Data to remove frequency components not associated with the P300. Then

signals of all channel were averaged across all channels, and moving average value with a
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Figure 6: Recall of each subject.

window size of 20 ms was taken.

Because requesting QoE input by a smartphone might make a subject to watch the

video actively, which affect the magnitude of the P300 amplitude, the following analysis

used data from subjects who did not input QoE.

We adopted a threshold-based detection method for the P300. The P300 is detected

when amplitude of the EEG signal exceeds the predefined threshold value [7]. Before

deciding the threshold, we compared the waveforms when quality changes occurred with

those when stable playback was taking place. And then, we verified whether P300 could

be detected by threshold-based method.

As shown in Fig. 7, comparing the average amplitudes at the time when no video

quality change occurs and the time between 200 ms and 1000 ms after the rebuffering,

we can see that the amplitude is larger after the rebuffering. This result suggests that we

could be able to detect the P300 in the video playback scenario.

From the baseline signal, the mean amplitude µ and standard deviation σ were calcu-

lated and they were used to calculate the threshold. The threshold λ is determined by the

following equation.
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Figure 7: Waveforms compared by each event, rebuffering, bitrate changes, and baseline.

λ = µ+ aσ (1)

To determine the threshold parameter a, the P300 detection was performed while

varying it by 0.5 between a ∈ [2, 3.5]. And we chose a = 3 as it had the lowest noise.

Figure 8 shows the plot of bitrate value and the timing of P300 detection of a subject

(subject number is 6) when the parameter a is set to 3. Blue line shows the bitrates and

orange area shows the time period where the P300 was detected. In Fig. 8, the P300 is

detected around the bitrate change in video clips 4, 14, and 28, but not detected after the

bitrate change in video clips 9, 16, and 19.

In the case the P300 is not detected after video changes, this subject was either not

aware of the quality variation, or was aware of the quality changes but the amplitude

above the threshold has not appeared. In the former case, the content of the video clip,

the frequency and duration of the quality changes might be affecting the subject. And in

the latter case, the threshold might have been set higher than the appropriate value, so

noise affect adversely the P300 detection. In order to identify the cause of the problem,
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we need to investigate the relationship between the characteristics of the video clip and

the detection rate, and the change in the detection rate when the noise removal method

is improved.

Figure 8: P300 Detection with QoE and Bitrate value (Subject 6).
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5 QoE-based Delivery Control

5.1 Video Delivery Control based on P300 Detection and Estimated
QoE

As we described in Sec. 2, The P300 is an event-related potential and is a brain response

that appears as a result of human thought and cognition. And the appearance of the

P300 reflects active attention of a human, which is confirmed in an experiment called the

oddball experiment. The P300 has also been noted to appear in passive attention. We

investigate the realization of a video delivery system that acquires the timing at which

the P300 occurs due to rebuffering and rate changes that occur during video playback,

and determines the video bitrate according to the QoE at that time. The overview of our

assumed video delivery system using EEG is shown in Fig. 1.

Our basic idea in using QoE to determine the bitrate of a playing video is to grasp

the minimum bitrate at which the user will not be dissatisfied, and to set such a bitrate

to cause as little video rebuffering as possible. However, the QoE classifier in this paper

has not been able to learn training data to take into account differences in video quality.

Therefore, in this section, we describe a rate control algorithm that follows a simple

algorithm to improve the QoE degradation caused by video rebuffering.

In order to prevent the user’s QoE from decreasing due to a decrease in video qual-

ity, a high video quality is set when there is room for communication bandwidth, and

the video quality is reduced when there is no room for communication bandwidth. The

bitrate increases when the playback buffer length becomes longer than the threshold value

(Tbuf ). Once the bitrate is increased, it will not be increased until Nkeep segments have

been downloaded. This prevents the bitrate from being reached to the maximum one

instantaneously. When the video player detects the video rebuffering or that the quality

of the video being played has changed, it checks whether the P300 has occurred between

immediately after the rebuffering and 1,000 ms. If the P300 has not occurred, the current

bitrate is kept; if the P300 has occurred, the QoE is estimated based on the subsequent

EEG of Tchk, and if the estimated QoE is lower than a predetermined threshold, the bitrate

is changed to one step lower than the current bitrate.
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5.2 Implementation and Evaluation of the Video Delivery Control Method

In order to show the feasibility of rate control in real time, we implement our proposed

control method into an MPEG-DASH client player. The system configuration of our

proposed video delivery system using EEG is shown in Fig. 9.

