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Abstract

Machine learning has become used in various areas such as anomaly detection on fac-

tories and farms. As machine learning becomes popular, machine learning models become

the target of attacks. Adversarial examples are one of the most serious attacks for machine

learning. In this attack, the attacker adds small perturbations to the input features of

a machine learning model. By adding such small perturbations, the attacker makes the

machine learning model make wrong decisions. Many researchers have demonstrated the

possibility of adversarial examples. Though they discussed countermeasures, no funda-

mental solution has been found yet.

To generate adversarial examples, an attacker calculates the perturbation that causes

the wrong decision of the target machine learning model. Most existing papers assume that

attackers know the information of all input features and they calculate the perturbation

based on the information. However, considering the case that a machine learning model is

used to identify the current status from the information obtained from multiple sensors,

attackers hack only a limited number of sensors that have vulnerabilities and monitor the

features from the hacked sensors. If attackers can make the machine learning model make

wrong decisions even in such cases, the risk of the adversarial examples is high.

In this thesis, we discuss the possibility of an adversarial example attack whereby an

adversary can monitor and tamper a part of features. To demonstrate the possibility of

the adversarial examples, we train a machine learning model to generate the adversarial

examples. In this model, we use a part of features that can monitor by the attacker as the

input. The output of this model is the features to cause the wrong decision of the target
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model. By using this model, we demonstrate that attackers can make machine learning

models make wrong decisions even if they can monitor and tamper a part of features.

Moreover, we also propose the countermeasure against the adversarial examples by the

attackers who can monitor and tamper a part of features. This method is based on that

the attackers can monitor and tamper only a part of features. In this method, we first

train an additional model called a feature-removed model that can make similar decisions

without specified features. When the machine learning model makes a decision, we identify

the important features for the decision and obtain the output of the model with feature

loss by eliminating the important features. Then, we detect attacks by comparing the

outputs of the original model and the model with feature loss. In addition, if the attack

is detected, we suggest the outputs of the model with feature loss as the candidates of the

correct outputs.

We demonstrate the effectiveness of our countermeasure against the attack. As a

result, we confirm that data causing the attack can be identified with a detection rate of

88% and a false-positive rate of 1%. The original results can be suggested with 96% as

well.
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1 Introduction

Machine learning has become used in various areas such as anomaly detection on facto-

ries and farms. Machine learning-based applications such as Smart Healthcare [1], Smart

Home [2], and Smart Transportation enrich our lives. As machine learning becomes popu-

lar, machine learning models become the target of attacks. Adversarial examples are one

of the most serious attacks for machine learning. In this attack, the attacker adds small

perturbations to the input features of a machine learning model. By adding such small

perturbations, the attacker makes the machine learning model make wrong decisions.

Many researchers have demonstrated the possibility of the adversarial examples [3–8].

The methods to detect the adversarial examples have also been proposed [9–13]. However,

it was demonstrated that the adversarial examples that cannot be detected by the above

methods exist [14,15]. That is, no fundamental solution has been found yet.

To generate adversarial examples, an attacker calculates the perturbation that causes

the wrong decision of the target machine learning model. Most existing papers assume that

attackers know the information of all input features and they calculate the perturbation

based on the information. However, considering the case that a machine learning model is

used to identify the current status from the information obtained from multiple sensors,

attackers hack only a limited number of sensors that have vulnerabilities and monitor the

features from the hacked sensors. If attackers can make the machine learning model make

wrong decisions even in such cases, the risk of the adversarial examples is high.

In this thesis, we discuss the possibility of an adversarial example attack in the case

that an attacker can monitor and tamper a part of features. To demonstrate the possibility

of the adversarial examples, we train a machine learning model to generate the adversarial

examples. In this model, we use a part of features that can monitor by the attacker as the

input. The output of this model is the features to cause the wrong decision of the target

model. By using this model, we demonstrate that attackers can make machine learning

models make wrong decisions even if they can monitor and tamper a part of features.

Moreover, we also propose the countermeasure against the adversarial examples by the

attackers who can monitor and tamper a part of features. This method is based on that

the attackers can monitor and tamper only a part of features. In this method, we first
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train an additional model called a feature-removed model that can make similar decisions

without specified features. When the machine learning model makes a decision, we identify

the important features for the decision and obtain the output of the model with feature

loss by eliminating the important features. Then, we detect attacks by comparing the

outputs of the original model and the model with feature loss. In addition, if the attack

is detected, we suggest the outputs of the model with feature loss as the candidates of the

correct outputs.
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2 Related Work

2.1 Adversarial Example

Szegedy et al. [3] showed the first method that makes neural network model misclassify

labels by adding perturbation to the input features. In their approach, they added a

small perturbation based on the gradient. As a result, they demonstrated that a small

perturbation that cannot be recognized by a human can cause a wrong decision of a neural

network.

