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Abstract—Network virtualization is expected to handle var-
ious forms of network traffic induced by Internet of Things
applications and other Internet-based services. Because traffic
patterns change with time, virtual networks should be dynam-
ically reconstructed to accommodate increasing traffic and to
free unused resources. However, collecting all traffic information
is difficult when applications are deployed on a wide-area
network. It is therefore necessary to consider uncertainty of
information due to data incompleteness or traffic dynamics. Our
research group has proposed a virtual network reconstruction
method based on a Bayesian attractor model that deals with
uncertain information in decision-making. However, this method
requires advance knowledge of the assumed environment as an
attractor. When the environment changes, attractors must also be
changed. In this study, we use control feedback to automatically
update attractors when the environment changes. Simulation-
based evaluations demonstrate that the proposed method deals
with unknown situations while maintaining noise tolerance.

Index Terms—Virtual Network Topology Reconstruction,
Bayesian Attractor Model, Control Feedback

I. INTRODUCTION

Network virtualization technologies [1] are expected to
handle various Internet-based services, such as Internet of
Things (IoT) applications [2]. Each service generates a dif-
ferent type of communication, so network providers must
prepare network resources to meet the requirements of each.
Network virtualization allows construction of multiple virtual
networks for different network services on a physical network
while satisfying the communication quality requirements of
each service. Additionally, virtual networks can be flexibly
reconstructed to accommodate traffic changes.

Designing a virtual network topology according to actual
traffic patterns is problematic in that it is difficult to grasp
the entirety of network traffic information. In wide-area net-
works such as those used for IoT devices, collecting all
traffic information at all times is infeasible. This makes it
difficult to apply existing network provisioning techniques [3],
which use overall traffic information to optimize networks.
While there are proposed traffic estimation techniques that
infer overall traffic from partially obtained information [4],
estimation errors still occur. Uncertain information causes

unnecessary controls, which can destabilize the network status.
It is therefore necessary to determine an appropriate virtual
network topology even under uncertain traffic information.

Taking as inspiration a decision-making model of the human
brain, our research group has developed a virtual network
topology control method [5]. A model called the Bayesian at-
tractor model (BAM) [6] describes decision-making behaviors
in the human brain. The BAM utilizes a probabilistic inner
decision state, which is sequentially updated with uncertain
observations. It accumulates confidence based on observed
information and makes decisions upon reaching a certain
confidence level. Using a BAM for virtual network topology
control allows good handling of the tradeoff between response
speed and control stabilization. However, BAM requires ad-
vance knowledge of attractors for possible situations, limiting
its applicability to virtual network control in which new traffic
situations continually arise.

Our research group previously proposed a method for
adding new attractors in unknown situations [7] in the field of
image recognition. This method can detect unknown categories
and automatically collect data needed for training and adding
attractors. Image recognition requires labeling only new in-
puts with new labels, while virtual network control requires
mapping inputs to controls. It is thus necessary to update
not only attractors but also correspondences between inputs
and controls. Computation times increase with the number of
attractors, so the number of attractors needs to be limited.
Also, an increase in the number of similar attractors increases
the difficulty of their classification, which may lead to wrong
decisions. It is therefore necessary to update existing attractors
as the situation changes. In this paper, we propose a method
that uses BAM confidence and control feedback to update
attractors in response to changing situations.

When learning with feedback, the degree of confidence in
choices plays an important role [8]. For example, an error
under high confidence indicates that the assumptions leading
to the judgment are wrong, and thus should be significantly
revised by feedback. A BAM allows the degree of confidence
in a decision to be calculated. We extend that model to



also provide control feedback. Changing the choice of BAM
according to feedback has been investigated in the past [5], but
this paper treats the decision-to-feedback loop in a unified way
by incorporating feedback into the model itself. In this model,
attractors are updated by considering whether a decision made
with the attractors would be good or bad. Through simulation-
based evaluation, we show that the addition of feedback allows
a BAM to make decisions appropriate to new situations.
Moreover, though response to a new situation tends to increase
unnecessary control by responding to noise, the proposed
method can respond to new situations while maintaining the
noise regime.

