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Preface

Anomalous operation attack that an attacker operates home Internet of Things (IoT) devices by

sending packets via an intruded IoT device or a smartphone is an important problem. Because the

home IoT devices are physically close to users, this attack may make users unsafe and could even

harm users physically. For example, an attacker operates to turn on and off the room light, change

the temperature of an air conditioner, or unlock a smart home lock. Furthermore, simultaneous

attacks on high-power IoT devices can suddenly increase energy demands, which could lead to

major power outages. Therefore, the detection and prevention of packets of the attack are paramount

importance.

Unfortunately, existing intrusion detection systems are difficult to detect packets of the anoma-

lous operation attack. The existing intrusion detection systems assume that legitimate and anoma-

lous traffic patterns are notably different. However, both attackers and legitimate users send the

same types of packets to operate IoT devices. For instance, if an attacker sends packets via the

malware-infected smartphone of a legitimate user, even the source IP address is identical to that of

the legitimate user. Consequently, existing intrusion detection systems cannot distinguish between

packets sent by legitimate users and attackers based on the available information. It is necessary to

grasp whether the users intended to perform the operation of the home IoT devices or not.

Therefore, we first propose a method to detect such attacks based on user behavior. This method

models user behavior as sequences of user events including operation of home IoT devices and other

monitored activities. Considering users behave depending on the condition of the home such as time

and temperature, our method learns event sequences for each condition. To mitigate the impact of

events of other users in the home included in the monitored sequence, our method generates multiple
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event sequences by removing some events and learning the frequently observed sequences. For

evaluation, we constructed an experimental network of home IoT devices and recorded time data for

four users entering/leaving a room and operating devices. We obtained detection ratios exceeding

90% for anomalous operations with less than 10% of misdetections when our method observed

event sequences related to the operation. However, this method modeled users’ home states based

on the time of day; hence, attackers can exploit the system to maximize attack opportunities.

Thus, we second propose a behavior-modeling method that combines home state estimation

and event sequences of IoT devices within the home to enable a detailed understanding of long-

and short-term user behavior. The state estimation is that estimating the home state using not only

the time of day but also the observable values of home IoT sensors and devices. We compared

the proposed model to the first method using data collected from real homes. Compared with

the estimation-based method, the proposed method achieved a 15.4% higher detection ratio with

fewer than 10% misdetections. Compared with the sequence-based method, the proposed method

achieved a 46.0% higher detection ratio with fewer than 10% misdetections.

Learning the behavior of users sufficiently may require a large amount of data, but the amount of

data collected in each home is limited. When the data is not enough, the detection of the anomalous

operation would be difficult. The data shortage will also occur in the case that a user introduces a

new home IoT device.

However, anomalous operations still need to be detected regardless of whether the data amount

is sufficient or not. Thus, we consider the cooperation between trained models that learned behav-

iors of users in the homes. However, an attacker who tries anomalous operations may participate in

the cooperation; and gets hints about the timing that the anomalous operations tend to be achieved

by watching the cooperation traffic that includes information of behaviors in the past. Therefore, the

cooperation should be taken with hiding personal identification. Furthermore, to achieve accurate

detection, the trained models that learned the same behaviors of users have to cooperate. Therefore,

we need a method that the users having similar lifestyles cooperate without identification of users.

We also propose a framework to utilize data of similar users without sharing private information.

We introduce an agent that learns behaviors of users to detect anomalous operations in each home

and cooperates with other agents. In this framework, an agent requiring cooperation with other
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agents sends a question to the other agents, attaching identifiers of past questions that are similar to

the behaviors learned. The receivers decide whether the question is from a similar agent by using

the attached information. If the question is from a similar agent, the agent answers the question.

We evaluate our framework by using behavior datasets collected from real homes. We simulate

two cases: (1) sequences of operations are monitored, and (2) home IoT devices are used alone

but sequences cannot be used for detection. The results show that our framework has a 50.5%

higher detection ratio for case (1) when using the behavioral data of each user. For case (2), our

framework has a 13.4% higher detection ratio when using all the behavioral data of users. However,

if an attacker participates in this framework and send fake questions and answers, there are risks

that users receive false data via the framework.