Goodfellow et al. [4] proposed a method to generate adversarial examples called the

fast gradient sign method (FGSM) method. In this method, the perturbation is calcu-

lated based on the sign of the gradient of the loss function. This method generates the

perturbation that increases the loss of the target model.

Moosavi-Dezfooli et al. proposed another method to generate adversarial examples

called DeepFool [5]. In this method, an adversarial example is generated by iteratively

updating the perturbation based on the gradient of the loss function. Moosavi-Dezfooli

et al. also demonstrated that a universal and very small perturbation vector that causes

natural images to be misclassified with high probability exists.

Several papers demonstrated that adversarial examples can be generated from the

physical world. Adversarial patch [6] is a method to generate patches that cause misrecog-

nition of the machine learning model using the camera images. This method generates a

patch that can be printed. By adding such a printed image, the machine learning model

misclassifies the camera images.

Eykholt et al. [7] demonstrated the adversarial examples in the realistic scenario. They

generated the images to cause the misclassification of the traffic sign and stuck the printed

images to the traffic sign. They demonstrated that such attacks can cause misrecognition

from a stop sign to a speed-limit sign. Sharif et al. [8] demonstrated a similar attack that

causes misidentification of a person by wearing a specific accessory such as glasses.

Most researches on adversarial examples assume that the attackers know the informa-

tion of all input features and they calculate the perturbation based on the information.

However, considering the case that a machine learning model is used to identify the cur-

rent status from the information obtained from multiple sensors, attackers hack only a
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limited number of sensors that have vulnerabilities and monitor the features from the

hacked sensors. If attackers can make the machine learning model make wrong decisions

even in such cases, the risk of the adversarial example is high. Therefore, in this thesis,

we focus on the case that an adversarial example attack in the case that an attacker can

monitor and tamper a part of features.

2.2 Adversarial Examples Detection

There are several methods to detect adversarial examples.

Metzen et al. proposed a method to detect adversarial examples [9]. They created a

small neural network model to detect adversarial examples.

Safetynets is another method to detect adversarial examples [10]. This method trains

SVM classifiers to detect attacks by using the activation patterns of the nodes in the target

model.

Feinman et al. proposed a detection method based on that the uncertainty of adver-

sarial example is higher than the data without attacks [11]. They made Bayesian neural

networks to estimate the uncertainty of input data. Then based on the uncertainty, ad-

versarial examples are detected.

Grosse et al. proposed a method to detect adversarial examples from the statistical

difference between the data with and without perturbations [12]. Hendrycks et al. used

the principal component analysis to detect adversarial examples. Meng et al. proposed

a framework against adversarial examples [13]. In this framework, adversarial examples

are detected based on the distribution of the training data. Then, if adversarial examples

are detected, the framework tries to reconstruct the input so that the target classifier can

make correct decisions.

However, Carlini and Wagner demonstrated that the adversarial examples that cannot

be detected by the above methods exist [14, 15]. That is, no fundamental solution has

been found yet.

In this thesis, we propose a countermeasure against adversarial examples, focusing on

the case that the attackers can monitor and tamper a limited number of features. By

focusing on the case, we propose a method to detect attacks by using features that cannot

be tampered by the attackers.
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3 Adversarial Examples by Monitoring and Tampering a

Part of Features

In this section, we present a method to generate adversarial examples by monitoring and

tampering a part of features. We first describe the problem setting and notations. Then,

we explain how to generate adversarial examples.

3.1 Problem Setting

Target Model In this thesis, we focus on the classifier that outputs labels corresponding

to input features. We assume the input features can be separated into multiple groups.

Each group includes the features that can be monitored and tampered at the same time.

For example, features from a sensor can be tampered by hacking the sensor. In this case

the features from a sensor belong to the same group.

Ability of Attackers In this thesis, we assume that the attacker has enough information

on the target model. That is, the attacker knows the information on the architecture and

parameters of the target model. In addition, we assume that the attacker also knows

enough training data that are used to train the target model. However, when generating

the adversarial examples, the attackers can monitor and tamper only the features in one

of the feature groups. That is, the attacker cannot obtain the features outside the group

he/she can monitor. This assumption corresponds to the condition that the attacker can

monitor and tamper the features only from the hacked sensors in the case that the target

model uses the features from multiple sensors.

