
Understanding Update of
Machine-Learning-Based Malware Detection by
Clustering Changes in Feature Attributions

Yun Fan1, Toshiki Shibahara2, Yuichi Ohsita1, Daiki Chiba2,
Mitsuaki Akiyama2, and Masayuki Murata1

1 Osaka University, Osaka, Japan
{h-un, y-ohsita, murata}@ist.osaka-u.ac.jp

2 NTT, Tokyo, Japan
toshiki.shibahara.de@hco.ntt.co.jp, {daiki.chiba,akiyama}@ieee.org

Abstract. Machine learning (ML) models are often adopted in mal-
ware detection systems. To ensure the detection performance in such
ML-based systems, updating ML models with new data is crucial for
minimizing the influence of data variation over time. After an update,
validating the new model is commonly done using the detection accuracy
as a metric. However, the accuracy does not include detailed information,
such as changes in the features used for prediction. Such information is
beneficial for avoiding unexpected updates, such as overfitting or non-
effective updates. We, therefore, propose a method for understanding
ML model updates in malware detection systems by using a feature at-
tribution method called Shapley additive explanations (SHAP), which
interprets the output of an ML model by assigning an importance value
called a SHAP value to each feature. In our method, we identify patterns
of feature attribution changes that cause a change in the prediction. In
this method, we first obtain the feature attributions for each sample,
which change before and after the update. Then, we obtain the patterns
of the changes in the feature attributions that are common for multi-
ple samples by clustering the changes in the feature attributions. In this
study, we conduct experiments using an open dataset of Android malware
and demonstrate that our method can identify the causes of performance
changes, such as overfitting or noneffective updates.

Keywords: Malware detection · Machine learning · Feature attribution

1 Introduction

Machine learning (ML) has been used to detect malware. Such ML-based mal-
ware detection systems adopt ML models trained on previously collected data
to perform predictions on new data. Owing to a phenomenon called concept
drift [24], the detection performance in an ML-based system gradually degrades
as the statistical characteristics of data change over time [12]. In this situation,
updating the ML model using new data can effectively improve the detection
performance of the systems.

2 Y. Fan et al.

After an update, the new model is validated using validation data in terms
of detection performance [13]. Once the model is successfully validated, it can
be deployed in a real detection system. Thus far, the detection accuracy of the
validation data has been used as a metric to validate the model after an update.
However, the accuracy does not reflect detailed information, such as changes
in the features used for prediction. Such information is beneficial for avoiding
unexpected updates, such as overfitting or noneffective updates.

To obtain detailed information about model updates, we propose a method
for identifying patterns of feature attribution changes that cause a change in
the prediction. Feature attributions represent the extent of contribution that
features have made to model predictions in a system. When a model is retrained
using a dataset updated with newly collected data, important features that were
overlooked or did not appear before the update may be found. The attributes
of such features change significantly. In other words, by analyzing significant
changes in feature attributions, we can identify model changes in detail. In the
proposed method, we first obtain the feature attributions for each sample that
change before and after the update. Then, we obtain the patterns of the changes
in the feature attributions, which are common for multiple samples, by clustering
the changes of the feature attributions using the similarities of the features whose
attributions changed significantly.

In our experiments, we use Android application samples and build models to
detect malicious samples. We evaluate the effectiveness of the proposed method
by analyzing model changes while the training dataset is updated with different
biased data, and as time goes by, we demonstrate that our method can iden-
tify the unexpected model changes caused by the biased data. The experimental
results show that updates with severely biased data can lead to an overfitting
or noneffective update, causing the performance to deteriorate or remain un-
changed. The results also indicate that our method can identify the important
features relevant to the performance change, which are difficult to find by using
a method that calculates only the feature attributions. Some important features
found by our method cannot be found unless by checking more than 100 features
if the features are checked in the order of the feature attributions.

The remainder of this paper is organized as follows: Section 2 introduces
related works, especially the feature attribution method. Section 3 presents the
proposed method. Section 4 introduces the experimental setup and Section 5
presents our experimental results. Finally, Section 6 discusses our observations
and Section 7 concludes the paper.

2 Background and Related Work

We propose a method for analyzing updates to determine the cause of the per-
formance changes. Before presenting our method, in this section, we introduce
other methods to evaluate the appropriateness of models. We also introduce a
method for determining features that contribute to classification.

Understanding Updates of Machine-Learning-Based Malware Detection 3

2.1 Evaluation Methods

Model Evaluation Metric There are several common metrics, such as accu-
racy, precision, recall, F-measure, true positive rate (TPR), and false positive
rate (FPR), for evaluating the classification performance of ML models. These
are used to calculate a value that indicates the model performance. In binary
classification—distinguishing between positive and negative classes—samples are
divided into four different categories based on their predicted and true classes:
true positive (TP), true negative (TN), false positive (FP), and false negative
(FN). TPs and TNs are samples correctly predicted as positive and negative,
respectively. FPs and FNs are samples incorrectly predicted as positive and neg-
ative, respectively. In malware detection, positive and negative samples refer to
malicious and benign samples, respectively. For example, the FPs are benign
samples which are incorrectly predicted as malicious.

