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Abstract

Many new network-oriented services have been
developed in recent years, and Multi-access Edge
Computing (MEC) has been standardized to
improve the responsiveness of services. When
deploying services in a MEC environment, it is
necessary to consider a service structure that can
flexibly switch service behaviors to meet various
user requests and that can change service
behaviors according to the real-world environment
at a low implementation cost. In this paper, we
introduce a core/periphery structure for service
components, which is known as a model for flexible
behavior in biological systems, and design and
implement a network-oriented mixed reality service
based on this structure. We investigate what kinds
of functions should be developed to accommodate
user requests in conjunction with various types of
devices and real-world environments in which users
and devices are located. To utilize the flexibility of
the core/periphery structure, we regard core
functions as those whose behaviors remain
unchanged even when there are changes in user
requests or the environment. In contrast, peripheral
functions are those whose behaviors can change
under such circumstances. Experiments reveal that
implementation costs are reduced while retaining
increases in service response time to less than
31 ms. These results show that taking advantage
of the core/periphery structure allows appropriate
division of service functions and placement of
functions in a MEC environment, with only small
penalties on latency and at a low implementation
cost.

Keywords: Core/Periphery Structure; Multi-access
Edge Computing (MEC); Mixed Reality (MR);
Telexistence Service; Network Robot

1 Introduction
Many new network-oriented services have arisen with
development of the Internet of things (IoT), and in-
formation networks are rapidly changing. Using these
new services, we can send real-world information from
cameras and sensors to the cloud, or perform high-
load processing such as image recognition or voice and
sound recognition. For example, telexistence services
using robots and Virtual Reality (VR)or Mixed Real-
ity (MR) technologies are now being developed. The
ANA Avatar project [1] investigates use of robotics
and techniques for transmitting tactile sensations to
develop services through which users operate avatar
robots to communicate at remote places as if they were
actually there.
In such applications, application-level delay is a

significant factor affecting service quality. However,
communication distance and load concentrations can
significantly increase application-level delay in cloud
computing environments [2]. Recently, multi-access
edge computing (MEC) [2–4] has been standardized to
mitigate increases in application-level delay for delay-
sensitive services. In an edge computing environment,
computing resources and storage are allocated at the
network edge so that processing required by end de-
vices is performed at closer sites. This improves the
responsiveness of applications by shortening commu-
nication distances and load distributions.
Because many new network-oriented services have

developed to meet various user requests, it is impor-
tant to consider service designs that can accommodate
as many services as possible when deploying network
services in a MEC environment. However, implemen-
tation costs increase if developers must reconstruct en-
tire services to meet different user requests or to adapt
to environmental variation such as device evolution.
Moreover, MEC environment resources are not nec-
essarily the same as those in a cloud computing en-
vironment. Specifically, MEC environment resources
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are limited by spatial restrictions, making it difficult
to locate all possible services, such those on the edge
that can adapt to each user request and environmental
variation. It is therefore necessary to consider service
structures that can change service behaviors in a flex-
ible manner. Service function placement in MEC envi-
ronments has been studied in, for example, [5] and [6],
but most of them correspond to user mobility. We con-
sider a service design where the developers can modify
or add service functions in a flexible manner with less
cost against changes of real environment and user re-
quirements.
We has been investigating a core/periphery struc-

ture [7,8] that allows service components to effectively
adapt to each user request and environmental varia-
tion. The core/periphery structure is a model for flex-
ible and efficient information processing mechanisms
in biological systems. Information processing units in
a core/periphery structure are classified as core or pe-
riphery units. Core units are densely composed with
system constraints, and process information more ef-
ficiently. Periphery units, which are connected to core
units, can have various configurations, allowing them
to flexibly adapt to environmental changes surround-
ing the system and to build flexible, efficient informa-
tion processing mechanisms with the core. The advan-
tages of a core/periphery structure for accommodating
information services, represented by chains of func-
tions, were numerically investigated in Ref. [9], with
the results showing that a core/periphery structure re-
duces developmental costs for accommodating various
kinds of information services.
Based on these advantages of a core/periphery struc-

ture, in this study we realize a service system that
adapts service behaviors to various user requests, de-
vices, and real-world environmental changes where the
end devices are located. Unlike model-based evalua-
tions, we design and implement a service based on the
core/periphery structure. We then consider a shop-
ping service using MR devices and robots. We im-
plement this service using actual devices, and experi-
mentally evaluate the effect of designing services based
on a core/periphery structure. This paper focuses on
a shopping service, but service design based on a
core/periphery structure is not limited to the shopping
service and can be applied to other network services.
When designing services based on a core/periphery