Goal of Attacks In this thesis, we focus on the target attacks. That is, the attacker

tries to make the target model output the label he/she wants.

3.2 Notation

We denote f() as the target machine learning model. f(x) is the output of the model

when the input features are x.
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We denote Xnow as the actual feature values when attacks. We introduce a vector M

to represent the features that can be monitored and tampered by the attacker; the ith

element of M is set to 1 if the ith feature can be monitored and tampered by the attacker,

0 otherwise. That is, the attacker can obtain MTXnow.

We also introduce a function g that represents the function to generate the features

generated by the attackers. That is, the attacker generates g(MTXnow) and rewrite

MTXnow to g(MTXnow). As a result, the input of the target machine learning model

becomes (I −M)TXnow +MT g(MTXnow) where I is the vector whose all elements are 1.

3.3 Generation of Adversarial Examples

3.3.1 Training of Generative Model

In this thesis, the attacker generates the adversarial examples by using the function g().

The function g() is a generative model trained by the information the attacker has. In

this section, we explain how to train g(), when the attacker has the information on the

target model f() and the dataset to used to train f() and M is fixed.

In this thesis, we construct g() as a neural network. The size of the input features of

g() is the number of elements of M whose values are 1. The size of the output vector of

g() is also the same.

When training g(), we connect output of g() to f() as shown in Figure 1. Then we

define the loss function based on the output of f(). We use the loss function defined as

Lg = L(f((1−M)TXnow +MT g(MTXnow)), t′). (1)

where t′ is the label the attacker wants the target model to output, and L(t, t′) is the loss

function defined between the output label t and the target label t′. We can use any loss

functions for L(). In this thesis, we use the softmax cross-entropy defined as L(), because

the softmax cross-entropy is widely used for training the neural networks for classification

tasks.

The attacker trains g() by using the training data he/she has. The training data

includes all features including the features that cannot be monitored by the attacker when

generating the attack. Thus, the attacker can calculate f((1−M)TXnow+MT g(MTXnow))

for training data.
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Figure 1: Attack generation image

We train g() by using the training data and the loss function defined above. g() can be

trained by the same manner as the general training of neural networks. In this thesis, we

use the stochastic gradient descent (SGD) method to train g() so that the loss function is

minimized.

3.3.2 Generation of Adversarial Examples

The attacker generates adversarial examples by using g().

The attacker monitors the features that he/she can monitor. The monitored features

can be represented as MTXnow. Then, he/she obtain how to tamper the features that

he/she can tamper by g(MTXnow). Finally, he/she change the ith feature value among

the features can be tampered to ith value of g(MTXnow). As a result the input features

of the target machine learning model f() becomes (1−M)TXnow +MT g(MTXnow).

In the above steps, we can obtain the output of g() immediately. That is, the attackers

can tamper the features in real-time.
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4 Countermeasures

In this section, we propose a countermeasure against adversarial examples described in the

previous section. We first describe the overview of the proposed countermeasure. Then,

we explain each step of our countermeasure.

4.1 Overview of Countermeasure

In this thesis, we propose a countermeasure, focusing on the features that cannot be

changed by the attacker. In the attack discussed in this thesis, an attacker can monitor

and tamper only features in a group. Even if the attacker changes all the features in the

group, we have the remaining features outside the group that cannot be changed by the

attacker. The remaining features may include the information on the actual label. That

is, it is possible to obtain the true label by performing the classification without using the

features that may be tampered by the attacker.

Based on the above idea, we propose a countermeasure against adversarial examples.

In our countermeasure, When the output of the target machine learning model is obtained,

we first identify the candidate of feature groups that may be tampered. Then, we obtain

the classification results without using features in each of the identified feature groups.

Finally, we detect adversarial examples by comparing the results from the target model

and the results from the classification without using the identified features. In addition,

if the adversarial examples are detected, we can present the possible true labels by using

the results of the classification without using the identified features.

The rest of this section explains the steps in our countermeasure.

4.2 Identification of Tampered Features

In the adversarial examples, the tampered features have a significant impact on the classifi-

cation results; if the features have not tampered, the classification results must be the true

label and different from the results of the classification with tampered features. Therefore,

the tampered features can be identified by identifying the features with a large impact on

the classification results.