Therefore, we propose a countermeasure to suppress the impact of such negative impact while

maintaining the advantage of the framework. In this countermeasure, we check the message is sent

from the similar agent by checking the attached IDs to the message. If the agent who received the

message answered “Yes” to the same questions of the attached IDs, the agent accepts the message.

By doing so, the agent avoids accepting the messages that sent from attackers because it is difficult

for attackers to attach the IDs that the agent answered “Yes” in the past. We discuss the effects of

this countermeasure with numerical examples.
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Chapter 1

Introduction

1.1 Background

The Internet of Things (IoT) technology is spread all over the world and 12.3 billion IoT devices

are connecting to the Internet in 2021 [1]. In particular, as multiple home appliances connect to

the home network, smart homes that can be managed via the network are constructed. Users can

operate the home IoT devices and collect information from the IoT sensors via smartphones, AI

speakers, and smartwatches. Because of the convenience of these applications, multiple devices

will connect to the network and the home IoT devices continue to improve our life.

Along with the growth of home IoT, the security risk of cyberattacks targeting home IoT in-

creases [2–4]. In recent years, a major type of attack is to be intruded on by exploiting the inherent

vulnerabilities of devices. The intruded home IoT devices are abused as step servers for the Dis-

tributed Denial of Service (DDoS) attack [5, 6]. One of the countermeasures of the intrusion, to

update the application and remove the vulnerabilities. However, when the number of devices is

large, managing the software of all appliances is costly [7, 8]. Thus, against such intrusion and

abuse for the DDoS attack, comprehensive anomaly detection systems are proposed. For example,

the detection systems detect the wrong packets by analyzing the behavior of the attacker [9–11] and

by comparing the behavior to the usual ones displayed by the home occupants [12, 13].

These attacks are similar to that of personal computers and smartphones, however, due to their
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characteristics, there are attacks specific to the IoT devices. One of such attacks is the anomalous

operation attack that an attacker operates the home IoT device by sending packets via an intruded

IoT device or a smartphone. Because the home IoT devices are physically close to users, this at-

tack may make users unsafe and could even harm users physically [14]. For example, an attacker

operates to turn on and off the room light, change the temperature of an air conditioner, or unlock

a smart home lock. CIA verified that it is possible to hijack a television via the Internet [15]. Fur-

thermore, simultaneous attacks on high-power IoT devices can suddenly increase energy demands,

which could lead to major power outages [16]. Therefore, the detection and prevention of packets

of the attack are of paramount importance.

Unfortunately, the intrusion detection systems are difficult to detect packets of the anomalous

operation attack. The existing intrusion detection systems assume that legitimate and anomalous

traffic patterns are notably different. However, both attackers and legitimate users send the same

types of packets to operate IoT devices. For instance, if an attacker sends packets via the malware-

infected smartphone of a legitimate user, even the source IP address is identical to that of the legit-

imate user. Consequently, existing intrusion detection systems cannot distinguish between packets

sent by legitimate users and attackers based on the available information. It is necessary to grasp

whether the users intended to operate the home IoT devices or not.

To grasp the users’ intention to detect the anomalous operation, we propose a detection method

focusing on user behavior. We construct the model to learn the user behaviors. When a command

arrives at a home IoT device, the method verifies whether it matches with the legitimate behaviors.

If the command does not match with the learned behavior, it is classified as an anomaly and dropped.

Thus, we have to construct the model to learn the user behaviors.

Learning the behavior of users sufficiently may require a large amount of data, but the amount of

data collected in each home is limited. When the data is not enough, the detection of the anomalous

operation would be difficult. The data shortage will also occur in the case that a user introduces a

new home IoT device.