structure, it is necessary to consider which functions
should be implemented as core units and which should
be implemented as periphery units. We first investi-
gate what kinds of functions would be required in a
shopping service. To utilize the flexibility of a core/pe-
riphery structure, we regard as core functions those
whose behaviors remain unchanged under changes to

user requests or the real-world environment, and pe-
ripheral functions as those whose behaviors can change
under such circumstances. In this way, core functions
allow adaptation to the emergence of new services by
adding or changing some peripheral functions instead
of recreating entire services. We next evaluate the de-
sign of a service based on the core/periphery structure
in terms of implementation cost and service respon-
siveness. The results shows that as compared to a con-
ventionally designed service, the implementation cost
for adding new functions of a service design based on a
core/periphery structure is reduced without increasing
service responsibility. We close with a summary of the
advantages of service design based on a core/periphery
structure, which are not numerically verified but are
experienced through the service implementation.

The remainder of this paper is organized as follows.
Section 2 describes related work on services that are
currently being developed or are expected to be de-
veloped in the future. Section 3 describes the services
targeted in this paper and a service design based on a
core/periphery structure. Section 4 describes details of
the service implementation and evaluation. Section 5
describes lessons learned from service implementation
based on a core/periphery structure. Finally, Section 6
describes our conclusions and future work.

2 Current and Future Network-oriented
Mixed Reality Services

This section describes network-oriented services that
have been developed recently or are expected to be
developed in the future.

2.1 Current Services

Telexistence services have been actively developed in
recent years, and momentum for their social imple-
mentation has been rising. Telexistence aims at allow-
ing people to feel as if they are actually at a remote
place. TELESAR V [10] is a telexistence master–slave
system allowing users to feel present in a remote envi-
ronment by transmitting not only video and audio,
but also haptic sensations. ANA Avatar [1] is con-
ceived as a new mode of instantaneous transportation
allowing users to communicate and work as if actually
present in remote places, using robotics and technolo-
gies for sending tactile sensations and allowing remote
robot operations. ANA has begun testing via the ANA
Avatar Museum, which allows users to view a remote
aquarium, and ANA Avatar Fishing, through which
users can remotely fish. A telexistence application us-
ing drones is also being developed [11].
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2.2 Future Services
Sixth-generation (6G) networks will allow develop-
ment of services using technologies that would be dif-
ficult to support over fifth-generation (5G) networks.
Within ten years, current remote interaction technolo-
gies will become obsolete, and new forms of interac-
tion such as holographic and five-sensory communica-
tion will allow immersion in remote places [12]. Tactile
Internet and full-sensory digital reality can be real-
ized by 6G networks [13]. It has also been suggested
that 6G networks will further support underwater and
space communications, allowing deep-sea sightseeing
and space travel [13].
Application-level delay, which significantly increases

in cloud computing environments with communication
distances and load concentrations, will be a significant
factor for service quality in these applications [2]. MEC
is therefore expected to be further standardized [2–4].
In edge computing, computing resources and storage
are allocated at the network edge, so that processing
required by end devices is performed at closer sites.
This improves the responsiveness of applications by
shortening communication distances and optimizing
load distributions. Our research group demonstrated
that MEC environments improve the service quality
of network-oriented MR services [14]. The ETSI In-
dustry Specification Group [15] suggests video content
delivery, video stream analysis, and Augmented Re-
ality (AR) as key use cases for MEC, and suggests
guidelines for software developers.
Current mainstream services include audio and video

transmission, but realizing transmission of information
for the five senses will require construction of service
systems that can handle multiple inputs and outputs.
In this paper, we propose guidelines for service func-
tion placement in a core/periphery structure, a biolog-
ical model for flexibly and efficiently processing infor-
mation.

3 Service Design Based on a
Core/Periphery Structure

This section describes a service design based on a
core/periphery structure.

3.1 Network-oriented d Reality Services under Study
We consider a shopping service using MR and robots.
Robots are placed in an actual store to allow users to
shop from home as if they were actually there. Robots
provide a video feed while moving about the store
under user operations. Real-world information on the
store side is added to videos delivered to users. Users
can move robots with gamepads, gestures, or gaze. Fig-
ure 1 shows an overview of the shopping service and
its functions.