There are several methods to identify the features with a large impact on the results.
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We can apply any methods. In this thesis, we use SmoothGrad [16]. SmoothGrad is one

of the methods to clarify the reason for classification in deep learning.

The SmoothGrad focuses on the impact of the change of the feature values on the

loss function of the target model. If the value of the loss function changes significantly

by changing a value of a feature, the feature has a large impact on the results. Such

impacts can be evaluated by partial derivative; the impact of the feature can be evaluated

by the partial derivative of the loss function with respect to a feature. But just by using

the partial derivative, we cannot consider the correlation with other features. Therefore,

the SmoothGrad calculates the average of values of the partial derivative after adding the

noises to features. That is, the impact of the ith feature on the results M̂c(x, i) is obtained

by

M̂c(X, i) =
1

n

n∑
1

Mc(X +N(0, σ), i), (2)

where n means the number of samples, X means the input features, N(0, σ) means the

noise that follows the Gaussian distribution whose mean and variance are 0 and σ. Mc(X, i)

is defined by

Mc(X, i) =
∂f(X)

∂xi
(3)

where f() is the loss function and xi is the ith feature.

In our countermeasure, we calculate M̂c(X, i) for each features. The features whose

absolute values of M̂c(X, i) are large have a large impact on the classification result.

Therefore, we identify the feature group which includes the features with large M̂c(X, i)

as the feature group that may be tampered by the attacker. In this thesis, we calculate

M̂g
c (X) defined by

M̂g
c (X) =

∑
i∈Ig

|M̂c(X, i)|
maxi M̂c(x, i)

(4)

where Ig is the set of the IDs of the features in the group g. Then we identified the feature

group g if M̂g
c (X) exceeds a threshold.

4.3 Classification by Excluding Identified Features

In our countermeasure, we obtain the classification results without using the features in

each of the identified groups. To obtain such results, we introduce an additional model
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called feature-removed model.

We construct the feature-removed model so that we can set the features to be excluded

and obtain the classification results without using the set features. If some important

features are excluded, the feature-removed model cannot identify the label. Considering

this, the feature-removed model outputs multiple possible labels instead of identifying

a single label. By using the feature-removed model, we can obtain the possible labels,

considering the possibility of the adversarial examples by setting the identified features as

the features to be excluded.

The rest of the subsection explains the structure of the feature-removed model and

how to train the feature removed model.

4.3.1 Structure of the Feature-removed Model

In this thesis, we use a neural network to construct the feature-removed model. We can use

any neural network structures such as fully-connected neural networks and convolutional

neural networks. The difference from the existing neural networks is only a mechanism to

handle excluded features.

The feature-removed model accepts the same input as the target model but we can set

the features to be excluded. In the feature-removed model, the excluded features are set

to 0.

In the middle layer of the feature-removed model, the output of the ith node of jth

layer oi,j is calculated by

oi,j = a

 ∑
k∈Ci,j

1

1−Nexcluded
Ci,j

wj−1,k,iok,j−1 + bi,j

 (5)

where a() is the activation function, Ci,j is the set of nodes in the j−1th layer connected to

the ith node of jth layer, wj−1,k,i and bi,j are the weight and bias trained in the training

phase. Nexcluded
Ci,j

is the number of excluded features. When calculating Nexcluded
Ci,j

,

we also regard the features in the middle layer that are calculated only by the excluded

features as the excluded features. By using Nexcluded
Ci,j

, we can make the output of the

middle layers without excluded features a similar scale to the output calculated by all

features.
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In the output layer of the feature-removed model, we use the Sigmoid function as an

activation function instead of the softmax function. By using the Sigmoid function, we

allow outputs for multiple labels to become 1.

4.3.2 Training of the Feature-removed Model

We train the feature-removed model so that the model can output possible labels without

specified features. To train this model, we use the same dataset used to train the target

model.

We train the model by randomly selecting the feature group to be excluded. By doing

so, we construct the model that can work excluding the specified features. The output of

the model should include the training labels. But we can allow that the output includes

the different labels. Considering this, we use the following loss function to train the

feature-removed model.

Lfeature−removed(Y, T ) = −
∑
i

(w(ti)(ti log yi + (1− ti) log(1− yi))) (6)

where Y is the output of the model, T is the training label, yi is the ith element of Y

and ti is the ithe element of T . ti is set to 1 if the training label is i, otherwise 0. w(t) is

the weight defined for t. We set w(0) << w(1) so as to include the training label in the

output.

