Understanding Machine Learning Model Updates Based on Changes in Feature Attributions

YUN FAN,

Graduate School of Information Science and Technology, Osaka University

Contents

- Background
- Research Purpose
- Related Works
- Proposed Method
- Experiments
 - Results
 - Case study
- Conclusion
- Discussion

Background

- In cybersecurity, Machine learning (ML) has been applied to many systems such as malware detection
- ML performance degrades when statistical characteristics of data change over time —> concept drift
- ML models need **updates** to improve the performance
 - update: add new data to the training dataset and re-train the model
- After updates, the new model needs to be validated
 - □ accuracy
 - □ the area under the curve (AUC)
 - ...

Research Purpose

- Common validation methods only calculate accuracy or AUC scores of ML models
 - why performance improved ?
 - what changes in the update affect performance?

Obtain **detailed information** to understand the model updates

- What causes the performance changes
- Whether there are slight changes not showing in the accuracy and

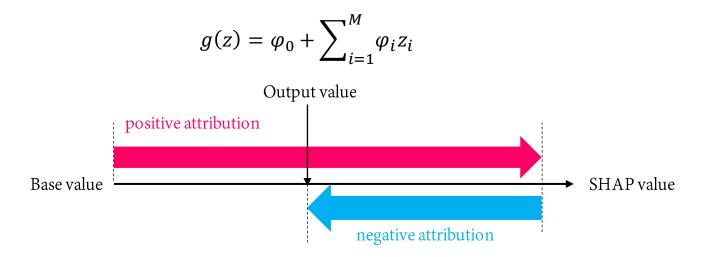
AUC scores

Related Works

- **Importance values** are typically used to explain ML models
 - Permutation importance, Local Interpretable Model agnostic Explanations (LIME), etc.
- Inconsistency: When the model has changed and a feature has higher impact on the model, the importance of that feature can actually be lower.
- Inconsistency make comparison between different models meaningless
 - Only <u>comparison between different features in the same model</u> is meaningful
- A **consistent** feature attribution method is necessary

> Shapley additive explanations (SHAP)

- Shapley additive explanations (SHAP) is a **consistent** feature attribution method
- SHAP explains the output as a sum of the effects of each feature
 (M: feature number, φ_i: feature attribution value, z_i: binary variable to represent a feature being observed or unknown)



Consistency enables comparison of attribution values <u>across models</u>

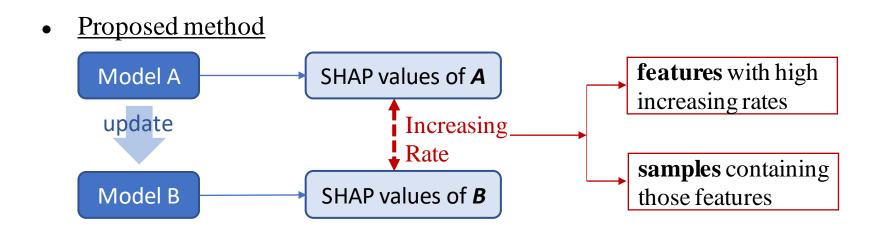
SHAP Values Change

- We can explain the performance changes by measuring the feature contribution (SHAP values) changes
- For a sample x, we denote each feature SHAP value as $v1_{x_i}$ or $v2_{x_i}$



Proposed Method

• Since SHAP is a consistent attribution method, we use SHAP values to measure the attribution changes over model updates



• By identifying the features and sample number, we can analyze what changes affect the performance during updates

Increasing Rate

• The SHAP values of a sample **x** is:

$$v_{x} = [v_{x_{1}}, v_{x_{2}}, v_{x_{3}}, \dots, v_{x_{i}}, \dots]$$

• Define **increasing rate** of feature *i* in sample *x*:

$$\begin{split} I_{x_{i}} &= \frac{v2_{x_{i}} - v1_{x_{i}} + c_{1}}{\min(|v1_{x_{i}}|, |v2_{x_{i}}|) + c_{2}}, \\ where \ c_{2} > 0, c_{1} &= \begin{cases} c_{2}, & when \ v2_{x_{i}} - v1_{x_{i}} \ge 0, \\ -c_{2}, & when \ v2_{x_{i}} - v1_{x_{i}} < 0. \end{cases} \end{split}$$