The accuracy metric simply computes the ratio of the correct prediction
number to the total sample number, TP+TN

TP+TN+FP+FN . Precision is the ratio of
the correct positive prediction number to the total positive prediction number,

TP
TP+FP . The recall (also known as the TPR) is the ratio of the correct positive

prediction number to the total positive sample number, TP
TP+FN . The FPR is

the ratio of the incorrect positive prediction number to the total negative sample
number, FP

FP+TN . The F-measure (or F1-score) is the harmonic mean of precision

and recall: 2× precision×recall
precision+recall .

The model performance is also shown in the receiver operating characteristic
(ROC) curves. ROC curves have true and false positive rates as the vertical
and horizontal axes, respectively. ROC curves and the area under the curve
(AUC) are commonly used to evaluate the performance of the ML model in
cybersecurity.

In addition to these metrics, there are also some criteria to evaluate the model
from other perspectives. Typically, the Akaike information criterion (AIC) [2]
and the Bayesian information criterion (BIC) [22], are are widely used to avoid
overfitting. They are defined as

AIC = −2 ln(L) + 2K, (1)

BIC = −2 ln(L) +K ln(n), (2)

where K is the number of learnable parameters in the model, L is the maximum
likelihood of the model, and n is the number of samples.

Cross-validation Cross-validation evaluates ML models by dividing a dataset
into several subsets. To estimate the model classification performance, one sub-
set is used for validation and the others are used for training. In k-fold cross-
validation, a dataset D is randomly split into k mutually exclusive subsets D1,
D2, ..., Dk. The model is then trained and tested over k rounds. In each round
i ε {1, 2, ..., k}, training is performed on subset D \Di and testing on subset Di.
In validation, evaluation metrics such as accuracy and AUC score are typically

4 Y. Fan et al.

used to estimate the classification performance. To reduce variability, the valida-
tion results are combined or averaged over all rounds to obtain a final estimate
of the classification performance. In stratified cross-validation, subsets are strat-
ified such that they contain approximately the same proportions of labels as the
original dataset.

Although these evaluation methods can compute indicators reflecting model
performance, they cannot provide sufficient details of the model updates.

2.2 Feature Attribution Methods

To explain predictions by ML models, importance values are typically attributed
to each feature to show its impact on predictions. The importance values of
features can be output by some popular ML packages, such as scikit-learn [19],
wherein permutation importance is frequently used. Permutation importance
randomly permutes the values of a feature in the test dataset and observes a
change in error. If a feature is important, then permuting it should significantly
increase the model error [15].

Another method for interpreting ML models is the partial dependence plots
(PDPs) [9]. A PDP can show how a feature affects model predictions by the
relation between the target prediction and features (e.g., linear, monotonic, or
more complex). However, a PDP can compute two features at most, and it
assumes that these features are not correlated with other features. Thus, it is
unrealistic to use PDP for models trained on data containing numerous features.

Another popular approach is the local interpretable model-agnostic expla-
nations (LIME) [21]. LIME explains a given prediction by learning a model
around that prediction. By computing the feature importance values of a single
prediction, we can easily analyze what made the classifier output that predic-
tion. Instead of explaining the whole model, LIME explains only a single sample
prediction result. However, LIME still uses permutation to compute feature im-
portance values, making LIME an inconsistent method.

Although these methods are intended to provide insight into how features
affect model predictions, the feature attribution methods described above are all
inconsistent, meaning that when the model has changed and a feature impact on
the model’s output has increased, the importance of that feature can actually
be lower. Inconsistency makes comparison of attribution values across models
meaningless because it implies that a feature with a large attribution value
might be less important than another feature with a smaller attribution.

2.3 SHAP

The inconsistency of the methods in Section 2.2 makes it meaningless to compare
feature attributions across models, which necessitates a consistent method for
analyzing feature attribution changes in different models.

SHAP [16] is a method that explains individual predictions based on Shapley
values from game theory. The Shapley value method is represented as an additive

Understanding Updates of Machine-Learning-Based Malware Detection 5

Fig. 1. SHAP values explaining model output as a sum of the attributions of each
feature

feature–attribution method (demonstrated in Fig. 1) with a linear explanation
model g, described as

g(z) = φ0 +

M∑
i=1

φizi, (3)

where z ε (0, 1)M , M is the number of input features, and φi εR. zi is a binary
decision variable that represents a feature being observed or unknown and φi is
the feature attribution value.

Currently, SHAP is the only consistent and locally accurate individualized
feature attribution method. According to Ref. [16], SHAP has three desirable
properties: local accuracy, missingness, and consistency. Local accuracy means
that the sum of feature attributions equals the output of the model that we want
to explain. Missingness means that missing features are assigned no importance,
i.e., 0. Consistency means that the attribution assigned to a feature will not be
decreased when we change a model such that the feature has a larger impact on
the model. Consistency enables comparison of attribution values across models.

When explaining a model f , SHAP assigns φi values to each feature [15] as

φi =
∑

S⊆A\{i}

|S|!(M − |S| − 1)!

M !
[fx(S ∪ {i})− fx(S)], (4)

where fx(S) = f(hx(z)) = E [f(x)|xS], E [f(x)|xS] is the expected value of a
function conditioned on a subset S of the input features, S is the set of nonzero
indices in z, and A is the set of all input features. hx maps the relationship
between the pattern of binary features z and the input vector space.

Because SHAP is the only consistent, locally accurate method for measur-
ing missingness, there is a strong motivation to use SHAP values for feature
attribution. However, there are two practical problems remaining to be solved,
namely,

1. efficiently estimating E [f(x)|xS], and
2. the exponential complexity of Eq. (4).