User
Robot

Virtual store Real store

Aggregate 
information

Object 
detection

Move

Take video Get local 
information

Adjust 
speed

Aggregate 
information

Display video

Send 
messages

Display 
information

Fine-grained
object 

detection

Get local 
information

User side Robot side

Figure 1: The presumed service and its func-
tions.

Robot-side applications provide functions for mov-
ing, taking video, processing images, collecting and
aggregating information around the robot, and adjust-
ing movement speed so as not to collide with people
or objects. User-side applications provide functions for
displaying video, sending instructions to the robot, col-
lecting and aggregating information around users, and
detecting objects at a user-defined granularity.

3.2 Service Decomposition Based on a Core/Periphery
Structure

Functions for our network-oriented MR services are
categorized into those related to video transfer and
those related to robot operations. This section de-
scribes functions and processing for video transfer and
robot operations. We then decompose our service into
core and peripheral functions based on a core/periph-
ery structure.

3.2.1 Video Transfer
Functions for video transfer provide video capture and
output, perform object detection, and distribute video
to users. For video transfer, we consider two service
scenarios depending on user requests, devices, and
real-world environments. First scenario is a video rate
adjustment. When a new camera or device is devel-
oped, the performance of the camera capturing the
video may not match the performance of users’ de-
vices. In that case, the function to change the rate and
resolution of the video is needed. Users can also change
the video resolution and rate depend on the network
environment they are placed in. Second scenario is the
selection of object detection methods. Users switch ob-
ject detection methods appropriate to the location of
the robot or information the users want. For exam-
ple, in a shopping service, when a robot is moving
through the halls of a shopping mall, users may se-
lect fast but coarse-grained method, and when users
want to know the detailed classification of a product,
they select slow but fine-grained method. Also, when
new object detection methods are developed, service
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Table 1: Service functions for video transfer.
Function User requests Processing

Video I/O
Real time video Change rates

High-resolution video Change resolution

Object detection
Fast but coarse-grained

Adopt appropriate methods
Slow but fine-grained

Video distribution
To one user Use UDP

On a large scale Use HTTP

(2) Camera User
UDP (mpegts) HTTP (ogg)

(1) Camera User
UDP (mpegts) UDP (mpegts)

Video
I/O

Format 
conversion

Change
rate

(3) Camera User
UDP (mpegts) UDP (mpegts)

(4) Camera User
UDP (mpegts)

Fast but
coarse-
grained
Object
detection

UDP (mpegts)

Slow but
fine-
grained
object
detection

Figure 2: Examples of processing in video
transfer. (1) Video providers change video frame
or bit rates. (2) Video providers distribute video
to multiple users. (3) Object detection with only
a standard part is executed. (4) Object detection
with a new part is executed.

developers implement additional functions to support
them. Third scenario is the selection of video distribu-
tion protocols. A video transfer service which requires
real-time video transmission from robots to users may
use UDP and mpeg-ts, and other video transfer ser-
vice may use HTTP for transmitting video to multi-
ple users. To realize these service scenarios, our service
provides functions for video I/O, object detection, and
video distribution. Table 1 summarizes service func-
tions and processing to adapt to the users’ request for
video transfer.
Then, our next step is to determine which are core

functions when adopting a core/periphery structure
for the service. We decompose the service into func-
tions, and consider which of those described in Sec-
tion 3.1 are core functions and which are peripheral
functions, based on the concept of a core/periphery
structure in which core functions processes informa-
tion more efficiently, while periphery functions have
various configurations for flexibly adapting to environ-
mental changes.
Figure 2 shows examples of video transfer processing.

When video providers want to change the video frame
or bit rates to adapt to the amount of available re-
sources, the video is processed before input. Users too
can change the frame or bit rate. In that case, video is
processed after output. Protocols and the video format
can be changed at the video providers’ request. For ex-

Input video

Coarse-grained
object detection

Fine-grained
object detection

Convert format
Core

UDP (mpegts)

OutputInput

UserCamera
UDP (mpegts)

HLS server

HLS

Object detection

Output videoChange 
frame/bit rate

Figure 3: Video transfer based on a core/pe-
riphery structure.