However, anomalous operations still need to be detected regardless of whether the data amount

is sufficient or not. Thus, we consider the cooperation between trained models that learned behav-

iors of users in the homes. However, an attacker who tries anomalous operations may participate in
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the cooperation; and gets hints about the timing that the anomalous operations tend to be achieved

by watching the cooperation traffic that includes information of behaviors in the past. Therefore, the

cooperation should be taken with hiding personal identification. Furthermore, to achieve accurate

detection, the trained models that learned the same behaviors of users have to cooperate. Therefore,

we need a method that the users having similar lifestyles cooperate without identification of users.

In this thesis, we also propose a framework to utilize data of similar users without sharing

private information. We introduce an agent that learns the behaviors of users to detect anomalous

operations in each home and cooperates with other agents. In this framework, an agent requiring

cooperation with other agents sends a question to the other agents, attaching identifiers of past

questions that are similar to the behaviors learned. The receivers decide whether the question is

from a similar agent by using the attached information. If the question is from a similar agent, the

agent answers the question. In addition, an attacker participating in the framework may send fake

information to make anomalous operations easier to succeed. We also introduced a countermeasure

for the framework to suppress the negative impact of such fake information. The countermeasure is

that an agent requires solving a quiz that only agents of users with similar behaviors can understand

to avoid accepting the fake information.

1.2 Anomaly detection

In this section, we explain the positioning of this thesis in anomaly detection. We describe the

classification of anomaly detection and the difference from related work based on the three guiding

principles.

In this thesis, a home gateway learns the behaviors of users based on the observable information

via the packets. The packets include the time of operations of IoT devices and the entering or leaving

home; the sensed values of IoT sensors. Then, the home gateway detects the operations out of the

learned behavior model as anomalous.

Here, it should be noted that the anomalous operation includes malicious operations and un-

expected operations. The former are operations performed by attackers with malicious intent; the

latter are unexpected operations out for users. In this thesis, the target of the detection is anomalous
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operations; our methods cannot distinguish the malicious and unexpected ones. However, almost

anomalous operations are malicious operations. This is because there is a small number of unex-

pected operations, such as an operation from a guest of the home and a misoperation by pets. In

addition, a user can distinguish them by receiving a detection notice via smartphones and check-

ing the circumstance of the targeted device physically. When the detected operation is legitimate,

the user can temporarily allow the operation to the home IoT devices. In this thesis, we unify the

detection target as an anomalous operation.

Hence, we list three guiding principles for our anomaly detection below.

1. We have to detect home IoT devices’ operations that are deviations from the usual behaviors

of users living in the home.

2. The home gateway detects anomalous operations utilizing the information that can be col-

lected from the packets from the home network; it does not use surveillance cameras and

many motion sensors that can grasp the physical movement of the users.

3. The anomaly detection method must be applicable to the smart home that multiple users live.

The first guiding principle is to detect the anomalous operations that are different from the usual

behaviors of users. Even if the home IoT devices are not affected by malware, we can detect

the anomalous operation traffic sent from outside the home or via intruded smartphones and AI

speakers. The second principle is that the home gateway learns behaviors and detects anomalous

operation without observing physical movement using surveillance cameras or motion sensors. The

home gateway can obtain information from the traffic of home IoT devices, sensors, and smart-

phones; can drop the packets of anomalous operations. The reasons not to use the surveillance

cameras and motion sensors are that the users can operate home IoT in any room and users want

to avoid excessive monitoring. The third principle is to consider the multiple users living in the

smart home because multiple users live in a home. We cannot grasp who operated the IoT devices

because users use IoT devices via a shared tablet or an AI speaker at home.

Anomaly detection can be classified into outlier detection, changing point detection, and abnor-

mal behavior detection based on the detection target and the learning model. The outlier detection
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constructs an independent model as the probability model for multidimensional vectors and detects

outlier data from the model [17]. For example, there are detection methods for abnormal commu-

nications between IoT nodes based on the usual communication packets of the service where IoT

nods cooperate [18, 19] and for abnormal traffic by comparing the legitimate packet payload and

statistics to abnormal ones [20, 21]. They detect anomalous communications of intruded IoT de-

vices by comparing them to usual traffic. However, our thesis aims to detect anomalous operations

that are unmatched with the usual behaviors of users at the first guideline. In particular, a packet of

an anomalous operation via an intruded AI speaker is the same as a legitimate packet including the

source IP address. Therefore, we cannot apply these methods to our purpose.