When estimating the predictions of tree models, Lundberg and Lee [15] de-
signed a fast SHAP value estimation algorithm specific to trees and tree en-
sembles. This algorithm runs in polynomial time instead of exponential time,
reducing the computational complexity of exact SHAP value computations for
trees and tree ensembles.

6 Y. Fan et al.

Fig. 2. Changes in SHAP values of features after update

3 Proposed Method

When updating an ML model for real-world deployment, detailed information
about model updates is beneficial for preventing unexpected predictions. To
obtain detailed information, we propose a method to identify common patterns
of feature attribution changes that cause prediction changes. More precisely,
the pattern is a combination of features whose attributions changed drastically
after the update. Using such information, the operators of the ML model can
understand common reasons for prediction changes. Our method consists of two
steps. The first step is to calculate feature attribution changes based on SHAP.
The second is to identify typical change patterns by clustering samples based on
their features whose attributions have drastically changed.

3.1 Calculating Feature Attribution Changes

Because SHAP is a consistent attribution method—meaning that SHAP values
are invariant regardless of models—we use SHAP values to measure the attribu-
tion changes of features across different models. We investigate changes in the
models in detail by analyzing changes in the SHAP values of the features.

Figure 2 shows an example of the changes in SHAP values before and after
an update regarding predictions of the same sample. A SHAP value is assigned
to each feature to show how important it is. A high SHAP value means that the
corresponding feature has a large effect on the prediction and a SHAP value close
to 0 means that the corresponding feature has almost no effect on the prediction.
The SHAP values for Features 2 and 4 decreased to near 0, and the SHAP value
of Feature 1 increased greatly from a value near 0 after the update, indicating
that the model significantly changed with respect to these features. On the other
hand, the SHAP values of Feature 3 showed no significant change, indicating that
the model did not change with respect to this feature. By analyzing features
whose SHAP values have significantly changed, we can infer the cause of model
updates and their effect on classification performance.

Our method defines an increasing rate that indicates the significance of
changes in feature attributions after a model update. Specifically, we compute

Understanding Updates of Machine-Learning-Based Malware Detection 7

the SHAP values for different models and then calculate the significance of the
increase in each feature’s SHAP value due to the update. This increasing rate
also indicates whether changes in SHAP values increase or decrease. As shown
in Fig. 2, Feature 1 exhibits a significant increase, whereas Features 2 and 4
show significant decreases after updating. Unlike these features, the increasing
rate of Feature 3 is close to 0 because its SHAP value has no significant change
after the update.

The following describes our definition of the increasing rate. Let D1 be the
dataset on which the model was trained before the update and D2 be the dataset
after the update. Then, let the model be trained on D1 and D2 be f1 and f2,
respectively. When predicting a label for data x with model fm, we denote the
SHAP value of the i-th feature xi as vmxi

.
We define the rate of increase Ixi

of a feature xi as the ratio of the SHAP
value increase to the smallest absolute SHAP value. Let v1xi be the SHAP value
of feature xi in the old model and let v2xi be the SHAP value of feature xi in
the new model. The rate of increase is high only if the absolute value of one
SHAP value (v1xi

or v2xi
) is large and the other is close to zero. In other words,

if the absolute values of both SHAP values are either large or small, the rate of
increase is small. We add constant terms c1 and c2 to make the increasing rate
small when both SHAP values are close to zero.

The increasing rate for feature xi is defined as

Ixi =
v2xi − v1xi + c1

min(|v1xi
|, |v2xi

|) + c2
,

where c2 > 0, c1 =

{
c2, when v2xi − v1xi ≥ 0,
−c2, when v2xi

− v1xi
< 0.

(5)

In this paper, we set the constant term c2 = 0.01.
The SHAP value of a sample x is an array of size N , where N is the number

of features.
vmx = [vmx1

, vmx2
, ..., vmxi

, ..., vmxN
].

The increasing rate of a sample is also an array of size N :

Ix = [Ix1 , Ix2 , ..., Ixi , ..., IxN
].

3.2 Clustering based on Feature Attribution Changes

To make the output more concise and clearer for the operators, we divide the
samples into clusters based on their feature attribution changes. By analyzing
samples in each cluster in terms of prediction changes and feature attribution
changes, the operators can understand common reasons for prediction changes
and infer the performance change in real-world deployment.

We use Jaccard similarity [11] to measure the similarity based on feature
attribution changes. Specifically, we define the set A as the set of features whose
SHAP rate of increase exceeds k or under −k in sample xA. In this way, we
can represent the sample xA based on features that significantly changed after

8 Y. Fan et al.

the update. If A is empty, we do not use sample xA for clustering. The Jaccard
similarity between samples xA and xB is defined as the size of the intersection
divided by the size of the union of sets A and B:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
. (6)

Note that 0 ≤ J(A,B) ≤ 1.
Based on the Jaccard similarity matrix, we conducted clustering via density-

based spatial clustering of applications with noise (DBSCAN) [19]. The maxi-
mum distance between two samples to be considered as the same cluster was
0.5. In other words, samples in which half of the significantly changed features
are common are considered similar and assigned to the same cluster. We used
the default set of the software for other parameters, which means the minimum
number of samples in a neighborhood for a point to be considered as a core point
was five.