ample, video providers use the UDP transfer protocol
to send video to a single user, and HTTP otherwise.
When users want to know what is in the video, object
detection is executed. There are various object detec-
tion methods, such as YOLOv3 [16], which is fast and
widely used, and Mask R-CNN [17], which provides
more detail but is slow. Users can adopt their preferred
method. Orange functions in Fig. 2 are common core
functions, while light orange and blue functions are
peripheral functions.
Figure 3 shows the core/periphery structure for

video transfer, with orange fields indicating core func-
tions, light orange fields indicating camera-side pe-
riphery functions, and blue fields indicating user-side
periphery functions. Video is sent from the camera,
whose frame and bit rates are adjusted based on
provider requests as a peripheral function. The video
then passes through core functions, including those for
inputting video, outputting video, and the standard
part of object detection. Finally, the video format and
distribution protocol are selected and sent to users.
By utilizing the flexibility of a core/periphery struc-
ture, all developers have to do is remake or add periph-
eral functions for adapting to different user requests,
changes in the real-world environment where devices
are placed, or device evolution.

3.2.2 Robot Operation
Robot operations provide functions for recognizing
user actions, sending messages from users, accessing
APIs, adjusting robot speeds to avoid obstacles, and
collecting and aggregating information obtained from
robots. For robot operations, we consider three ser-
vice scenarios depending on user requests, devices, and
real-world environments. First scenario is the selec-
tion of command interfaces based on the users’ devices,
which includes either or all of gamepads, gestures, and
gaze. Users select how to operate remote devices de-
pending on the users’ device type and its specification.
In the future, as new command interfaces or devices
are developed, new functions to use the new devices
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Table 2: Variations of service for robot operations.

Function
User requests/
Real-world

environments
Variations of service

Command interface
Use gestures

Change interfaceUse gamepad
Use gaze

Device control
Operate robots

Switch/Add APIs
Operate drones

Adjust robot speed
Some obstacles

Move robot slowly
Slippy

No obstacles Move robot speedily

are developed and provided to users. Second scenario is
the selection of a remote device to operate. Users select
the remote devices e.g. robots and drones to operate
based on the remote environment or users’ requests.
The APIs used in the service are switched accordingly.
When new remote devices are developed, users can use
the new remote devices. Third scenario is adapting to
changes in the real environment in which the robot is
located. For example, when the robot is located in a
crowded area, it moves slower, and when it is in a large
area, it moves faster. To realize the service scenarios,
our service provides functions for command interface,
object device control, and adjustment of robot speed.
Table 2 summarizes variation of service on different
user requests/real-world environments for requests for
robot operations.

We decompose the service into functions and de-
termined core functions as in Section 3.2.1. Figure 4
shows examples of processing for robot operations.
When users operate a robot with gamepads or ges-
tures, their device recognizes instructions and send
messages based on the selected method. When users
operate different devices such drones, service behavior
after receiving user messages will change to access the
robot or drone’s API. Furthermore, robot speeds are
adjusted based on the surrounding environment. When
there are no obstacles or crowds, users can speedily
move robots. Otherwise, robots slow down to avoid
collisions.

The function for send messages in robot operations
is a common function, and therefore should be di-
vided as a core function, rather than the whole ser-
vice being performed as an all-in-one function. Fig-
ure 5 shows the core/periphery structure for robot op-
erations. Functions for sending instruction messages
from users and aggregating information obtained from
robots are common, so they are core functions. Func-
tions for adapting to user requests and changes in the
real-world environment, such as how to input user in-
structions, are peripheral functions. Functions for ac-
cessing robot APIs, collecting information such as the
current robot position and adjusting movement speed

(1) User Robot

Send
messages Device control

(2) User Robot

Input

Input

Command
interface

(3) User Drone
Input

(4) User Robot
Input

Adjust speed

(gamepad)

(gesture)

Figure 4: Examples of processing for robot op-
erations.(1) User operates a robot with gamepad.
(2) User operates a robot with gestures. (3) User
operates a drone. (4) Robot speed adjusted based
on the environment.

Core OutputInput

User
Robot

Send messageGesture Robot API

Gamepad
Gaze

Adjust speed

Drone

Drone API

Command interface

Figure 5:Robot operation based on a core/pe-
riphery structure.

are peripheral functions, because they change accord-
ing to device type and real-world environment. Flexi-
bility of the core/periphery structure allows developers
to simply remake or add peripheral functions to adapt
to varying user requests, environmental changes, and
device evolution.

