
2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
1

Impact of remote memory and network performance on execution
performance of disaggregated micro data centers

Akishige IKOMA†a), Nonmember, Yuichi OHSITA†b), Member, and Masayuki MURATA†c), Fellow

SUMMARY Micro data centers are small data centers located close to
users that have a more limited amount of resources compared with traditional
data centers. Therefore, the resources in micro data center need to be used
efficiently to accommodate more applications. One approach for achieving
efficient resource usage is to disaggregate the resources. In a disaggregated
micro data center, stand-alone resources are connected via a network. In
this data center, we can flexibly construct a virtual computer by connecting
the required resources. However, performance degradation occurs due to
communication delays between resources. In this paper, we evaluate the
impact of communication performance on the performance of an application
in a disaggregated micro data center. To evaluate the impact, we emulate
an application running in a micro data center by adding a communication
delay between the CPU and remote memory. As a result, we show that the
latency has a larger impact on the performance of the application than does
the bandwidth.
key words: disaggregation, micro data center, remote memory

1. Introduction

Many services are now provided through the cloud. These
services utilize large-scale computational resources, mem-
ory, and storage in large-scale data centers, and handle a large
amount of data that cannot be handled by end user devices.
However, not all services can be provided through the cloud.
Time-sensitive applications are difficult to provide through
the cloud due to the large latency between cloud data center
and end device. The increasing amount of data from IoT
devices also becomes a problem if all data are sent to the
cloud data center.

Edge computing is one technology for addressing this
kind of problems [1]. In this approach, many small data
centers (which we refer to as micro data centers (µDCs))
are deployed near users. Each µDC is close to the end de-
vices and has more resources than do the end devices, which
allows time-sensitive services to be provided by utilizing
µDCs. However, since µDCs have a more limited amount
of resources compared with large data centers, efficient re-
source utilization is necessary.

One approach to achieving efficient resource utilization
is by disaggregating resources [2]. In this approach, each
µDC is constructed of resources connected by a network as
shown in Figure 1. We call these µDCs disaggregated micro
data centers (µDDCs). Unlike traditional data centers where
each server has its own CPUs, RAM, and storage, we can
flexibly use the resources in µDDCs by allocating the needed

†The author is with Osaka University, Suita, Osaka 565-0871
Japan.

a) E-mail: E-mail: a-ikoma@ist.osaka-u.ac.jp
b) E-mail: E-mail: y-ohsita@ist.osaka-u.ac.jp
c) E-mail: E-mail: murata@ist.osaka-u.ac.jp

amount of resources to each task, giving optimal resource
utilization [3]. In addition, the resources in µDDCs can be
easily upgrade. If more memory is needed, we can add just
memory modules, and if more computation resources are
required, we can add just CPU modules.

However, the network used in a µDDC has an impact
on the performance of applications running on µDDCs. In
particular, the communication delay between the CPU and
remote memory may degrade the performance [4]. Several
methods for minimizing this performance degradation have
been investigated. For example, Gao et al. used RDMA
to speed up remote memory accesses [4] and Zervas et al.
utilized high-speed communication technologies such as op-
tical interconnects and optical switches [5]. However, these
studies targeted large-scale parallel computing, and did not
consider artificial intelligence (AI) applications such as im-
age recognition that are expected to run on µDCs. Disaggre-
gated architectures for AI applications [6], [7] have also been
proposed. However, the impact of network performance on
AI applications has not been investigated. In this paper, we
evaluate the impact of network bandwidth and latency on the
execution performance of AI applications.

��������	


��������������� ����������������

��������	


�����

���

���

������

Fig. 1 Differences between a server-centric data center and a disaggre-
gated micro data center

The remainder of this paper is organized as follows.
Section 2 describes the evaluation environment and method-
ology, and Section 3 presents the evaluation results. In Sec-
tion 4, we discuss the impact of the network performance
on the performance of AI applications. Finally, Section 5
summarizes this paper and suggests topics for future work.

2. Evaluation Settings

2.1 µDDC

A µDDC is a µDC that consists of resource units such as
CPU, GPU, and memory that are connected to each other

Copyright © 2021 The Institute of Electronics, Information and Communication Engineers



2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
2

by a network and can communicate with each other. In
this paper, each CPU in the µDDC has a small cache and
runs applications using the data in the cache. When the
required data don’t exist in the cache, the CPU obtains the
data from the remote memory. That is, the CPUs and the
remote memories communicate with each other to run the
applications. In this paper, we assume that the µDDC uses a
paging technique. That is, if required data cannot be found
in the cache, the CPU obtains the page that contains the
required data from the remote memory. When the cache
becomes full, some pages are moved to the remote memory.