After clustering, we calculated the average prediction of each cluster and
selected the clusters whose average predictions changed after the update. Then,
we calculated each feature’s average rate of increase in each cluster and output
the top 10 features in terms of the rate of increase (for the cluster having less
than 10 features, output all). Based on the output, the operators can understand
which features cause prediction changes and infer the performance change in
real-world deployment.

4 Experimental Setup

In this section, we introduce the experimental setup for our evaluation using
Android applications.

4.1 Dataset

We used samples from AndroZoo [3] to conduct the experiments. AndroZoo is
a collection of Android applications from several sources, including the official
Google Play app market and VirusShare. It contains over ten million Android
application package (APK) files. Each file was analyzed by over 70 antivirus
software packages, providing knowledge of malware. We selected files that were
not detected as malware by any antivirus software for use as benign samples.
For malicious samples, we selected files that were detected as malware using at
least four antivirus software packages.

We collected over 1,000 samples per month from AndroZoo between 2016 and
2018. In total, we gathered 61,724 benign samples and 11,160 malicious samples.
We used applications collected from 2016 to 2018 because Miller etal. [18] em-
pirically showed that antivirus detection became stable after approximately one
year. We followed Ref. [20] when adjusting the ratio of malicious samples to
benign ones. Specifically, we set the percentage of malicious samples to 10% and
benign samples to 90% in the dataset.

Understanding Updates of Machine-Learning-Based Malware Detection 9

Fig. 3. Sliding window setup. a represents the first half of the year. b represents the
second half of the year.

4.2 Model Update

In real-world applications, ML models are often updated based on a sliding
window setup [5], which means that new data are added to the pre-update
dataset, and old data are removed. Thus, we evaluated our method thrice under
this setup, as shown in Fig. 3. In each update, the data from the next period
of six months were added to the pre-update training dataset, and the older half
in the pre-update training dataset was removed. Each training dataset had a
similar size of approximately 3,800 benign samples and 420 malicious samples.
The number of samples in each dataset is listed in Table 9 in Appendix A.
We used the data from the following period of the post-update training dataset
as the test dataset to evaluate the model ROC curve and AUC in real-world
deployment. Each test dataset contained approximately 5,000 benign samples
and 550 malicious samples. The number of samples is also shown in Table 9.

To simulate successful and failed updates, we used biased and unbiased post-
update training datasets. For pre-update training datasets, we always used un-
biased datasets because we assumed that the pre-update models are success-
fully trained and validated in real-world deployment. Consequently, post-update
training datasets were composed of the first half of the unbiased dataset and
the second half of the differently biased dataset. For example, the post-update
training dataset of update 1 consisted of the unbiased dataset of 2016b and the
biased dataset of 2017b. Using such datasets, the models updated differently de-
pending on the bias. We evaluated whether operators can distinguish different
updates based on the output of our method. The unbiased and biased datasets
were prepared as follows:

1. Unbiased: We randomly selected an equal number of samples from every
month.

2. Biased-Time: We randomly selected all samples from the latest month of the
period.

10 Y. Fan et al.

�������������
 !"#�$��
�#�$��%&#'�
�#�$��%(�'#)*
�#�$��%+!�#,#��$

(�)$����$#�#,������

&
��
��
�
�
$#
�#
,�
��
��
�

-.-- -./--.-0-.-1-.-2-.-3

-.-

/.-

-.0

-.1

-.2

-.3

(a) Update 1

�������������
 !"#�$��
�#�$��%&#'�
�#�$��%(�'#)*
�#�$��%+!�#,#��$

(�)$����$#�#,������

&
��
��
�
�
$#
�#
,�
��
��
�

-.-- -./--.-0-.-1-.-2-.-3

-.-

/.-

-.0

-.1

-.2

-.3

(b) Update 2

�������������
 !"#�$��
�#�$��%&#'�
�#�$��%(�'#)*
�#�$��%+!�#,#��$

(�)$����$#�#,������

&
��
��
�
�
$#
�#
,�
��
��
�

-.-- -./--.-0-.-1-.-2-.-3

-.-

/.-

-.0

-.1

-.2

-.3

(c) Update 3

Fig. 4. ROC curves of models trained on different biased datasets

3. Biased-Family: We randomly selected malicious samples from 3 major fam-
ilies; there were more than 40 small families in total. The benign samples
were the same as those in the unbiased dataset.

4. Biased-Antivirus: We randomly selected malicious samples from samples eas-
ily detected. Samples were determined as easily detected if they were de-
tected by more than 20 antivirus software in VirusTotal [23]. The benign
samples were the same as those in the unbiased dataset.

4.3 Features and Models

We use Drebin [4], which is a lightweight method for detecting malicious APK
files based on broad static analyses, to extract features from APK files. Features
were extracted from the manifest and disassembled dex codes of the APK file.
From these, Drebin collected discriminative strings, such as permissions, API
calls, and network addresses. To build a machine learning model, we used random
forest [6], a method well known for its excellent classification performance and
applicability to many tasks, including malware detection. For a detailed setup
of the features, models, and hyper parameters, please refer to Appendix A.