3.3 Service Scenarios
We expect designing services based on the proposed
core/periphery structure to reduce implementation
costs, because developers need only add peripheral
functions to implement additional services. Ideally, we
would implement all service functions and present their
implementation costs. In practice, however, time limi-
tations make it difficult to implement and evaluate all
service scenarios. In this study, we implement some of
the service scenarios described in Section 3.2 to eval-
uate reductions in implementation cost and penalties
for application-level delay.
We prepare two service scenarios for implementation.

In the first, we modify robot behavior according to its
real-world environment. This scenario realizes commu-
nication between robots’ peripheral functions for ad-
justing speed and core functions related to robots, ob-
ject detection, and messaging. In the second scenario,
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Figure 6: Service scenario.

we modify behavior of a user application based on the
user’s real-world environment. This scenario realizes
communication between user-side peripheral functions
for displaying information and core functions related
to users, information aggregation, and messaging.

3.3.1 Behavior Based on the Real-world Robot
Environment

The following describes a scenario in which robots
modify their behavior based their real-world environ-
ment. Functions for robot operation and core/periph-
ery functions are as follows:

• Core: Functions for transmitting instructions from
the user to the robot and functions for object de-
tection.

• Periphery: Functions for obtaining information
near the robot, adjusting the robot movement
speed, and aggregating information sent from
multiple robots.

Figure 6 shows this scenario. There are users with
MR headsets, robots, cameras, and edge servers on
robot side. Orange functions are core functions. Blue
functions are peripheral functions on robot side, and
light orange functions are peripheral functions on user
side. Users send instructions to robots, moving their
bodies and heads by gamepads, gestures, and gaze.
Robots can detect nearby obstacles and stop using
sensors. Video captured by robot-mounted cameras
are sent to the edge servers, which perform object
detection to recognize objects and persons around
the robots. Object detection, a core function, needs
to be performed in real time and requires powerful
servers. These functions should thus be deployed on
edge servers, not on end devices. The results of ob-
ject detection are returned to robots. For example,
when robots know that there are many people around
them, they can reduce speed to avoid collisions. More-
over, information from robots can be aggregated on
edge servers and shared with other robots for collision
avoidance and the like.

3.3.2 Behavior Based on the Real-world User
Environment

The following describes a scenario in which behavior
is based on the real-world user environment. Core/pe-
riphery functions are as follows:

• Core: Functions for sending user instructions to
robots and for aggregating information from mul-
tiple robots.

• Periphery: Functions for displaying video, detailed
object information, and information about each
robot.

Figure 6 shows this scenario. As a core function,
store and robot information such as product informa-
tion or communication status is collected at user-side
edge severs. Users select which robot to operate only
by communicating with an edge server while view-
ing aggregated information about stores and robots.
Video sent from cameras is roughly classified by ob-
ject type on robot-side edge servers. These functions
perform real-time image processing and information
aggregation, and thus are inappropriate for execution
on end devices. To improve responsiveness, core func-
tions should be performed on edge servers instead of
the cloud. Then, detailed object detection is performed
as a peripheral function on a user-side edge server.
User devices collect personal information such as user
tastes, what the user already owns, and purchase his-
tory, and this information is aggregated on an edge
server. Using this personal information, the system can
display content most appropriate for the user. For ex-
ample, the application can recommend commodities
based on previous frequent purchases, or can warn
users of impending expiration dates for food.

4 Implementation and Evaluation of a
Service Based on a Core/Periphery
Structure

This section describes implementation details and
evaluates the service based on Section 3.3.

4.1 Implementation of a Service Based on a
Core/Periphery Structure

4.1.1 Video Transfer
Video from cameras is sent to a robot-side edge server.
Video is captured using OpenCV [18], then object de-
tection is performed using a PyTorch implementation
of YOLO v3 [16]. For video processing, mask R-CNN
(Region-based Convolutional Neural Networks) [17],
an algorithm that surrounds detected objects with
a rectangle and recognizes the object type for each
pixel and colors it accordingly, can be used. The pro-
cessed video is transmitted via UDP using ffmpeg [19]
to HoloLens [20], an MR headset worn by users, for
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Figure 7: Screenshot of the HoloLens applica-
tion.

display. HoloLens is a standalone head-mounted com-
puter made by Microsoft that displays holograms and
recognizes user gaze and gestures to provide a MR ex-
perience.