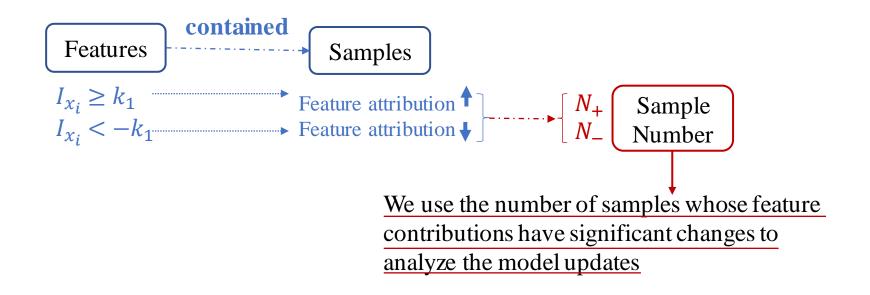
 (c_1, c_2) : constant terms to make the I_{x_i} small when both SHAP values are close to zero)

• The increasing rate of a sample **x** is:

$$I_{x} = [I_{x_{1}}, I_{x_{2}}, I_{x_{3}}, \dots, I_{x_{i}}, \dots]$$

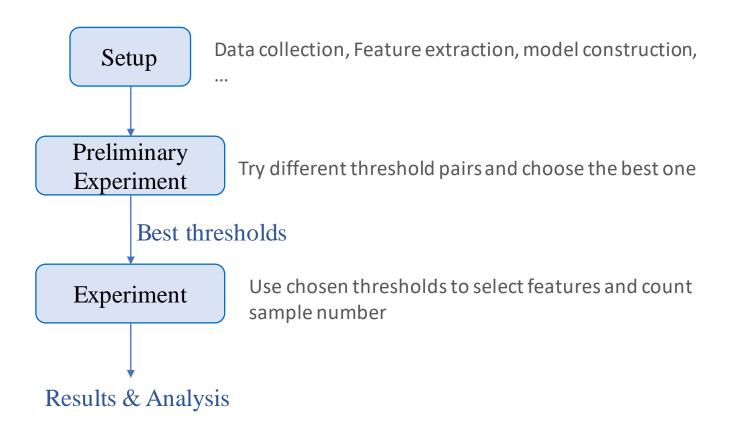
Samples Number

- We select samples whose feature attributions have significantly changed using threshold pair: (k_1, k_2)
 - If $|I_{x_i}| \ge k_1$, the feature's increasing rate is denoted as high
 - If the number of $|I_{x_i}| \ge k_1$ in sample x is larger than k_2 , x is selected



Experiments

We use Android applications to evaluate the effectiveness of the proposed method.



Experimental Setup

• Dataset

	Android application files: AndroZoo*						
	9 dataset with different size						
	(containing 10% malicious samples)						
Features: Drebin*							
	extracted from the manifest and the						
	disassembled dex code						

• embedded into an N-dimensional vector

space

- Classification Models: Random Forest
 - use grid search and cross-validation to choose hyperparameters

Malicious	Benign
101	816
151	1,224
201	1,631
251	2,039
301	2,447
351	2,854
401	3,262
451	3,670
501	4,077
	101 151 201 251 301 351 401 451