In a µDDC, each application is run after allocating re-
quired resources and deploying required data in CPU caches
and/or remote memories. In this paper, we focus on the
performance of applications after completing allocation and
deployment.

2.2 Evaluation environment

In this evaluation, we implement an evaluation environment
for emulating a µDDC. This environment contains a CPU
with a cache and a remote memory. Although they are
implemented in a single computer, we add communication
delays when accessing remote memory to emulate applica-
tions on a µDDC where communication delays occur when
accessing remote memory. This evaluation environment is
constructed by creating a swap device that acts as a remote
memory. This swap device makes a process wait for the
communication delay and then handles the request. In this
evaluation, this swap device is created by using the memory
installed in the computer. We allocate 200 MB of memory
as the cache attached to the CPU and the rest of the memory
is used as a swap device.

A computer with an Intel(R) Xeon(R) CPU E5-2687W
and 64 GB DDR3 SDRAM is used to run the evaluation
environment and the page size is set to 4 KB.

2.3 Evaluation method

In this evaluation, we use image classification as an exam-
ple of services that run in µDDC. We use ResNet [8] and
Inception-v3 [9] provided by Keras [10] as the models used
for the image classification, and run their inference step by
using TensorFlow. We run each of these processes 10 times,
and measure the time from inputting one image to obtaining
the output as the process time.

We define the performance degradation rate R as a met-
ric for evaluating the impact of network performance by

R =
Tdisaggregated − T traditional

T traditional

whereTdisaggregated is the process time of µDDC andT traditional

is the process time of the traditional computer. We obtain
Tdisaggregated by running the process in the evaluation envi-
ronment and T traditional by running the process on the same
computer without adding communication delay.

We first investigate the impact of bandwidth by setting
the bandwidth to 40 Gbps and 100 Gbps with the latency set
to 8 µs. We next investigate the impact of the latency. We
set the latency to 0.2 µs, 2 µs, and 8 µs with the bandwidth
set to 100 Gbps.

3. Results

3.1 Impact of bandwidth on performance

Figure 2 shows the impact of the network bandwidth on the
performance of µDDC. This figure shows all performance
degradation rates monitored in our experiment. The median
values of the performance degradation rates are also shown
as a bar graph.

In our evaluation, the system processes in the OS may
also affect the process time of each model since the appli-
cation process may have to wait when a system process is
using the CPU. Especially when the number of page faults
is small, the impact of the communication delay is relatively
small compared with that of system processes. In our evalu-
ation, ResNet-50 is a relatively small model and the number
of page faults is small. As a result, the impact of the commu-
nication delay is small. However, the communication delay
has a large impact on the other models. The median of the
performance degradation rates are over 10 % for all models
except ResNet-50. We can discuss the impact of the band-
width by comparing the performance degradation rates in the
cases of 40 Gbps and 100 Gbps. Figure 2 shows increasing
the bandwidth from 40 Gbps to 100 Gbps does not reduce
the performance degradation rate. That is, the bandwidth has
only a small impact on the performance of the application.

ResNet-50 ResNet-101 ResNet-152 Inception-v3

−50

−25

0

25

50

75

100

125

Pe
rfo

rm
an

ce
 d
eg

ra
da

tio
n(
%
)

40Gbps
100Gbps

Fig. 2 Impact of network bandwidth on performance

3.2 Impact of latency on performance

Figure 3 shows the impact of the latency on the performance
of the µDDC. Like Figure 2, all performance degradation
rates monitored in our experiment are shown in this figure.



2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
3

The median values of the performance degradation rates are
also shown as a bar graph.

Figure 3 shows that the performance degradation rate
decreases as the latency decreases. In all models, we can de-
crease the performance degradation rate by half by reducing
the latency from 8 µs to 0.2 µs. That is, unlike the bandwidth,
the latency has a large impact on the performance. Figure
3 also indicates that the performance degradation rate de-
pends on the model. The performance degradation rate of a
small model like ResNet-50 is small, while the performance
degradation rate of a relatively large model like ResNet-152
is large. To investigate the impact of the communication
delay, we focus on the time required to obtain the data from
the remote memory.