The changing point detection finds the sudden changes that appear in a time series, assuming a

time series model as the probability model for multidimensional series data [17]. For instance, there

is a changing detection method for the error of the hijacked IoT device based on the time series of

electricity consumed [22]. However, this method does not match the first guideline. Specifically,

even if the anomalous operation is performed on a home IoT device, it works the same as the

legitimate. Thus, the method cannot detect anomalous operations.

The abnormal behavior detection generates a behavioral model as a probabilistic model for a

series of behavioral data as a unit and detects abnormal sessions relative to the model [17]. In this

thesis, we train a behavioral model by a series of users’ actions and detect the operations included in

the abnormal behaviors that are deviated from the trained model. Therefore, our detection methods

are the abnormal behavior detection. As an example of the abnormal behavior detection, there is a

detection method of a user’s abnormalities [23]. This method aims to find anomalies of an elderly

person, such as a user being down for a long time. It learns the time length and the time of day

of actions of a user as a behavior model. The actions are analyzed by the data of motion sensors,

surveillance cameras, and IoT devices installed in the home. Then, it detects the cases that the user

does not take a particular behavior and something wrong during the behavior. However, this method

does not coincide with the second guideline, not to use surveillance cameras and motion sensors,

and the third one, adaptable to multiple users at home. Furthermore, this method detects anomalies

of the user itself, but, our method detects anomalies of the operations of home IoT devices. It

causes a difference in the timing to detect the target. Therefore, this method is difficult to apply
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our detection. Another method is to detect abnormal behaviors from a hidden Markov (HMM)

model [24]. This method models behaviors of the user based on the information about the operation

on consumer electronics and location at home with focusing on the single user. Then, it detects

anomalous behaviors that deviated from the trained HMM model. The evaluation scenario of this

paper included the detection of anomalous operation. However, this method does not satisfy the

second and third guiding principles because it uses motion sensors and focuses on the single user.

To confirm that this method cannot apply to our anomaly detection guidelines, we compared our

method to the HMM model in Chapter 2.

Therefore, we propose anomalous operation detection methods for smart home IoT devices with

satisfying the guiding principles.

1.3 Privacy-preserved cooperation

When an agent does not have a sufficient amount of behavior data, we consider the cooperation

between trained models that learned behaviors of users in the homes. However, an attacker who

tries anomalous operations may participate in the cooperation; and gets hints about the timing that

the anomalous operations tend to be achieved by watching the cooperation traffic that includes

information of behaviors in the past. To prevent such problems, in this thesis, we described three

requirements for the cooperation of the agents in the homes.

1. The framework must not use any information to identify the individual users. The framework

must not assign any identifiers to the users and agents. In addition, the agents must not share

the personal information of the users including the historical behavior of the users and their

personal information, such as ages, genders, and jobs.

2. The agents must avoid cooperating with agents of users who have different lifestyles, which

may cause inaccurate detections of anomalous operations.

3. The framework prevents the negative impact of the fake information sent from the attacker.

The anomalous operation would become easier to succeed by receiving the fake information

via the framework.
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Here, the attacker is a user who tries anomalous operations and can perform the anomalous

operation on a home IoT device. This framework prevents the attackers from grasping hints of the

anomalous operation.

The first requirement is to avoid identifiers of users and agents. This is because we consider the

risk of data leakages. In the case that the agents send the behavior data in the home to outside, we

learn the relationship between behaviors that are performed by the same users by adding an identi-

fier of users to the behaviors. If the series of behaviors of users are leaked, attackers can understand

the timing that anomalous operation is likely to succeed and we cannot prevent the anomalous oper-

ation. Therefore, the agents hide the personal information or identifier and communicate to prevent

the risk of leaking hints for the attackers. An approach that satisfies the requirement is to train each

model on each dataset and to construct a general model by sharing the learned gradients [25, 26].