Figure 9: System configuration of our proposed video delivery system.

We build an MPEG-DASH video streaming server that controls video quality with

adaptive streaming. A video client that plays a video is Chrome browser on a computer.

We implemented a rate controller that determines the bitrate of the next downloaded

segment in dash.js which is a reference client implementation for the playback of MPEG

DASH via Javascript. The rate controller uses the setQualityFor() method in MediaPlayer

Module to request a next segment to be downloaded with a specified bitrate to the video

server.

To obtain EEG raw data, as we described in Sec. 3, we use an EPOC X device.

EPOC X connects to the client computer wirelessly via a dedicated USB dongle. To access

EEG raw data using an EPOC X in a real-time manner, in addition to the EmotivPRO

license, we obtain the license to access Cortex SDK in Emotiv App. We developed an
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EEG analyzer (EEG-A) in Fig. 9, which is written in python. Emotiv App is listening for

connection via port 6868, and EEG-A connects to Emotiv App via websocket.

When EEG-A obtains any information from an EPOC X, the Cortex API [28] is used.

The Cortex API is built on JSON and WebSockets and so it is easy to access EEG raw

data from EEG-A. EEG-A conducts QoE estimation and the P300 detection method

described in Sec. 4 using EEG raw data received from Emotiv App. Also, EEG-A connects

to dash.js through a websocket on port 81 and it sends the last time of the P300 detection

and estimated QoE to dash.js.

In dash.js, the on() method in the MediaPlayer Module is used to listen for public events

found in the DASH player. Here, we implemeted an eventlistner to detect a rebuffering in

the player by check an event of ’MediaPlayer.events[”BUFFER_EMPTY”].’ If the P300

is detected within 1,000 ms after the rebuffering event, dash.js requests a segment with a

lower bitrate.

The length of the playback buffer is checked every after a segment has been downloaded.

If the length is larger than the predefined threshold, and if the bitrate of the last Nkeep

segments except for the last one is equal to or more than the bit rate of the last segment,

then dash.js requests a segment with a higher bitrate.

Figure 10 shows a screenshot of the MPEG-DASH player using dash.js in which we

implemented our rate control algorithm. we used the Big Buck Bunny movie [29], which

is free to use and available in many formats. To verify the operation of our rate control

algorithm, EEG-A always sent a P300 detection message. Therefore, dash.js receives the

P300 detection message right after it detects the rebuffering. As a result, dash.js requests

the server for a bitrate that is one step lower than the currently selected bitrate. This is

confirmed by the following message displayed in the Console of the Chrome browser as

shown in Fig. 10.

rebuffering happend

Receive quality-change request due to

P300 detection

Next index of bitrate: 2
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Figure 10: Screenshot of our MPEG-DASH player.
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6 Conclusion

Estimating the QoE of video viewing users is an important issue for video application

service providers. In this thesis, we propose a delivery control method with QoE and QoE

estimation method from users’ EEG data for delivery control system. Using the subject’s

EEG data during video viewing and QoE responses during video viewing, we trained the

QoE classification model and determine P300 detection threshold. We evaluated the value

of recall when bad label is classified as target, and showed that the recall value was 76.0%

at maximun and the average is 49.3%. We calculated the P300 threshold from the mean

and standard deviation and applied it to each subject’s trial. In this case, the subject is

either not aware of the quality variation, or he/she is aware of the quality variation but

the amplitude above the threshold has not appeared. In the former case, the content of

the video clip, the frequency and duration of the quality variation may be affecting the

subject, and in the latter case, the threshold may have been set higher than the appropriate

value due to noise. In order to identify the cause of the problem, we need to investigate

the relationship between the characteristics of the video clip and the detection rate, and

the change in the detection rate when the noise removal method is improved. Finally we

considered the design of a video delivery system that acquires the timing of P300 due

to rebuffering and rate changes that occur during video playback, and determines the

video rate according to the QoE at that time, and implemented and verified the operation

of an MPEG-dash cliant player. As a futurework, we need to investigate the accuracy

of multimodal QoE classification that incorporates other information besides EEG, such

as eye movements, facial expressions, and video content. the relationship between P300

detection rate and video clip features also needs further discussion. And we will construct

a rate control method considering user’s individual QoE and evaluate the effectiveness of

the control.
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