5 Experimental Results

We conducted experiments with three updates using the four biased datasets
described in Section 4. First, we show which models are successfully updated by
using test datasets. Then we describe results of quantitative and qualitative eval-
uation. In these evaluations, we investigate whether the output of our method is
beneficial to ML system operators in understanding model updates. As a quanti-
tative evaluation, we investigate the extent to which our method can reduce the
number of features that operators must consider to understand model updates.
This evaluation shows that operators can easily understand model updates using
our method. As a qualitative evaluation, we investigate whether operators can
infer the classification performance of the updated models in real-world deploy-
ment by using the output of our method with a post-update training dataset.
This evaluation shows how useful our method is.

Understanding Updates of Machine-Learning-Based Malware Detection 11

Table 1. AUC in cross-validation and AUC on test dataset

Update 1 Update 2 Update 3

Pre-update Unbiased
CV 0.9673 0.9722 0.9522
Test 0.9095 0.8932 0.9163

Post-update

Unbiased
CV 0.9722 0.9522 0.9573
Test 0.9425 0.9273 0.9493

Biased-Time
CV 0.9729 0.9538 0.9693
Test 0.9509 0.9513 0.9439

Biased-Family
CV 0.9809 0.9687 0.9739
Test 0.9313 0.8976 0.9296

Biased-Antivirus
CV 0.9812 0.9727 0.9696
Test 0.9157 0.8731 0.9320

5.1 Classification Performance of Updated Models

We show which models are successfully updated by using test datasets. In ad-
dition, we show that inferring the classification performance on test datasets
and understanding changes in models are difficult based on the conventional
model validation method, i.e., cross-validation (CV) with post-update training
datasets. We use AUCs and ROC curves to evaluate classification performance.
The AUC on test datasets and in CV are shown in Table 1. The AUC in CV were
much better than the AUC on test datasets, indicating that the cross-validation
is inappropriate because its result may be over-optimistic under concept drift.
Moreover, operators cannot understand why model updates cause prediction
changes and infer whether the updates are reasonable.

To investigate the classification performance more precisely, we show the
ROC curve of each model in each update in Fig. 4). In general, the perfor-
mance improved after updates of “Unbiased” and “Biased-Time” datasets, and
deteriorated or almost stayed unchanged after updates of “Biased-Family” and
“Biased-Antivirus” datasets.

5.2 Quantitative Evaluation

We investigate the number of features that operators must analyze to understand
model updates. The smaller the number, the less effort the operators need to
make for the analysis. Without our method, operators analyze features impor-
tant to classification. In other words, operators look into features in descending
order of SHAP values, i.e., from the most important to the least important. For
this reason, we investigate the maximum order of the SHAP value (the least
important) in each cluster’s features. Table 2 shows the number of clusters, the
number of features in each cluster, and the maximum order of SHAP values.
The number of features with our method is much smaller than that without our
method.

More detailed results are shown in Table 3; it shows the output features of
the two clusters when using the Unbias dataset in Update 1. In cluster 1, the

12 Y. Fan et al.

Table 2. Number of cluster/features and maximum order of SHAP

clusters
features

in each cluster
Max. order
of SHAP

Update 1

Unbiased 5 7–10 39–487
Biased-Time 4 1–10 39–142
Biased-Family 3 2–8 22–110
Biased-Antivirus 3 3–9 53–218

Update 2

Unbiased 1 6 64
Biased-Time 6 3–8 24–190
Biased-Family 3 4–10 24–428
Biased-Antivirus 0 - -

Update 3

Unbiased 5 2–10 31–371
Biased-Time 6 3–10 55–371
Biased-Famliy 2 3–10 371
Biased-Antivirus 1 2 198

Table 3. Output features of two clusters using Unbiased dataset in Update 1

Features
Order of

increasing rate
Order of
SHAP

Cluster 1

android.location.locationmanager.getproviders 1 49
android.nfc.tech.ndefformatable.format 2 86
android.nfc.tech.ndefformatable.connect 3 109
android.nfc.tech.ndef.connect 4 81
android.nfc.tech.ndef.writendefmessage 5 100

Cluster 2

android.permission.vibrate 1 30
android.widget.videoview.setvideopath 2 7
android.widget.videoview.pause 3 13
android.widget.videoview.stopplayback 4 6
android.widget.videoview.start 5 14

features causing prediction change are mainly relevant to nfc.tech because four
out of five features are relevant to nfc.tech. Similarly, in cluster 2, the features
relevant to widget.videoview mainly caused the prediction changes. However,
these features are difficult to identify if only SHAP values are used because the
maximum order of SHAP is 109.

5.3 Qualitative Evaluation

As shown above, the classification performance on the test dataset depends on
the bias in the training dataset, and our method can reduce the number of
features that operators must analyze to understand a model update. Here, we
investigate whether operators can infer that a model update is successful or failed
using the output of our method with a post-update training dataset. Specifically,
the main cause of a failed model update is overfitting and noneffective update.
Overfitting involves learning the training dataset too much and not generalizing

Understanding Updates of Machine-Learning-Based Malware Detection 13

Table 4. Example of similar clusters

Features Mean rate

Cluster 1
android.permission.write external storage 4.77
android.permission.read external storage 4.11

Cluster 2

android.intent.action.main 6.5
android.permission.read external storage 4.81
android.widget.videoview.setvideopath 4.76
android.permission.internet 4.47
android.permission.write external storage 4.12
android.permission.internet 3.29
android.permission.access network state 3.2

it to the test dataset. More precisely, an overfitted model learns only a few
families or overlooks some families. The noneffective update is that a model
update does not change predictions, even though a model update is expected to
change some predictions under concept drift. The noneffective update is mainly
caused by noninformative newly added data.