4.4 Decision

After obtaining the outputs of the feature-removed model, we compare the outputs of the

feature-removed model and the target model to detect adversarial examples. If multiple

feature groups are identified as the feature groups that may be tampered, we compare the

outputs of the feature-removed model by excluding each of the groups.

If there exits a feature group whose corresponding outputs include a low probability for

the output label of the original model, the output label is wrong considering the features

excluding the feature group. In this case, we detect the attack. In addition, the true

label is included in the outputs of the feature-removed model excluding the feature group.

Thus, we present the outputs as the candidates of the true label.
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If none of the feature groups have the outputs including a low probability for the

output label of the original model but all feature groups include the other labels with high

probability, it is possible that the true label is different from the original model. We label

this case as ”Suspicious”. Then, we present the outputs of the feature-removed model as

the candidate of the true label.

Otherwise, the output label of the original model matches the output of the feature-

removed model. Thus, we label this case as ”Normal”.
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Figure 2: MNIST dataset

5 Evaluation of Adversarial Examples and Their Counter-

measures

5.1 Experimental Environment

5.1.1 Dataset

There are no open data from multiple sensors that can be used for evaluation in this

thesis. Instead of the data from multiple sensors, we use the MNIST dataset, which is

one of the most famous datasets in the field of machine learning and has been used for

the demonstration of the adversarial examples [13]. The MNIST is an image dataset of

handwritten numbers. The MNIST dataset consists of numeric images from ”0” to ”9” as

shown in Figure 2. There are 60,000 training data and 10,000 test data, where each image

is a 28× 28 gray image and each pixel has a value between 0 and 255.

In this thesis, we set the feature groups by dividing each image into nine blocks as

shown in Figure 3.

5.1.2 Target Model

In this evaluation, we construct a convolutional neural network to classify the MNIST

dataset. The hyperparameters of the model are set according to the tutorial of TensorFlow.

5.2 Demonstration of Adversarial Examples

First, we demonstrate the adversarial examples by monitoring and tampering a part of

features. In this demonstration, the attacker can monitor and tamper the features in one

of the feature groups shown in Figure 3.
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Figure 3: Definition of feature groups in our evaluation

Table 1: Attack success ratio of attacks to make the model misclassify 1 as 7

0.007 0.974 0.000

0.006 0.989 0.199

0.004 0.208 0.008

In our evaluation, there are 10 kinds of pre-attack labels, 9 kind of target labels of

attacks and 9 attack target group. That is, 10 × 9 × 9 = 810 patterns of attacks. We

generate attacks for all patterns and calculate the attack success ratio defined by

ϵ =
Y

X
. (7)

where X is the number of generated images and Y is the number of images that are

classified into the target label.

Table 1 shows the attack success ratio of attacks to make the model misclassify 1 as

7. The ratio shown in the table indicates the attack success ratio for the case that each

feature group is monitored and tampered. This table shows that the attack success ratio

depends on the feature groups. But by monitoring and tampering some feature groups,

the attack succeeds with high probability.

Table 2 shows the attacks with a high attack success ratio. The table shows that

many attacks succeed with a success ratio higher than 0.9. That is, the attacker that can
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monitor and tamper only a limited number of features can generate attacks that cause

misclassification.

Table 2 shows that the success ratio becomes high when the 5th group can be monitored

and tampered. The 5th group is in the center of the image. Thus, the attacker can obtain

enough information to generate adversarial examples from the features in the 5th group.

In addition, the features of the 5th group have also a large impact on the target model.

As a result, the attacker that monitors and tamper features in the 5th group achieves a

high attack success ratio.

The environment settings for experimental evaluation, i.e., structure hyperparameters

of a machine learning model, are described below.
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Table 2: Attacks with a high success ratio

attack target group pre-attack label target label success ratio

2 1 7 0.974

2 9 4 0.733

5 0 8 0.858

5 1 3 0.977

5 1 4 0.985

5 1 5 0.948

5 1 6 0.964

5 1 7 0.989

5 1 8 0.997

5 1 9 0.957

5 2 8 0.727

5 3 5 0.708

5 3 8 0.705

5 4 7 0.925

5 6 5 0.784

5 7 3 0.741

5 7 8 0.764

5 7 9 0.904

5 9 7 0.728

5 9 8 0.765

8 1 2 0.978

8 1 8 0.989

8 7 2 0.829

8 9 8 0.918
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Attack Suspicious Normal Total

group2 13 7 0 20

group5 166 14 0 180

group8 33 5 2 40

total 212 26 2 240

original data 1 40 59 100

Table 3: Accuracy of attack detection

5.3 Evaluation of Countermeasure

We evaluate our countermeasure. In this evaluation, we generate attacks whose success

ratio is high by setting the targets as shown in Table 2. For each setting, we generate 10

attacks and evaluate the accuracy of the detection. In addition, we evaluate our method

by using the 100 data without attacks. In this evaluation, we set the threshold to identify

the feature groups to 12.