4.1.2 Robot Operation
HoloLens controller information is transmitted via
Message Queuing Telemetry Transport (MQTT), a
publish/subscribe-type protocol developed for fre-
quent message exchange between IoT devices. Users
use an Xbox controller that can connect to HoloLens.
We develop an MQTT messaging system on a user-
side edge server with mosquitto [21], an open-source
message broker, and Node-RED [22], a programming
tool for event-driven applications. The MQTT broker
receives controller commands via HoloLens and sends
them to a program running on the robot. The robot is
a Pepper [23] running a program developed using the
programming tool Choregraphe. This program con-
verts messages from the MQTT broker to the Pepper
API.
Figure 7 shows a screenshot of the HoloLens appli-

cation. Users can see video with the object detection
results and a map made by Pepper displayed at the
top left. The green dot represents Pepper’s position.

4.2 Evaluation Metrics and Measurement
This subsection describes the evaluation metrics,
namely implementation cost and service responsive-
ness, and how we measure those metrics.

4.2.1 Implementation Cost
Using the implemented service, we show that adopt-
ing a core/periphery structure lowers implementation
costs.
We evaluate the number of lines of source code as the

implementation cost, comparing source code size when

the service is designed based on a core/periphery struc-
ture with the case where the service is not designed
based on a core/periphery structure and implemented
on an end device. Number of lines of source code is
a numerically representable metric indicating imple-
mentation complexity. While knowledge and prepara-
tion of the development environment is also part of the
implementation cost, such factors are difficult to nu-
merically evaluate. Section 5 describes these and other
lessons regarding service implementation.

4.2.2 Service Responsiveness
Because sending user instructions via an edge server
can increase application-level delay compared with the
case of directly sending instructions to robots, we mea-
sure and evaluate application-level delay as a penalty
for using edge servers.
We measure times from when the HoloLens appli-

cation publishes a message to return of robot sensor
data to HoloLens directly and through the MEC en-
vironment. Then, we compare these times to evalu-
ate the effect of allocating core functions on an edge
server. We regularly sent messages about 20 times from
the HoloLens application and saved each message re-
turn time as t1, t2, . . . , t20. We also record times when
Pepper returned sensor data as t′1, t

′
2, . . . , t

′
20 in the

HoloLens application. Then, we calculate the average
of t′1 − t1, t

′
2 − t2, . . . , t

′
20 − t20 as the application-level

delay.
Application-level delay is a one-way delay. How-

ever, since there are different system clocks between
HoloLens and Pepper, accurate comparison of one-way
delay is difficult. We therefore measure round-trip de-
lay.
We construct a MEC environment using OpenStack

located in Osaka.

4.3 Results
4.3.1 Implementation Cost
Figure 8 shows the relation between the number of

device types at remote sites and the number of lines
of source code for the connection establishment part
(Fig. 8(a)) and for the messaging part (Fig. 8(b)). We
omit the complete source code due to space limitations,
but it is available at our GitHub repository [24]. The
“Direct” represents the design not based on a core/pe-
riphery structure, and Core/Periphery represents the
design based on a core/periphery structure. Solid lines
in the figure represent the number of lines for two robot
types, a Pepper and a presumed robot, and dashed
lines represent the number of lines when using more
than two robot types. We have not implemented the
application with more than two robots, but predict
that the number of lines will linearly increase because
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Figure 8: Number of lines of source code.

applications not based on a core/periphery structure

require source code for establishing connections and

messaging for each device API, resulting in a constant

additional number of IF statements for each.

Figure 8 shows the effect of a design based on a

core/periphery structure increases as the number of

device types increases. Note that when a single type

of device or a single type of service is implemented,

the design based on a core/periphery structure is less

effective. When additional type of remote devices are

deployed for the service, developers need to prepare

service functions, i.e., write code, to establish connec-

tions and operations for the remote devices. Writing

the code is necessary for both the design based on a

core/periphery structure and the design not based on a

core/periphery structure. However, in the application

designed not based on the core/periphery structure,

the amount of source code increases linearly against

the increase of remote device since the service func-

tions are dependent each other. In the application de-

signed based on the core/periphery structure, develop-

ers can reuse these functions as core functions, and the

amount of code is constant or increases marginally.

We considered both variation of devices at remote

sites and variation of user-side devices. Both in services

based on a core/periphery structure and those not

based on this structure, developers must add source

code for obtaining controller information, because this

is a peripheral function. However, increasing the num-

ber of controller types also increases the number of

source code parts to be added on the remote side,

an effect that is mitigated by designing services based

on a core/periphery structure. Therefore, developers

can implement applications more easily by adopting a

core/periphery structure.

Table 3: Results of experiments measuring penalty of
using an edge server.