The remainder of this paper is organized as follows. In
Section II, we describe a BAM-based method for virtual
network reconstruction and propose prediction-based decision-
making. Section III describes the extended model, which
uses control feedback and confidence to update attractors. In
Section IV, we present simulation results for our proposed
method. Finally, Section V summarizes this paper and suggests
topics for future work.

II. VIRTUAL NETWORK RECONSTRUCTION BY BAM
When applying the BAM decision mechanism to virtual

network reconstruction, the control server is expected to
determine an appropriate topology even with uncertain traf-
fic information. In this section, we describe details of the
BAM-based virtual network reconstruction method. We also
introduce a prediction mechanism to the conventional BAM
to recognize changing traffic situations.

A. Bayesian Attractor Model

In this study, we used a BAM as a classifier that formulates
the cognitive decision-making process in the human brain [6].
In the BAM, this process is modeled as accumulating confi-
dence through sequential observations. The BAM has several
attractors, or choices, by which it estimates the confidence of
which choice is most suited to the current situation. When the
confidence of a certain choice exceeds a certain threshold, the
BAM takes that choice.

We denote the decision state at time t as zt and the state
corresponding to S alternatives as ϕ1, · · · , ϕS . That is, the
ith alternative is selected when the decision state zt = ϕi.
Usually, ϕi is a one-hot vector whose ith element is 1 and
others are −1.

1) State Update: When a new observation value xt is
obtained, the BAM calculates the posterior probability distri-
bution P (zt|xt) by Bayesian inference. The generative model
for Bayesian inference is

zt − zt−∆t = ∆tf(zt−∆t) +
√
∆twt (1)

xt = Mσ(zt) + vt, (2)

where f is the Hopfield dynamics with S fixed points (at-
tractors) ϕ1, · · · , ϕS representing the S alternatives. In this
generative model, if the decision state approaches an attractor
ϕi, then the selected attractor is suited to the observed value
xt. M = [µ(1), · · · ,µ(S)] is a matrix that aligns µ(i), which
is representative of the observation value for the situation in

which the ith alternative is suitable. σ is a sigmoid function
whose image is [0, 1]. In this paper, functions in bold are
element-wise applied to the operand. wt and vt are noise
terms respectively following Gaussian distributions wt ∼
N(0, q2

∆tI) and vt ∼ N(0, r2I). q is dynamics uncertainty,
representing the tendency to switch among alternative deci-
sions, and r is sensory uncertainty, representing the magnitude
of error in observation values.

2) Decision-making: The posterior distribution gives the
confidence of choice suitability for the current situation. In
the BAM, a decision is made when the confidence exceeds a
certain threshold.

The BAM selects the ith alternative when the condition is
satisfied:

P (zt = ϕi|xt) ≥ λ (3)

Here, λ is the threshold, and P (zt = ϕi|xt) is confidence in
the ith alternative.

B. Virtual Network Reconstruction with BAM(VNR-BAM)

This subsection describes the virtual network reconstruction
method with BAM, which we call VNR-BAM. The process of
virtual network reconstruction is roughly separated into three
subprocesses: collecting traffic information from the virtual
network, determining a virtual network topology appropriate
for the current traffic pattern, and implementing that topology
in the actual network. The entire process is periodically
repeated in response to traffic changes.

At each time slot, the controller collects traffic information
from the network. We denote the traffic information at time
t as a vector xt, whose elements are traffic levels in an
origin–destination flow. We distinguish observed values from
true traffic amounts, denoted by µt, because observed values
contain observation error.

Given the traffic information, the controller calculates a
virtual network topology appropriate to the current traffic. We
represent the virtual network topology at time t as a vector
zt, whose element zabt indicates the ON/OFF state of the
link between nodes a and b. Particularly, a link is established
when zabt = 1, and no link is established when zabt = −1.
The controller calculates a topology zt satisfying a certain
condition under current traffic xt such that the maximum
link utilization remains below an acceptable level when, for
example, traffic is routed along shortest paths [9] or when
minimizing capacity installation costs [10]. The link capacity
can be represented directly as Cab, or indirectly as the number
of ON links between a and b.