However, this general model constructed via the cooperation between agents may not match the

lifestyle of each user because each user has different behaviors. Therefore, this approach cannot

achieve accurate detection of anomalous operations and satisfy the requirements 2.

The second requirement is to avoid cooperation with agents who have different lifestyles. If

an agent uses behavior data of different lifestyles, the agent overlooks the anomalous operations.

Thus, agents need to cooperate with the agents that their users have similar lifestyles to prevent false

negatives. An approach to analyzing the data of other users by collecting the behavioral datasets of

many users [27] satisfies this requirement. This method uses the privacy information of the users,

including the in-home activities of the users. However, because this method has to relate the users

and behaviors, there is a risk of data leakage [28]. Furthermore, in the circumstance of each agent

learning its users’ behavior data in its home, some users feel uncomfortable transmitting all their

activities at home to the outside. Therefore, this method cannot satisfy the first requirement and

cannot apply to our purpose.

Furthermore, as a requirement 3, it is necessary to prevent attackers from sending false informa-

tion to facilitate the success of anomalous operations. The false information may cause the agent to

receive information about the wrong behavior, resulting in undetected or false positives. Therefore,

we needed an anonymous cooperation framework with agents of similar users that would not be

adversely affected by such false information.
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Thus, it was difficult to achieve the requirements with existing cloud-based and decentralized

data analysis methods to cover the data shortage. It is also difficult to completely protect the privacy

of users and to use the data of users having completely the same lifestyles. Therefore, we propose

a framework that the agents of users with similar lifestyles can cooperate to detect anomalous

operations as anonymously as possible. In Chapter 4, we first propose an anonymous cooperation

framework with agents of similar users that satisfies requirements 1 and 2. In Chapter 5, to achieve

the requirements 3, we second propose a countermeasure that prevents the negative impact of the

fake information sent by the attackers to the framework.

1.4 Outline of thesis

The overview of this thesis is shown in Figure 1.1.

Anomalous operation 

detection based on user 

behaviors in the home.

Modeling behaviors based 

on operation sequence.

(Chapter 2)

Based on the estimation

of the home situations.

(Chapter 3)

Improving

Framework to cooperate 

with similar users’ agents 

with preserving privacy.

Collaboration without 

sharing private info.

(Chapter 4)

Countermeasure for 

attacks on the framework.

(Chapter 5)

Attack tolerance

Figure 1.1: Overview of this thesis.

Anomaly Detection Method using User Behavior Sequences [29–32]

As several home appliances, such as air conditioners, heaters, and refrigerators, were connecting

to the Internet, they became targets of cyberattacks, which cause serious problems such as com-

promising safety and even harming users. We propose a method to detect such attacks based on

user behavior. This method models user behavior as sequences of user events including operation
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of home IoT (Internet of Things) devices and other monitored activities. Considering users behave

depending on the condition of the home such as time and temperature, our method learns event se-

quences for each condition. To mitigate the impact of events of other users in the home included in

the monitored sequence, our method generates multiple event sequences by removing some events

and learning the frequently observed sequences. For evaluation, we constructed an experimental

network of home IoT devices and recorded time data for four users entering/leaving a room and

operating devices. We obtained detection ratios exceeding 90% for anomalous operations with less

than 10% of misdetections when our method observed event sequences related to the operation. In

this thesis, we also discuss the effectiveness of our method by comparing with a method learning

users’ behavior by Hidden Markov Models.