Table 3 shows the results grouped by the feature group that is monitored and tampered

by the attacker. Our method outputs three kinds of attack levels; attack, suspicious and

normal. Table 3 shows that more than 88 % of attacks are detected as attacks. Only less

than 1 % of attacks are not detected. That is, our method detects attacks accurately. On

the other hand, the ratio of the original data that are mistakenly detected is 1 %. However,

40 % of the original data are labeled as suspicious. This is because some feature groups

are necessary to identify the specific label. As a result, the feature-removed model outputs

multiple candidates, and we cannot identify whether the data is an attack or normal. To

avoid this problem, we need a more sophisticated method, which is one of our future work.

We also evaluate the output labels of our method. Table 4 shows the result. Our

method may output multiple labels. Thus, we divided their cases. The first case is the

case that the number of the output labels is 1 and the label matches the correct label.

In Table 4, we call this case fully success. The second case is the case that our method

outputs multiple labels that include the correct label. In Table 4, we call this case partially

success. The last case is the case that no output labels match the correct label. Table 4,

we call this case wrong.
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Table 4 shows that our method output correct labels with high accuracy. In 230 out

of 240 cases, our method outputs correct labels. Moreover, in 132 cases, our method can

identify the single correct label. That is, by using our method, we can obtain the correct

output even when the attackers try to generate adversarial examples.
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Table 4: Number of cases that our method successfully outputs the correct label

attack target

group

pre-attack

label

post-attack

label

Fully

success

Partially

success
Wrong

2 1 7 7 3 0

2 9 4 1 3 6

5 0 8 8 2 0

5 1 3 0 10 0

5 1 4 8 2 0

5 1 5 6 4 0

5 1 6 4 6 0

5 1 7 8 2 0

5 1 8 8 2 0

5 1 9 6 4 0

5 2 8 8 2 0

5 3 5 6 4 0

5 3 8 8 2 0

5 4 7 7 3 0

5 6 5 7 3 0

5 7 3 6 4 0

5 7 8 6 4 0

5 7 9 4 6 0

5 9 7 1 9 0

5 9 8 1 9 0

8 1 2 6 4 0

8 1 8 5 4 1

8 7 2 6 4 0

8 9 8 5 2 3

total 132 98 10
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6 Conclusion and Future Work

In this thesis, we discussed the possibility of an adversarial example attack whereby an

adversary can monitor and tamper a part of features. To demonstrate the possibility of

the adversarial examples, we trained a machine learning model to generate the adversarial

examples. In this model, we use a part of features that can monitor by the attacker as the

input. The output of this model is the features to cause the wrong decision of the target

model. By using this model, we demonstrated that attackers can make machine learning

models make wrong decisions even if they can monitor and tamper a part of features.

Moreover, we also proposed the countermeasure against the adversarial examples by

the attackers who can monitor and tamper a part of features. This method is based on

that the attackers can monitor and tamper only a part of features. In this method, we first

train an additional model called a feature-removed model that can make similar decisions

without specified features. When the machine learning model makes a decision, we identify

the important features for the decision and obtain the output of the model with feature

loss by eliminating the important features. Then, we detect attacks by comparing the

outputs of the original model and the model with feature loss. In addition, if the attack

is detected, we suggest the outputs of the model with feature loss as the candidates of the

correct outputs.

We demonstrated the effectiveness of our countermeasure against the attack. As a

result, we confirm that data causing the attack can be identified with a detection rate of

88% and a false-positive rate of 1%.

We demonstrated attacks and countermeasures using MNIST in this thesis. However,

the discussion in this thesis is applicable to the other cases. Especially, the attack scenario

discussed in this paper is important of the machine learning model using multiple sensors.

Therefore, we need to demonstrate the attacks and evaluate our countermeasure in the

case of the sensor-based machine learning model, which is one of our future work.
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