Finally, the controller reconstructs the virtual network ac-
cording to zt, requesting the physical network provider to
allocate physical resources to realize the new virtual network.
This process, called virtual network embedding, has been well
studied [11, 12].

This paper focuses on how to decide which topology is
best suited to the current situation when the obtained traffic
information includes uncertainty, such as that due to traffic
dynamics or incomplete data collection.



C. Generative Model for Virtual Network Reconstruction
To realize decision-making for a virtual network with un-

certain observations, we apply the BAM to virtual network
reconstruction. In this subsection, we formulate the virtual
network reconstruction as a BAM.

Since the generative model (Eqs. (1)–(2)) determines the
decision-making process in the BAM, each element in the
model should be associated with the virtual network recon-
struction problem. Namely, the observation value xt, decision
state zt, Hopfield dynamics f , and observation equation
should be determined in correspondence to the virtual network
reconstruction. The following describes how these are mapped
in the virtual network reconstruction scheme.

1) Observation Value: As mentioned in Section II-B, ob-
servation values in virtual network reconstruction are traffic
information. The controller collects traffic amounts at each
origin–destination flow xt, which may differ from the actual
traffic amount µt due to observation uncertainty.

2) Decision State: The virtual network controller uses ob-
served traffic to select an appropriate virtual network topology.
The BAM decision state thus corresponds to the connection
state of each link zt, as defined in Section II-B.

Similarly, specific states ϕ1, · · · , ϕS representing the BAM
alternatives correspond to S topology candidates. The con-
troller selects one candidate for reconfiguring the virtual
network topology according to its confidence P (zt = ϕi|xt).

3) Hopfield Dynamics: The Hopfield dynamics f plays a
role in remembering alternatives ϕ1, · · · , ϕS and recalling one
of them. Following Ref. [9], which also utilizes Hopfield
dynamics for virtual network reconstruction, we define the
function f as

f(z) = ΦΦ+ς(z)− z, (4)

where Φ = (tϕ1, · · · , tϕS) is a matrix in which vectors
ϕ1, · · · , ϕS are arranged in columns, Φ+ is the pseudoinverse
of Φ, and ς is a sigmoid function whose image is [−1, 1].
Note that we distinguish two sigmoid functions σ and ς , whose
images are [0, 1] and [−1, 1], respectively.

Points ϕ1, · · · , ϕS are fixed points of the dynamics as deter-
mined by the above function, and a certain state zt approaches
the closest fixed point ϕi by the dynamics. In our formulation,
a fixed point ϕi has multiple elements with values of 1
corresponding to ON links in the topology, while in Ref. [6]
each fixed point has only one element whose value is 1. This
difference prevents utilization of the observation equation (2)
in our formulation, so we define a new observation equation to
handle multiple 1 values in ϕi, detailed in the next subsection.

4) Observation Equation: The BAM observation equation
maintains the relation between observation values and decision
states. More precisely, it decides which decision seems to be
correct when obtaining observation value xt. The observation
equation in virtual network reconstruction should thus be
defined as a mapping between observed traffic and the virtual
network topology most appropriate to the observation.

Unfortunately, the original observation equation defined as
Eq. (2) cannot be directly applied to our formulation, because
the original BAM assumes a special type of Hopfield dynamics

in which each fixed point ϕi has only one element with value
1. In Ref. [6], the fixed point ϕi is a unit vector whose ith
element is 1, so the product Mσ(z) nearly equals µ(i) (the
ith column of M ) when zt = ϕi. The decision state ϕ thus
corresponds with the observation value µ(i). However, this
logic is invalid if ϕi contains multiple elements with value 1.

We therefore extended the observation equation to handle
multiple 1 values in the fixed points. In the original BAM,
the ith element of σ(zt) behaves as an indicator function that
indicates whether zt equals ϕi. ¿From this perspective, we
introduce the indicator function

δϕi
(z) =

∏
j;ϕi[j]=1

σ(zj)
∏

j;ϕi[j]=0

(1− σ(zj)), (5)

where ϕi[j] is the jth element of ϕi. δϕi
(z) is close to 1 if

z = ϕi and close to 0 otherwise. Using this indicator function,
we formulate an observation function similar to Eq. (2):

xt = Mδ(zt) + vt, (6)

where δ(z) = (δϕ1
(z), · · · , δϕS

(z)) is a vector of indicator
functions for all alternatives.