Preliminary Experiment

• Different threshold pairs and their corresponding sample numbers selected

					(-)								
Threshold pair		(2,1)	(2,3)	(2,5)	(3,1)	(3,3)	(3,5)	(4,1)	(4,3)	(4,5)	(5,1)	(5,3)	(5,5)
Models 1&2	$I \ge 0$	66/115	12/14	5/1	22/38	5/2	0/0	10/14	1/2	0/0	7/6	1/2	0/0
Models 1&2	I < 0	75/146	31/9	4/4	56/36	1/2	0/2	24/16	0/2	0/0	6/5	0/2	0/0
Models 2&3	$I \ge 0$	66/77	30/1	8/0	44/10	5/0	5/0	25/3	5/0	5/0	12/1	0/0	0/0
Widels 2005	I < 0	97/96	1/0	0/0	12/19	0/0	0/0	1/2	0/0	0/0	1/0	0/0	0/0
Models 3&4	$I \ge 0$	60/115	6/16	2/6	29/46	0/7	0/1	8/17	0/5	0/0	1/10	0/5	0/0
Widels 5&4	I < 0	24/48	0/6	0/6	0/8	0/5	0/4	0/7	0/5	0/0	0/6	0/5	0/0
Models 4&5	$I \ge 0$	25/33	4/1	0/0	9/16	0/1	0/0	7/11	0/0	0/0	7/3	0/0	0/0
Models 4&J	I < 0	8/36	0/1	0/0	0/4	0/0	0/0	0/1	0/0	0/0	0/0	0/0	0/0
Models 5&6	$I \ge 0$	17/61	1/10	0/3	3/26	0/2	0/0	0/8	0/0	0/0	0/1	0/0	0/0
Widels J&O	I < 0	18/22	0/2	0/0	0/2	0/0	0/0	0/0	0/0	0/0	0/0	0/0	0/0
Models 6&7	$I \ge 0$	25/74	4/3	0/2	6/29	4/2	0/0	5/14	4/0	0/0	4/8	4/0	0/0
Widdels 0&7	I < 0	64/61	1/0	0/0	25/8	0/0	0/0	0/3	0/0	0/0	0/3	0/0	0/0
Models 7&8	$I \ge 0$	49/61	1/9	0/0	0/19	0/7	0/0	0/12	0/7	0/0	0/8	0/0	0/0
	I < 0	78/46	0/1	0/0	1/9	0/0	0/0	0/4	0/0	0/0	0/1	0/0	0/0
Models 8&9	$I \ge 0$	21/52	0/3	0/0	3/10	0/0	0/0	0/4	0/0	0/0	0/0	0/0	0/0
	I < 0	4/12	0/0	0/0	0/1	0/0	0/0	0/1	0/0	0/0	0/0	0/0	0/0
		•											

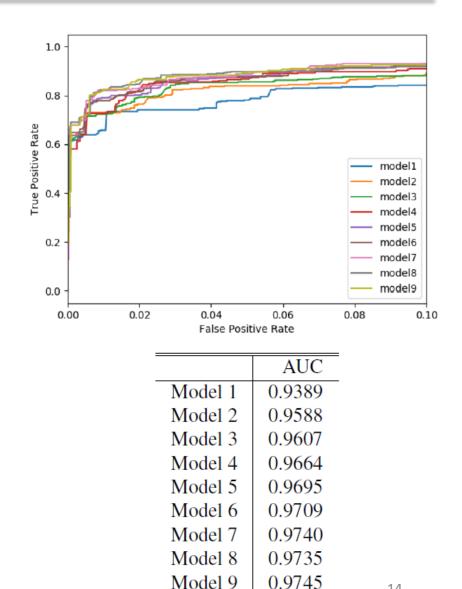
by the proposed method:

The sample number was counted by $I_{x_i} \ge k_1$ and $I_{x_i} < -k_1$ respectively and noted in malicious/benign

• We choose (3,1) to conduct the experiment

Baseline

- We use ROC curves and AUC scores as the baseline to evaluate whether the proposed method can provide more information
- The extent of improvement in AUC is decreasing as the update going on



Experimental Results

- The improvement by adding data decreased as dataset growing and became small after Model 4&5 → similar to the baseline
- The proposed method can explain how new data affected performance