We describe how to analyze the output of our method from the aforemen-
tioned three perspectives: learning a few families, overlooking some families, and
noneffective updates. Note that our method does not output any cluster of be-
nign data, which means that the performance changes are mainly caused by
malicious data. For this reason, we only show results of malicious data.

Learning a Few Families To confirm whether a model learns only a few
families, we focus on a variety of changes caused by the model update. Using our
method, data with similar attribution changes are assigned to the same cluster.
The number of clusters reflects the variety of changes. The lack of variety can
result in an overfitting model because the model can only learn features related
to some types of data, causing a performance degradation after the update. The
number of clusters can be used to evaluate whether the model is overfitted.

Table 2 shows the number of clusters in each update. When the dataset
is biased, for example, it only contains major families with a large number of
malicious samples, and the lack of variety may cause the model to only learn
features related to certain families, resulting in overfitting. As can be seen in
Table 2, the cluster numbers of “Biased-Family” are always less than the results
of other updates, and the results of “Biased-Antivirus” are also low in some
cases, which indicates that the bias of the dataset causes a lack of variety and
influences the update as a result.

We can more precisely identify the lack of variety by investigating the sim-
ilarity of features between clusters. For example, Table 4 shows the features of
two of the clusters using “Biased-Family” in Update 1. All features in Cluster 1
are included in Cluster 2, meaning that the variety of data is low.

14 Y. Fan et al.

Table 5. The number of clusters whose predictions become false

Unbiased Biased-Time Biased-Family Biase-Antivirus

Update 1 0 0 0 0
Update 2 0 0 1 0
Update 3 0 0 2 0

Table 6. Cluster with false prediction change in Update 2. “None” means SHAP value
is 0 after update and ranked in the last.

Features Mean rate Order of SHAP

com.qihoo.util.appupdate.appupdateactivity -25.66 None
com.qihoo.util.startactivity -25.06 None
com.switfpass.pay.activity.qqwappaywebview -17.20 None
com.alipay.sdk.auth.authactivity -15.54 None
blue.sky.vn.api -14.66 None
landroid/telephony/smsmanager.sendtextmessage -14.23 33
blue.sky.vn.mainactivity -11.85 None
blue.sky.vn.webviewactivity -10.42 None
blue.sky.vn.gamehdactivity -10.33 None
com.qihoo.util.commonactivity -8.09 None

Table 7. Difference values used to measure the extent of improvement

Unbiased Biased-Time Biased-Family Biased-Antivirus

Update 1 103 122 31 25
Update 2 70 104 -17 0
Update 3 78 131 -27 12

Overlooking Some Families To confirm whether a model overlooks some
families, we focus on clusters with predictions going false from true. For example,
the shortage of certain data, such as minor malware families, can prevent the
model from learning features related to those data. When the model is unable
to learn some data after the update, the predictions of such data become false.
Thus, we investigate the clusters with predictions changing from true to false.

Table 5 shows the number of clusters whose predictions change from true
to false. As we can see, only the results of “Biased-Family” have such clusters.
We can also obtain further information about the failure related to these clus-
ters by showing their features of a high rate of increase. For example, Table 6
shows the cluster whose prediction changes from true to false in update 2. The
false predictions are mainly caused by the lack of features com.qihoo.util and
blue.sky.vn, because their SHAP values decreased to zero after the update.

Noneffective Update To identify noneffective updates mainly caused by non-
informative newly added data, we focus on cluster size, i.e., the number of sam-
ples in each cluster. The cluster size shows how many samples have a different

Understanding Updates of Machine-Learning-Based Malware Detection 15

prediction after the update. The more the prediction results change from false
to true, the better the model performance will improve. If the performance does
not improve sufficiently after the update, the update is ineffective. In a malware
detection system, a change in the prediction results from false to true means that
the prediction of malicious samples becomes positive, or the prediction of benign
samples becomes negative. Therefore, the size of the output clusters indicates
the extent of the performance change during the update. We use the number
of samples whose prediction changes from false to true to evaluate whether the
model has been updated effectively. Specifically, we measure the extent of per-
formance improvement by the difference value between the number of samples
whose predictions become true and the number of samples whose predictions
become false. Table 7 presents the results for each difference value. The minus
number in Table 7 indicates that the samples whose predictions change from
true to false are more than those whose predictions change from false to true.

Table 7 indicates that for a dataset of approximately 220 samples, the perfor-
mance of “Unbiased” and “Biased-Time” improve after update, whereas the per-
formance of “Biased-Family” and “Biased-Antivirus” have very limited change
or no change after update, which is consistent with the results of the ROC and
AUC but more clear. When the difference value of the data becomes true and
the data becoming false is large, we can conclude that the model performance
has improved after the update, and the update is effective. When the difference
value is relatively small, the performance remains almost unchanged, and the
update is ineffective.

Summary In our experiment, we used data with four different types of bias and
three different periods of time to conduct 36 updates to demonstrate our method.
Table 8 shows the evaluation result of each update. As we can see, in most cases,
the results of “Biased-Family” and “Biased-Antivirus” appear to be overfitted
or noneffective, which explains the performance not improving after updates
by those dataset. All the results of “Biased-Time” are neither overfitted nor
noneffective, explaining the performance improvement after updates by “Biased-
Time,” as shown in the ROC curves.