ResNet-50 ResNet-101 ResNet-152 Inception-v3

−50

−25

0

25

50

75

100

125

Pe
rfo

rm
an
ce
 d
eg
ra
da
tio

n(
%
)

0.2 s
2 s
8 s

Fig. 3 Impact of latency on performance

Figures 4 and 5 show the timelines of memory accesses,
where the time slots used by the CPU are shown in red and
the time slots used to obtain data from the remote memory
are shown in green. When the latency is small, the CPU can
obtain the required data from the remote memory immedi-
ately. However, if the latency is large, it takes long time to
obtain the required data. As a result, the green areas become
larger in the case of 8 µs, and it takes more time to complete
the application task.

Table 1 compares the ratio of the total time used to
obtain the data from the remote memory. This shows that
more than double the time is required to obtain the data when
the latency is 8 µs, compared with the case of 0.2 µs. This
also shows that the ratio for a small model like ResNet-50 is
smaller than for the other models. This comparison corre-
lates well with the comparison of the performance degrada-
tion rates. That is, the time to obtain the required data is the
cause of the performance degradation.

4. Discussion

The above results indicate that the latency has a large impact
on the performance of the application in µDDCs whereas the
bandwidth has only a small impact. This difference is caused

���� ���� ���� ���� ���� �������� ����

�������

���������	
�����


���
�����


������
������	

������	
���


����
�����


������

Fig. 4 Timeline of remote memory reading process and other processes
in ResNet-152 with 8 µs latency

���� ��� ��� ��� ������

�������

���������	
�����


���
�����


������
������	

������	
���


����
�����


������

Fig. 5 Timeline of remote memory reading process and other processes
in ResNet-152 with 0.2 µs latency

Table 1 Ratio of total time spent reading from remote memory to exe-
cution time for each model

0.2µs 2µs 8µs
ResNet-50 7.94% 10.15% 18.44%
ResNet-101 10.96% 14.94% 27.73%
ResNet-152 12.50% 16.16% 27.31%
Inception-v3 9.93% 12.31% 22.24%

by the communication patterns in µDDCs. In our evaluation,
we assume that the µDDC is using a paging technique. Thus,
the CPU obtains only 4 KB of data every time a page fault
occurs. The large bandwidth cannot significantly reduce the
time required to obtain the data because the data size is not
large. However, since the latency affects the time required
to obtain the data, the latency has a large impact on the
performance.

However, our results indicate that the computational
resources are also important. Even in the worst case, 3/4 of
the process time is consumed by the CPU while the remote
memory access only consumes 1/4 of the process time. That
is, we need to allocate sufficient computational resources to
the applications.

5. Conclusion

In this paper, we evaluated the impact of communication
performance on the performance of applications in µDDCs.
To evaluate the performance of µDDCs, we emulated an
application running in a µDDC by adding communication
delays between the CPU and remote memory. As a result,
we showed that the latency has a larger impact on the per-



2021 International Conference on Emerging Technologies for Communications (ICETC 2021)
4

formance of the application than bandwidth. In addition,
our results indicate that computational resources are also
important for the performance of µDDCs.

As future work, we intend to propose a method for allo-
cating resources in µDDCs to multiple applications based on
the results of this paper. In addition, we intend to investigate
the network architectures suitable for µDDCs based on the
results.

Acknowledgement

This work is partially supported by NICT.

References

[1] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends,
and prospects in edge technologies: Fog, cloudlet, mobile edge, and
micro data centers,” Computer Networks, pp. 94–120, Jan. 2018.

[2] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, “Net-
work support for resource disaggregation in next-generation datacen-
ters,” in Proceedings of the Twelfth ACM Workshop on Hot Topics in
Networks, pp. 1–7, Nov. 2013.

[3] Y. Cheng, R. Lin, M. De Andrade, L. Wosinska, and J. Chen, “Dis-
aggregated data centers: Challenges and tradeoffs,” IEEE Commu-
nications Magazine, Mar. 2019.

[4] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 249–264, Nov. 2016.

[5] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Op-
tically disaggregated data centers with minimal remote memory
latency: Technologies, architectures, and resource allocation [in-
vited],” IEEE/OSA Journal of Optical Communications and Net-
working, pp. A270–A285, Feb. 2018.

[6] Y. Kwon and M. Rhu, “A disaggregated memory system for deep
learning,” IEEE Micro, vol. 39, no. 5, pp. 82–90, 2019.

[7] Y. Kwon, Y. Lee, and M. Rhu, “Tensordimm: A practical near-
memory processing architecture for embeddings and tensor opera-
tions in deep learning,” pp. 740–753, 10 2019.

[8] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 770–778, June 2016.

[9] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” in 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 2818–2826, June 2016.

[10] “Keras: Deep learning for humans.” https://github.com/
keras-team/keras, last accessed on 2021-8-29.