change \rightarrow the improvement was mainly caused by adding malicious data

more likely to be			Malicious	Benign	Ratio	=	AUC
detected as	Models 1 & 2	$I \ge 0$	22	38	0.065	Model 1	0.9389
malicious (caused	widders i & 2	-I < 0	56	36	0.100	- Model 2	0.9588
``		$I \ge 0$	44	10	0.039		
by adding	Models 2 & 3	I < 0	12	19	0.023	Model 3	0.9607
malicious data)		$I \ge 0$	29	46	0.041	- Model 4	0.9664
	Models 3 & 4	$I \leq 0$ I < 0	0	8	0.004	Model 5	0.9695
		$I \ge 0$	9	16	0.004	Model 6	0.9709
more likely to be	Models 4 & 5		0				
		I < 0		4	0.002	Model 7	0.9740
detected as	Models 5 & 6	$I \ge 0$	3	26	0.011	Model 8	0.9735
benign (caused		I < 0	0	2	0.001	Model 9	0.9745
by adding benign	Madala (9, 7	$I \ge 0$	6	29	0.011	- Model y	0.97 10
data)	Models 6 & 7	I < 0	25	8	0.010		
uata)	Madala 7 8 9	$I \ge 0$	0	19	0.005	-	
	Models / & 8	odels 7 & 8 $I \ge 0$ I < 0	1	9	0.003		
	Madala 9 P O	$I \ge 0$	3	10	0.003	-	
	Models 8 & 9	I < 0	0	1	0.000		15

Feature Details

• The proposed method can identify features that contribute to the

performance improvement by updates

	Feature	Ι	Family	Number
	android.app.activitymanager:get_running_tasks	I < 0	*	23
Models 1 & 2	android.media.ringtonemanager:set_actual_default_ringtone_uri	I < 0	tachi	13
	android.nfc.tech:NDE_formatable.format	I < 0	*	13
	android.nfc.tech:Ndef_formatable.format	I > 0	*	20
Models 2 & 3	android.media.ringtonemanager:set_actual_default_ringtone_uri	I > 0	tachi	17
	android.permission:change_wifi_state	I < 0	piom	5
	android.locationmanager:get_provider	I > 0	*	18
Models 3 & 4	android.permission:send_sms	I > 0	*	6
	servicelist:com.stub.stub05.stub02	I > 0	jiagu	5
	servicelist:com.stub.stub02.stub04	I > 0	jiagu	6
Models 4 & 5	android.launcher.permission:read_settings	I > 0	*	2
	servicelist:com.stub.stub01.stub01	I > 0	drtycow	1
Models 5 & 6	Ndef formatable.connect	I > 0	*	2
Models 5 & 0	android.provider.settings\$system:put_string	I > 0	gappusin	1
	android.permission:write_external_storage	I < 0	fakeapp	24
Models 6 & 7	android.permission:vibrate	I < 0	fakeapp	21
	servicelist:com.stub.plugin.stub03	I > 0	jiagu	4
Models 7 & 8	android.telephony.telephonymanager:getline1number	I < 0	*	1
Models 8 & 9	android.permission:read_user_dictionary	I > 0	*	3

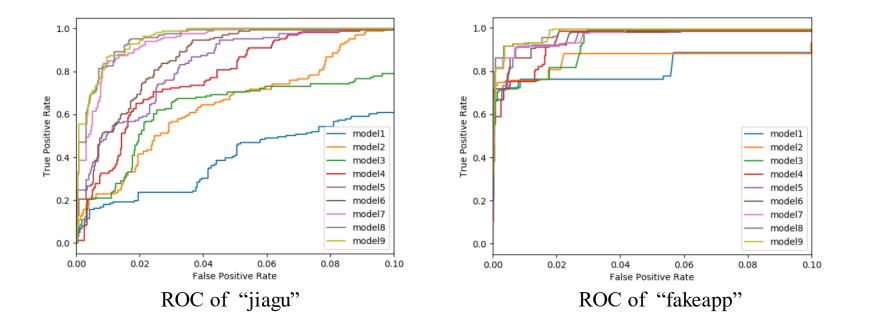
Case Study

- > The ratio of negative increasing rates is large between models 6 and 7
- 4 of the 6 samples contain the following features:
 - com.stub.plugin.stub03
 - □ com.stub.plugin.stub02
 - □ com.stub.plugin.stub01
- these features are associated with the "**jiagu**" family
- 24 of the 25 samples contain both or one of the following features:
 - android.permission.vibrate
 - android.permission: write external storage
- these features are associated with the "**fakeapp**" family