Improving Anomaly Detection Method by Estimating In-home Situation [33–35]

Internet-of-things (IoT) devices are vulnerable to malicious operations by attackers, which can

cause physical and economic harm to users; therefore, we previously proposed a sequence-based

method that modeled user behavior as sequences of in-home events and a base home state to de-

tect anomalous operations. However, that method modeled users’ home states based on the time of

day; hence, attackers could exploit the system to maximize attack opportunities. Thus, we propose

a behavior-modeling method that combines home state estimation and event sequences of IoT de-

vices within the home to enable a detailed understanding of long- and short-term user behavior. The

state estimation is to estimated the home state using not only the time of day but also the observable

values of home IoT sensors and devices. We compared the proposed model to our previous methods

using data collected from real homes. Compared with the estimation-based method, the proposed

method achieved a 15.4% higher detection ratio with fewer than 10% misdetections. Compared

with the sequence-based method, the proposed method achieved a 46.0% higher detection ratio

with fewer than 10% misdetections.
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Privacy-Preserved Cooperation Framework for Anomaly Detection without using Pri-

vate Information [36–38]

To mitigate the risk of cyberattacks on home IoT devices, we have proposed a method for detect-

ing anomalous operations by learning the behaviors of users based on the operation sequences of

their home IoT devices and home conditions. While this method requires a sufficient amount of

training data, achieving accurate detection is still possible by utilizing the data of users with similar

lifestyles. However, users are unwilling to share their private information with others. In this study,

we propose a platform to utilize data of similar users without sharing private information. We in-

troduce an agent that learns behaviors of users to detect anomalous operations in each home and

cooperates with other agents. In this framework, an agent requiring cooperation with other agents

sends a question to the other agents, attaching identifiers of past questions that are similar to the

behaviors learned. The receivers decide whether the question is from a similar agent by using the

attached information. If the question is from a similar agent, the agent answers the question. We

evaluate our platform by using behavior datasets collected from real homes. We simulate two cases:

(1) sequences of operations are monitored, and (2) home IoT devices are used alone but sequences

cannot be used for detection. The results show that our framework has a 50.5% higher detection

ratio for case (1) when using the behavioral data of each user. For case (2), our framework has a

13.4% higher detection ratio when using all the behavioral data of users.

Improving Attack Tolerance of Privacy-Preserved Cooperation Framework

Network services can be tailored to preferences of users by analyzing the users’ data. To collect

the data, we should consider its privacy; collecting data in a cloud includes a risk of data leak-

age. However, a privacy-preserving method that generates a general model by collecting gradients

of each trained model is difficult to reflect personal preferences. Thus, we proposed a privacy-

preserved-cooperation (PPC) framework that users can send questions to ask information about

data and receive answers from similar users without telling who senders are. In PPC framework,

users collaborated with others who sent same answers to the same questions in the past. However, if

an attacker participates in PPC framework and send fake questions and answers, there are risks that
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users receive false data via PPC framework. In this work, we propose a countermeasure, PPC with

Countermeasure (PPCwC), to suppress the impact of such negative impact while maintaining the

advantage of PPC. In this PPCwC framework, we check the message is sent from the similar agent

by checking the attached IDs to the message. If the agent who received the message answered “Yes”

to the same questions of the attached IDs, the agent accepts the message. By doing so, the agent

avoids to accept the messages that sent from attackers because it is difficult for attackers to attach

the IDs that the agent answered “Yes” in the past. We discuss the effects of PPCwC framework with

numerical examples.
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Chapter 2

Anomaly Detection Method using User

Behavior Sequences

2.1 Introduction

Home appliances such as refrigerators, heaters, and air conditioners are being increasingly inte-

grated with Internet connections to expand connectivity beyond personal computers and smart-

phones. These devices are collectively called IoT (Internet of Things) devices. Users can obtain

information from IoT devices and operate them using smartphones, tablets, or smart speakers.

Currently, seven billion IoT devices are connected to the Internet, with a substantial increase

to 21.5 billion devices expected by 2025 [39]. As the number of devices connected to the Internet

increases, the risk for these devices to be targeted by cyberattacks also increases [40–43]. In fact,

direct attacks and malware targeting of IoT devices [3, 4] have already been reported.

Most of the current attacks targeting IoT devices aim to create botnets [5, 6]. Such attacks

are detectable by methods based on analyses of attacker behaviors [9–11] or through usual traffic

comparisons [12, 13].