5) Decision-making: The posterior distribution gives con-
fidence in the alternative being suited to the current situation.
In the VNR-BAM, this decision is made when the confidence
exceeds a certain threshold.

The VNR-BAM selects the ith alternative when the condi-
tion

P (zt = ϕi|xt) ≥ λ (7)

is satisfied, where λ is the threshold, and P (zt = ϕi|xt) is
the confidence in the ith alternative.

III. ATTRACTOR UPDATE WITH CONTROL FEEDBACK

This section describes how we incorporate feedback of the
control results into the VNR-BAM, so that the VNR-BAM can
be adapted to the situation. We propose a new model that can
automatically update attractors. Considering a simple VNR-
BAM extension, we first show a model for Bayesian estimation
with classification results as feedback. In this model, feedback
is discrete information about whether the classification is
correct, but the control results are generally continuous. We
therefore propose a model for modifying the attractor based
on the control results as evaluated by continuous values. In
the proposed model, a performance indicator that takes a
continuous value, such as maximum link utilization, is used
as feedback and to modify attractors by comparing decision
confidence and feedback.

1) Bayesian Estimation with Feedback: A Bayesian filter
uses correct data as training data to modify the classifier’s
parameters. The magnitude of confidence in classifier judg-
ments plays an important role in modifying parameters [8].
For example, a mistake with high confidence implies an error
in the classifier’s parameters, so the parameters need to be
significantly modified.

Regarding a BAM as a kind of classifier, its parameters are
representative of the attractor. BAM classifies observed data
into attractors with close representative values. Namely, the



matrix of representative values M is a parameter, the BAM
takes xt as input and selects the dth attractor, and the label l of
the correct attractor is given. Then, the posterior distribution
of parameters can be updated as

P (M |xt, d = l) ∝ P (d = k|l = k,Mt, xt)P (M) (8)
P (M |xt, d ̸= l) ∝ (1− P (d = k|l = k,Mt, xt))P (M),

where P (d = k|l = k,Mt, xt) is the selection confidence and
P (M) is the prior distribution of M .

However, such feedback-based updates present several is-
sues regarding application to controlling a virtual network.
The first is that it is difficult to provide correct answers
as feedback. Classifications by attractors are introduced for
distinction of the observation space, and there are no strictly
correct answers. Rather, the results of control are measured
using a conventional performance index, such as maximum
link utilization. A second issue is that feedback is limited
to discrete values, while most performance indicators, such
as maximum link utilization, are continuous values. In the
next section, therefore, we propose a model for modifying
the representative BAM value for control feedback.

2) VNR-BAM with Control Feedback: We propose a model
for modifying the representative BAM value using control
performance as feedback. As described above, it is important
to reflect confidence levels when using feedback to modify
parameters. In particular, it is necessary to vary the extent
of model modification in response to gaps in confidence
and feedback. The problem is thus how to compare control
performance with confidence.

Here, we normalize the range of control performance and
confidence values, thereby allowing numerical comparisons.
Note that index values falling within a [0 . . . 1] range, such as
maximum link utilization, can be directly used. In contrast,
a BAM confidence value is a probability density with value
range [0 . . .∞). Therefore, by using the softmax function

P ′(zt = ϕi) =
P (zt)∑

k P (zt = ϕk)
, (9)

we can scale the confidence of all attractors so that their total
is 1.

Using the scaled confidence and control performance de-
scribed above, we add the following equation to the original
generative model (Eqs. 1–2) to create a new generative model:

α′
t = P ′(zt = ϕd) + νt (10)

µ
(i)
t = µ

(i)
t + η

(i)
t , (11)

where µ
(i)
t is the representative value of the ith attractor and

νt,η
(i)
t is a noise term following the Gaussian distribution

νt ∼ N(0, u2),η
(i)
t ∼ N(0, v2I).