		Malicious	Benign	Ratio
Models 1 & 2	$I \ge 0$	22	38	0.065
Widdels I & 2	I < 0	56	36	0.100
Models 2 & 3	$I \ge 0$	44	10	0.039
whole is $2 \propto 3$	I < 0	12	19	0.023
Models 3 & 4	$I \ge 0$	29	46	0.041
Widels 5 & 4	I < 0	0	8	0.004
Models 4 & 5	$I \ge 0$	9	16	0.011
Widdels + & J	I < 0	0	4	0.002
Models 5 & 6	Ì≥Q	3	26	0.011
	I < 0		2	0.001
Models 6 & 7	$I \ge 0$	6	29	0.011
Wodels 0 & 7	I < 0	25	8	0.010
Models 7 & 8	$l \ge 0$		19	0.005
Models / de g	I < 0	1	9	0.003
Models 8 & 9	$I \ge 0$	3	10	0.003
1100015 0 00 7	I < 0	0	1	0.000

Case Study: Malware Family

Specifically draw the ROC for "jiagu" and "fakeapp" family



- Performance on "jiagu" has improved —>not shown in AUC scores
- "fakeapp" has no negative effect on classification performance

Conclusion

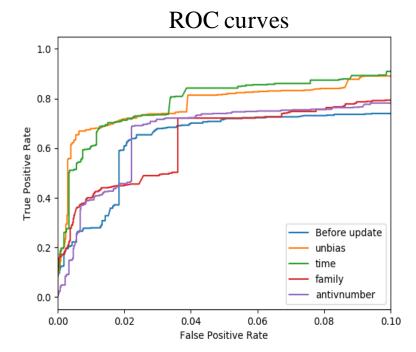
- The causes of performance changes by model updates can be identified with the proposed method
 - □ how much improvement the update has achieved
 - whether the changes are caused by the malicious or benign data
 - what prediction (positive or negative) the updated model tend to make
- The proposed method can analyze the effects to updates of adding malicious and benign samples respectively
- The proposed method can distinguish slight changes for a particular malware family

Discussion

- Application
 - malicious website detection
 - malware family classification
- Future works
 - experiments on other ML models and datasets
 - analysis about data sufficiency
 - better solution for best choosing threshold pair

Update with Biased Data

- Dataset
 - Unbias: use random date from all time averagely
 - **Time**: only use the latest data
 - Family: only use malware from major families
 - Antivirus: only use malware that can be detected by most antivirus software



• Identify features by the average impact of SHAP values changes

(I is the increasing rate, S is the size of the dataset, and k is the threshold)

$$\frac{\sum_{I \ge k} I}{S}$$

Experimental Results

- The ROCs of "unbias" and "time" are better than others and the features are similar
- The ROC of "family" has fell and the identified features are all related to "<u>com.qihoo.util</u>".
- The result of "antivirus" is different from others

Unbias

videoview.setvideopath 1.59 videoview.stopplayback 0.99 videoview.pause 0.88						
videovi	ew.start	0.72				
Time						
videoview.setvideopath 1.27						
videoview.pause 1.22						
videovi	ew.start	1.1				
videovi	ew.stopplayback	1.06				
Family						
com.qihoo.util.commonactivity 1.0						
com.qihoo.util.updateservice 0.74						
com.qihoo.util.commonprovider 0.73						
com.qil	noo.util.commons	ervice	0.69			

Antivirus

permission.get accounts	0.93
permission.read sms	0.74
permission.write sms	0.53

Update with Biased Data

- Dataset
 - **Biased in malware family**: only use malware from major families
- Identify important features by the average impact of SHAP values

changes: $\frac{\sum_{I \ge k} I}{S}$

(I is the increasing rate, S is the size of the dataset, and k is the threshold)

• The identified features are all related to "*com.qihoo.util*", caused by the bias of dataset.

Family		
com.qih	oo.util.commonactivity	1.0
com.qih	oo.util.updateservice	0.74
com.qih	oo.util.commonprovider	0.73
com.qih	oo.util.commonservice	0.69