6 Discussion

Application of the Proposed Method Although this study focuses mainly
on malware detection systems, our method should be applied to all types of
machine learning tasks. The SHAP method provides algorithms for estimating
SHAP values for any ML model, i.e., our method can be applied to any ML
model, regardless of the dataset or model. For example, our method can be
applied to suspicious URL detection [17], malicious website detection [8], and
malware family classification [1]. In multiclass classifications, we can identify
changes in important features by analyzing feature attribution changes by fo-
cusing on each class.

16 Y. Fan et al.

Table 8. Summary of qualitative evaluation. Xrepresents that an undesirable update
is observed, and × represents that an undesirable update is not observed.

Learning
a few families

Overlooking
some families

Noneffective
update

Update 1

Unbiased × × ×
Biased-Time × × ×
Biased-Family X × X
Biased-Antivirus × × X

Update 2

Unbiased X × ×
Biased-Time × × ×
Biased-Family X X X
Biased-Antivirus X × X

Update 3

Unbiased × × ×
Biased-Time × × ×
Biased-Family X X X
Biased-Antivirus X × X

Limitation In this paper, we demonstrated that our method outputs detailed
information about model updates, such as the important features that are rel-
evant to the performance change during the update. Though we discussed the
importance of the outputted information, we need a user study, which is one of
our future works.

7 Conclusion

ML methods have been widely applied to many tasks. In practical use, it is nec-
essary to regularly update the model to maintain its classification performance.
AUC and accuracy are generally used to validate models to confirm their per-
formance after updates. However, it is difficult to gain sufficiently detailed in-
formation for understanding model updates, such as what causes performance
changes and the influence on a certain type of data.

Therefore, we propose a method for determining samples in which the fea-
tures important for classification have significant changes. By selecting those
samples and clustering them by feature attribution changes, we can know more
about why performance changes or how an update influences a certain type of
data. For the feature attribution computation, we used a consistent importance
value called the SHAP value because SHAP values are comparable across dif-
ferent models. Our proposed method calculates the rates of increase in SHAP
values after updates to reflect changes in feature importance, and clustering the
samples by their feature attribution changes to generate the information given
to the operator.

We conducted experiments using an open dataset of Android malware. We
investigated model changes while the training dataset is updated with different
biased data, and demonstrated that our method can identify the unexpected
model changes such as overfitting or noneffective update caused by the biased

Understanding Updates of Machine-Learning-Based Malware Detection 17

data. The results also indicate that our method can identify the important fea-
tures relevant to the performance change, which are difficult to find by using a
method that calculates only the feature attributions.

Though we discussed the importance of the outputted information, we need
a user study, which is one of our future works.

A Detailed Experimental Setup

Dataset Each training dataset had a similar size of approximately 3,800 benign
samples and 420 malicious samples, and each test dataset contained approxi-
mately 5,000 benign samples and 550 malicious samples. The number of samples
is shown in Table 9.

Feature To extract features in our experiments, we used Drebin [4], a lightweight
method for detecting malicious APK files based on broad static analyses. Fea-
tures are extracted from the manifest and disassembled dex codes of the APK
file. From these, Drebin collects discriminative strings, such as permissions, API
calls, and network addresses. Drebin extracts eight sets of strings: four from
manifests and four from dex code.

1. Hardware components
2. Requested permissions
3. App components
4. Filtered intents
5. Restricted API calls
6. Used permissions
7. Suspicious API calls
8. Network addresses

The features are embedded into an N -dimensional vector space, where each
element is either 0 or 1. Each element corresponds to a string, with 1 representing
the presence of the string and 0 representing its absence. The extracted feature
vector x is denoted as

x = (· · · 0 1 · · · 0 1 · · ·) .

The feature vector can be used as input for a machine-learning model.

Classification Models Our experiments use random forest [6], which is well
known for its excellent classification performance and can be applied to many
tasks, including malware detection. Random forest is an ensemble of decision
trees. Each decision tree is built using a randomly sampled subset of data and
features. By creating an ensemble of many decision trees, random forest achieves
high classification performance even when the dimensions of feature vectors
exceed the dataset size. Furthermore, the SHAP package [14] associated with
Ref. [15] provides a high-speed algorithm called TreeExplainer for tree ensemble
methods, including random forests.

18 Y. Fan et al.

Table 9. Number of samples in each dataset

Malicious Benign

Update 1

Pre-update Unbiased 416 3,732

Post-update

Unbiased 416 3,809
Biased-Time 425 3,847
Biased-Family 424 3,809
Biased-Antivirus 417 3,841

Test Unbiased 595 5,322

Update 2

Pre-update Unbiased 416 3,809

Post-update

Unbiased 423 3,816
Biased-Time 423 3,850
Biased-Family 423 3,854
Biased-Antivirus 421 3,837

Test Unbiased 598 5,302

Update 3

Pre-update Unbiased 423 3,816

Post-update

Unbiased 429 3,814
Biased-Time 432 3,854
Biased-Family 431 3,814
Biased-Antivirus 431 3,843

Test Unbiased 532 4,628

Hyperparameter Optimization When training random forest models, we
conduct a grid search for each model to determine the best combination of
parameters among the following candidates:

1. Number of trees: 10, 100, 200, 300, 400.
2. Maximum depth of each tree: 10, 100, 300, 500.
3. Ratio of features used for each tree: 0.02, 0.05, 0.07, 0.1, 0.2.
4. Minimum number of samples required at a leaf node: 5, 7, 10, 20.