Eq. 10 requires confidence and control performance to
be equivalent, so the representative value of the attractor is
modified to close any gaps between confidence and control
performance. For example, if the control performance is high
despite a low confidence level, the representative values of
the corresponding attractors are brought closer to the current
observed values to increase selection confidence. On the

other hand, if the control performance is low despite a high
confidence level, the representative value is updated to lower
the current attractor’s confidence level so that other choices
can be taken. Eq. 11 shows how the representative value is
updated with a noise term as its driving force.

3) State and Representative Values Estimation in the Pro-
posed Model: The new model uses newly added feedback
information as input to estimate representative values. In a
conventional BAM, the state zt is estimated using the observed
value xt as input. This can be performed by using Bayesian
filters such as the unscented Kalman filter (UKF) [13] or a
particle filter. The same estimation can be performed in the
new model by setting the input as (xt, α

′
t), and the state to

be estimated as (zt,µ
(i)
t ). In this paper, we use the UKF to

estimate state and representative values.

IV. EVALUATION

Through simulations, we show that the proposed new model
allows selection of suitable solutions for new situations while
maintaining the BAM noise tolerance. Simulations compared
cases with and without feedback to demonstrate that feedback
helps cope with new situations. We also compare the proposed
method with a heuristic method that randomly searches for
solutions in new situations, and show that the proposed method
can select a more suitable topology without significantly
increasing the number of topology changes.

A. Simulation Setting
The proposed model is expected to adapt to new envi-

ronments while avoiding unnecessary changes in topology.
To demonstrate this, we performed simulations with repeated
environmental changes as follows:

1) Generate a traffic pattern for a given number of attrac-
tors.

2) Calculate a quasi-optimal topology for the generated
traffic patterns.

3) Initialize the attractor set with the generated traffic
pattern as the representative value and the topology as
the choice.

4) Generate an average traffic value.
5) Set the actual traffic pattern as the average of the traffic

values plus noise.
6) Based on observations and feedback, update the state

and representative values and select a topology over Tint

time slots.
7) Generate traffic averages for the new environment in

Step 4, and repeat Steps 5 and 6.
During actual operation, the attractor is first designed to
match some of the expected traffic patterns. We then generate
multiple traffic patterns in Step 2 and prepare an appropriate
topology for the solution. Here, we randomly generate topolo-
gies and set the topology with minimum link utilization under
each traffic pattern as the quasi-optimal topology. Actual traffic
patterns are generated in subsequent steps, where the initial
attractors are not suited to the patterns without updates.

We performed these simulations under the following con-
figuration. We used four virtual nodes, generating traffic flows



of 0.1 units between 10 random pairs of virtual nodes. Noise
was generated from Gaussian distribution with mean 0 and
standard deviation 0.01. Each link has a capacity of 0.4 units,
and flows are linked by shortest path. We set Tint = 20, u = 0,
and v = 1. We use the best s, q for the BAM parameters,
changing the parameters from 0 to 1 in increments of 0.2. We
assume the substrate network provides resources to the virtual
network strictly according to a service level agreement, so
performance is determined by the virtual network topology.

1) Heuristic for Topology Selection: The proposed model
uses feedback to change the representative value of BAM,
thereby changing the selection. A simpler way to use feedback
is to directly change the selection based on good or bad
performance. However, since this method does not consider
traffic, it does not have the same noise tolerance as BAM
and thus would frequently change topologies. To clarify these
differences, we compare the proposed model with a heuristic
method that uses feedback to directly modify selections.

When congestion occurs under this heuristic (i.e., when αt

exceeds 1), the current topology is switched to another. It is
possible to maintain a history of selected topologies to avoid
reselecting one, but doing so is unrealistic, because the timing
of environmental changes must be accurately monitored to
reset the history. We therefore do not maintain a history; rather,
we randomly select the next topology from among all other
possibilities. To allow fair comparison, those selections have
the same topology as the BAM.

2) Performance Metrics: There is a tradeoff between adap-
tation speed and control change frequency. If the sensitivity
is increased to quickly adapt to environmental changes, it
will also respond to noise, causing network instability. If we
retain the current settings, however, there will be delays before
responding to environmental changes. By accumulating the
BAM confidence level, stable selection is possible even in the
presence of noise. The proposed model can respond to new
situations while maintaining this noise tolerance by updating
the representative value. We use two indicators to confirm this:
the congestion period and the number of topology changes.