Direct Core on edge
Average [ms] 21 52
Max [ms] 24 263
Min [ms] 0 18

Ping RTT [ms] - 1

4.3.2 Service Responsiveness
Table 3 shows average, maximum, and minimum val-
ues for application-level delay, along with ping round-
trip time (RTT) when the HoloLens application di-
rectly connects to the Pepper and when the HoloLens
application connects to Pepper via edge servers. Fig-
ure 9 shows the average application-level delay in
these three cases. The results show that application-
level delay when using MQTT on an edge server is
about 31 ms. A 31 ms delay is tolerable because hu-
mans’ reaction time is around 190 ms for light stim-
uli [25–29]. In combination with the results presented
in Section 4.3.1, therefore, a service design based on a
core/periphery structure reduces implementation costs
without significantly deteriorating service responsive-
ness.

5 Lessons from Service Implementation
This section presents lessons learned from service im-
plementation based on a core/periphery structure,
including factors that cannot be numerically repre-
sented.
First, developers do not need to consider device

APIs and specifications. When a service is not based
on a core/periphery structure, functions are not di-
vided and user-side devices directly establish connec-
tions with remote devices. Developers need to know
the APIs of many remote devices to write many parts
of source code, including how to establish connections,
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Figure 9: Application-level delay.

how to move devices at remote sites, and the parame-
ter settings such as the sensitivity to user operations,
which are depend on the speed and other features of
the remote device. By dividing functions based on a
core/periphery structure, user-side developers need to
know only user-side device APIs, and do not need to
consider remote device APIs.

Furthermore, adopting a core/periphery structure
absorbs differences in development environments. We
implement the service using Unity. A 32-bit version of
Unity is required to directly use the Pepper API from
a user-side application, but 32-bit versions of Unity
are no longer being developed. To develop for Pep-
per, therefore, we must use an old version of Unity
and modify the source code as appropriate. When de-
veloping for devices that require an old development
environment and those that require new ones, we need
to know the APIs provided by both. When design-
ing services based on a core/periphery structure, how-
ever, developers need to prepare an environment for
the user-side device only, because core functions ab-
sorb differences in device specifications.

Second, we consider the implementation cost for
sharing information among robots. A non-core/periphery
service structure does not have edge servers. To share
information such as positions, robots must establish
connections with each other. Therefore, each time a
new robot appears, developers must modify source
code to allow other robots to connect with the new
one. By designing services based on a core/periphery
structure, since robots send information to only edge
servers, where that information is aggregated, source
code does not need to be changed even when new
robots appear.

Third, we derive guidelines for service function place-
ment in a core/periphery structure. Taking advantage

of a core/periphery structure allows appropriate divi-
sion of service functions and deployment of those func-
tions to different servers or devices. If no functions are
divided and deployed in the cloud or on end devices,
new services must be entirely recreated to adapt to var-
ious user requests or device evolution. Furthermore, al-
locating core functions on edge servers and peripheral
functions on end devices is the most effective in terms
of service responsiveness and implementation cost, be-
cause it is possible to form feedback loops by short-
distance communication between end devices and edge
servers located near those devices and to adapt to real-
world environmental changes.

6 Conclusion
In this paper, we introduce a core/periphery structure
for service components, which is a known model for
flexible behavior in biological systems, and we designed
and implement a network-oriented MR service based
on this structure.
In the presumed service, we investigate what kinds

of functions can be developed for user requests, real-
world environments where devices are located, and the
development of new devices. To utilize the flexibility
of the core/periphery structure, we regard core func-
tions as those with unchanging behaviors even when
there are changes in user requests or the real-world en-
vironments, and peripheral functions as those whose
behaviors can change under such circumstances. We
also implement applications based on the scenarios
described in Section 3.3 and evaluate the effects of
a design based on a core/periphery structure under
an experimental laboratory environment. These ex-
periments showed that application-level delay due to
MQTT on an edge server is about 31 ms. Taking ad-
vantage of the core/periphery structure allowed us to
appropriately divide service functions and locate func-
tions in a MEC environment, thus reducing implemen-
tation cost for adding new functions with little penalty.
In future work, we will evaluate implementation

costs for object detection and feedback to robots, and
for sharing information among robots. There is also a
need for implementation and evaluation of the service
using robots other than Pepper. Service design based
on a core/periphery structure is more efficient when
there are various devices, but in this paper we imple-
ment and evaluate a service using only one kind of
headset and robot.
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