Each candidate combination is validated using five-fold cross validation. Specif-
ically, we calculated an average of five AUC scores for each combination and
selected the best combination in terms of the average AUC score as the result
of the grid search.

References

1. Ahmadi, M., Ulyanov, D., Semenov, S., Trofimov, M., Giacinto, G.: Novel fea-
ture extraction, selection and fusion for effective malware family classification. In:
Proceedings of the 6th ACM Conference on Data and Application Security and
Privacy. pp. 183–194 (2016)

2. Akaike, H.: Information theory and an extension of the maximum likelihood prin-
ciple. In: Selected Papers of Hirotugu Akaike, pp. 199–213. Springer (1998)

Understanding Updates of Machine-Learning-Based Malware Detection 19

3. Allix, K., Bissyandé, T.F., Klein, J., Le Traon, Y.: Androzoo: Collecting millions of
android apps for the research community. In: Proceedings of the 13th IEEE/ACM
Working Conference on Mining Software Repositories. pp. 468–471 (2016)

4. Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: Effective
and explainable detection of android malware in your pocket. In: Proceedings of
the 2014 Network and Distributed System Security Symposium (2014)

5. Bouktif, S., Fiaz, A., Ouni, A., Serhani, M.A.: Single and multi-sequence deep
learning models for short and medium term electric load forecasting. Energies
12(1), 149 (2019)

6. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
7. Burnham, K.P., Anderson, D.R.: Multimodel inference: understanding aic and bic

in model selection. Sociological Methods & Research 33(2), 261–304 (2004)
8. Canali, D., Cova, M., Vigna, G., Kruegel, C.: Prophiler: a fast filter for the large-

scale detection of malicious web pages. In: Proceedings of the 20th International
Conference on World Wide Web. pp. 197–206 (2011)

9. Friedman, J.H., Meulman, J.J.: Multiple additive regression trees with application
in epidemiology. Statistics in Medicine 22(9), 1365–1381 (2003)

10. Google Cloud: Mlops: Continuous delivery and automation pipelines in machine
learning (2020), https://cloud.google.com/solutions/machine-learning/mlops-
continuous-delivery-and-automation-pipelines-in-machine-learning

11. Jaccard, P.: The distribution of the flora in the alpine zone. 1. New phytologist
11(2), 37–50 (1912)

12. Jordaney, R., Sharad, K., Dash, S.K., Wang, Z., Papini, D., Nouretdinov, I., Cav-
allaro, L.: Transcend: Detecting concept drift in malware classification models. In:
Proceedings of the 26th USENIX Security Symposium. pp. 625–642 (2017)

13. Karlaš, B., Interlandi, M., Renggli, C., Wu, W., Zhang, C., Mukunthu Iyap-
pan Babu, D., Edwards, J., Lauren, C., Xu, A., Weimer, M.: Building continu-
ous integration services for machine learning. In: Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. pp.
2407–2415 (2020)

14. Lundberg, S.M., Erion, G., Chen, H., DeGrave, A., Prutkin, J.M., Nair, B., Katz,
R., Himmelfarb, J., Bansal, N., Lee, S.I.: From local explanations to global under-
standing with explainable ai for trees. Nature Machine Intelligence 2(1), 2522–5839
(2020)

15. Lundberg, S.M., Erion, G.G., Lee, S.I.: Consistent individualized feature attribu-
tion for tree ensembles. arXiv preprint arXiv:1802.03888 (2018)

16. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions.
In: Proceedings of the 31st Advances in Neural Information Processing Systems.
pp. 4765–4774 (2017)

17. Ma, J., Saul, L.K., Savage, S., Voelker, G.M.: Beyond blacklists: learning to detect
malicious web sites from suspicious urls. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. pp. 1245–1254
(2009)

18. Miller, B., Kantchelian, A., Tschantz, M.C., Afroz, S., Bachwani, R., Faizullabhoy,
R., Huang, L., Shankar, V., Wu, T., Yiu, G.: Reviewer integration and performance
measurement for malware detection. In: Proceedings of the 13th International Con-
ference on Detection of Intrusions and Malware, and Vulnerability Assessment. pp.
122–141 (2016)

19. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V.: Scikit-learn: Machine learn-
ing in python. Journal of Machine Learning Research 12, 2825–2830 (2011)

20 Y. Fan et al.

20. Pendlebury, F., Pierazzi, F., Jordaney, R., Kinder, J., Cavallaro, L.: TESSERACT:
Eliminating experimental bias in malware classification across space and time. In:
Proceedings of the 28th USENIX Security Symposium. pp. 729–746 (2019)

21. Ribeiro, M.T., Singh, S., Guestrin, C.: ”why should I trust you?”: Explaining the
predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. pp. 1135–1144 (2016)

22. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2),
461–464 (1978)

23. Sood, G.: virustotal: R Client for the virustotal API (2017), r package version 0.2.1
24. Tsymbal, A.: The problem of concept drift: definitions and related work. Computer

Science Department, Trinity College Dublin 106(2), 58 (2004)

