Understanding Machine Learning Model Updates in Malware Detection Systems Based on Feature Attribution Changes

> 大阪大学 大学院情報科学研究科 情報ネットワーク学専攻村田研究室 雲 帆(YUN FAN)

Background

- In a **malware detection system**, the statistical characteristics of malware change over time, causing the detection performance <u>degrades</u>
- The classification models in malware detection systems need **updates** to improve the detection performance
 - update: add new data to the training dataset and re-train the model
- After updates, the new model needs to be validated
 - □ accuracy
 - the area under the curve (AUC)
 - ...

- Common validation methods only calculate the detection accuracy or AUC scores
- When the detection performance is not satisfying after model update, we need more information to determine the cause
 - why performance changed ?
 - what changes in the update affect performance?

Purpose:

Get detailed information about model changes to understand the model updates in malware detection systems.

Proposed Method

- Machine learning (ML) models are often used in malware detection systems, and **feature attributions** are typically used to explain the ML models
- We use the **feature attribution changes** to analyze model changes
- <u>Proposed method</u>

• By identifying the features and samples with great changes, we can analyze what changes affect the detection performance during updates

Feature Attribution

- We use **Shapley additive explanations (SHAP**) to calculate the **feature attributions**
- SHAP is a **consistent** feature attribution method
 - When the model has changed and a feature has higher impact on the model,
 the importance of that feature <u>cannot</u> be lower
- SHAP explains the output as a sum of the effects of each feature

Consistency enables comparison of attribution values <u>across models</u>

SHAP Value Changes

• We calculate an **increasing rate of SHAP values** (*I*) to measure a feature's attribution change in an update

$$I_{x_{i}} = \frac{v2_{x_{i}} - v1_{x_{i}} + c_{1}}{\min(|v1_{x_{i}}|, |v2_{x_{i}}|) + c_{2}}, \quad where \ c_{2} > 0, c_{1} = \begin{cases} c_{2}, & when \ v2_{x_{i}} - v1_{x_{i}} \ge 0, \\ -c_{2}, & when \ v2_{x_{i}} - v1_{x_{i}} < 0. \end{cases}$$

I > 0 Feature attribution is higher Samples are more likely to be classified as **positive**

- When $|I| \approx 0$, the feature's effect to the model update is very low
- Identify features with high increasing rate by |I| ≥ k and analyze samples containing those features

Experimental Setup

- Dataset
 - □ Android application files: *AndroZoo**
 - 9 dataset with different size (containing 10% malicious samples)
- Threshold: k=3

			-			_	
		Malicious	Benign	_		AUC	-
Μ	odel 1	101	816	-	Model 1	0.9389	-
Μ	odel 2	151	1,224		Model 2	0.9588	
Μ	odel 3	201	1,631		Model 3	0.9607	The improvement
Μ	odel 4	251	2,039		Model 4	0.9664	*
Μ	odel 5	301	2,447		Model 5	0.9695	became small after
Μ	odel 6	351	2,854		Model 6	0.9709	Model 4&5
Μ	odel 7	401	3,262		Model 7	0.9740	
Μ	odel 8	451	3,670		Model 8	0.9735	
Μ	odel 9	501	4,077		Model 9	0.9745	_

Experimental Results

• The number of samples that contain features with high increasing rate in

Evaluation

- The proposed method can explain how new data affected performance change
- The proposed method can analyze the effects of adding malicious and benign samples respectively
- For example:
- The improvement was mainly caused by adding malicious data
- ➤ The percentage of selected samples is larger in models 6&7 → Case study

		Malicious	%	Benign	%
Madala 1 fr 9	$I \ge 0$	22	21.8	38	4.7
Models 1 & 2	I < 0	56	55.4	36	4.4
Models 2 & 3	$I \ge 0$	44	29.1	10	0.8
Models $2 \propto 3$	I < 0	12	7.9	19	1.6
Models 3 & 4	$I \ge 0$	29	14.4	46	2.8
Models $3 \propto 4$	I < 0	0	0.0	8	0.5
Models 4 & 5	$I \ge 0$	9	3.6	16	0.8
Models $4 \propto 5$	I < 0	0	0.0	4	0.2
Models 5 & 6	$I \ge 0$	3	1.0	26	1.1
Models 5 & 0	I < 0	0	0.0	2	0.1
Models 6 & 7	$I \ge 0$	6	1.7	29	1.0
Models 0 & 1	I < 0	25	7.1	8	0.3
Models 7 & 8	$I \ge 0$	0	0.0	19	0.6
MODELS 7 & 0	I < 0	1	0.2	9	0.3
Models 8 & 9	$I \ge 0$	3	0.7	10	0.3
	I < 0	0	0.0	1	0.0

Case Study

> The result in models 6&7 is caused by changes of **2 malware families**

- Performance on "jiagu" has improved even after model 4
- Changes in "fakeapp" has no negative effect on classification performance

Conclusion and Future Works

- Conclusion
 - Our method can distinguish slight changes for a particular malware family.
 - Our method can identify the key features that related to the changes in model updates.
 - Our method can analyze the effects of adding malicious and benign samples respectively and the tendency of new predictions.
- Future works
 - Experiments for other systems to confirm the proposed method is available for all ML operations
 - **Better** solution for best choosing the thresholds
 - More analysis about the identified key features