

Radio Resource Allocation

•M/D/K/K queuing model is exploited

- Poisson arrival process of UEs that successfully transmit their preambles
- Radio resource is kept allocated until an inactivity timer expires
 The number of radio resource blocks (RBs) allocated to a UE is fixed
- Failure probability for radio resource allocation p_r

13

14

15

16

20

- immediate release of radio resources
- Numerical evaluation results
 - NB-IoT gives larger network capacity while larger service time
 Immediate release of radio resources increases the network capacity by 20.9 times with 10 [sec] of communication cycle

•Future work

 Explore optimal parameter configurations of LTE and NB-IoT networks in accommodating periodic C-IoT communications

CQR2020

•Comparison with non-cellular LPWA networks

20

5/14/2020