The congestion period indicates the duration of congestion,
defined here as the time when the maximum link utilization
exceeds 1. The number of topology changes is defined as the
number of times each method makes a topology change. Each
environmental change has time slots for a period of Tint, and
we use the average index value for each environmental change
in subsequent evaluations. Therefore, the upper limit on the
congestion period and the number of topology changes is Tint.

B. Results

1) Congestion Period: We first discuss the congestion pe-
riod as a performance indicator to confirm that the feedback
facilitates appropriate topology selections. The horizontal axis
in Fig. 1 shows the number of attractors, and the vertical
axis shows the congestion period. The congestion period is
the average value for fifty cases with varied initial attractors.
In the figure legend, “BAM nof” is the conventional VNR-
BAM with no feedback, “BAM wf” is the proposed model,
“heuristic” is the heuristic method, and “opt” indicates setting

the topology from attractors by minimizing the maximum
link utilization. This figure shows that BAM wf always has
a shorter congestion period than does BAM nof, because the
conventional BAM can only deal with traffic patterns assumed
in the initial setting, but the proposed model can deal with new
traffic patterns by updating representative values of attractors
through control feedback.

In addition, when the number of attractors increases, the
proposed model is superior to that of the heuristic model,
which simply uses feedback. In heuristic models, solutions
are found by trial and error without traffic pattern recognition,
and this search takes time. In contrast, the proposed model
recognizes traffic patterns, potentially reducing search times
by selecting a topology that can accommodate traffic patterns
similar to the current pattern.

When the number of attractors increases, the number of
potential traffic patterns that can be accommodated also
increases, thereby lowering the congestion period for opt.
BAM wf similarly modifies the feedback to improve selec-
tions, so its performance is similar to that of opt. The heuristic
method also lowered the congestion period as the number of
attractors increased, but the increased search time resulted in
a large gap from opt.
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Fig. 1. Congestion periods with different numbers of attractors.

2) Number of Topology Change: The above shows that
use of feedback can reduce congestion, even when a new
environment arises. In general, however, increased sensitiv-
ity to environmental change can make control unstable due
to noise. Therefore, Fig. 2 shows the average numbers of
topology changes. The figure shows that opt, which sets
the optimal topology each time, requires large numbers of
topology changes. This is because it responds not only to
environmental changes, but also to minor variations such as
noise. In contrast, despite BAM wf being able to reduce
congestion to the level closest to opt, the number of topology
changes is similar to or slightly less than that in the heuristic
model. This confirms that the proposed model can respond to
new environmental changes while maintaining the BAM noise
tolerance. There are few topology changes in the conventional



BAM, because there are no corresponding attractors to avoid
congestion under environment changes.
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Fig. 2. Numbers of topology changes with different numbers of attractors.

3) Result with More Attractors: If an appropriate selection
can be made, a topology can be set that avoids congestion
by increasing the number of attractors. However, increasing
attractors increases the difficulty of making correct selections.
The following shows the results for the case of many (20)
attractors.

Fig. 3 shows the maximum link utilization rate at each
time for each method. This figure confirms that the link
utilization rate exceeds 1 under the heuristic method several
times, indicating that congestion has occurred. Especially after
time 80, the congestion remains unresolved for a long time.
This is because the heuristic method changes selections by trial
and error, so it takes time to make an appropriate selection
from among the many attractors. In contrast, the BAM wf
method avoids congestion by recognizing traffic and selecting
the most suitable topology.

V. CONCLUSION

We proposed an extended BAM model for virtual network
reconstruction under dynamic environments. The proposed
model uses control feedback to automatically update the
attractors, updating their representative values by Bayesian
estimation based on the confidence gap between the BAM
selection and control performance feedback. Simulation-based
evaluations showed that even when the environment changes,
the proposed method can select a topology that quickly re-
solves any resulting congestion. We showed that in comparison
with heuristics that use feedback for direct selections, conges-
tion periods are shortened without increasing the number of
topology changes.

Future research will investigate nonparametric methods such
as the Dirichlet process mixture model that can automatically
set a reasonable number of attractors.
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