However, as IoT devices are closely included in our routine, attacks may cause immediate and

personal harm to users [14]. For instance, the operation of IoT devices by attackers may threaten
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user safety, potentially even causing physical harm, through actions such as changing the temper-

ature of an air conditioner or the settings of a healthcare device. In addition, simultaneous attacks

on high-power IoT devices can suddenly increase energy demands and lead to major power out-

ages [16]. Therefore, methods to detect and prevent cyberattacks are necessary for the widespread

adoption of IoT devices.

Intrusion detection systems are the typical countermeasures against attacks targeting IoT de-

vices. Zarpelao et al. [44] presented an intrusion detection system to detect anomalous traffic over

IoT devices by either comparing the packets to predefined rules or detecting outliers from the ob-

served traffic. Although existing intrusion detection systems assume that legitimate and anomalous

traffic patterns are notably different, both attackers and legitimate users send the same types of

packets to operate IoT devices. For instance, if an attacker sends packets via the malware-infected

smartphone of a legitimate user, even the source IP address is identical to that of the legitimate

user. Consequently, existing intrusion detection systems cannot distinguish between packets sent

by legitimate users and attackers based on the available information.

To improve user protection, we proposed a method to detect the anomalous operation of home

IoT devices by learning user behaviors during operation [31]. Our method learns user behaviors.

Then, when a command arrives at a home IoT device, the method verifies whether it matches the

learned behavior. When a command does not agree with the learned behavior, it is classified as an

anomaly. Therefore, the proposed method can detect anomalous operation that does not fit the user

behaviors even if the commands are generated by malware-infected smartphones.

User behaviors may depend on the condition of the room such as time and temperature. Consid-

ering the above point, we define user behaviors by sequences of operations according to conditions

such as time and sensor measurements in the home network. When we learn the sequences of oper-

ations, we should consider the case that a monitored sequence of operations includes operations by

multiple users because a smart home may have multiple users. Such operations by the other users

have a large impact on learning essential user behavior. To mitigate such impact, our method gen-

erates multiple sequences of operations by removing some operations from the monitored sequence

and learns sequences that are frequently observed from them.

In this chapter, we investigate the effectiveness of our method by comparing it with a method
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to learn normal activities of a user by using Hidden Markov Models (HMM) [24]. In addition,

we compared our method with methods using a part of our leaning method, and discussed the

effectiveness of our method.

The rest of this chapter is organized as follows. We describe the related work in section 2.2.

Then, We describe the proposed method to detect anomalous operations in section 2.3. After that,

we report the evaluation of the method and the corresponding results in section 2.4. Finally, we

draw conclusions and discuss directions of future work in section 2.5.

2.2 Related Work

As several home appliances, such as air conditioners, heaters, and refrigerators, are being connected

to the Internet, and they became targets of cyberattacks [3, 4], which can cause serious problems

such as compromising safety and even harming users [14]. Therefore, the methods to detect attacks

for the home IoT devices have been proposed [9–13]. For example, Hodo et al. proposed a method

to detect intruded IoT devices. This method uses an artificial neural network trained by using

the packet traces. By using the artificial neural network, this method classifies the normal and

threat patterns on an IoT network and detects DoS attacks [45]. Xu et al. proposed the method to

detect intruded home IoT devices that become a part of botnets. This method uses a bloom-filter

based analytics framework to find anomalous packets and detect intruded home IoT devices [10].

Martine et al. proposed a comprehensive home network defense method against attacks to home

IoT devices. This method uses honeypot to find attacks by the signatures-based method and changes

settings of firewalls to drop the attacking packets [9].

They focus on the intrusion or anomaly on the IoT devices and detect anomalies based on

the difference of traffic from/to the IoT devices. However, if an attacker sends packets via the

malware-infected smartphone of a legitimate user, even the source IP address is identical to that

of the legitimate user. That is, the anomalous operation cannot be detected by the methods based

on the difference of traffic from/to the IoT devices. Therefore, we proposed a method to detect

anomalous operations by learning user behaviors.

Ramapatruni et al. also proposed a method to detect anomalous operations by learning user
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behaviors. This method uses Hidden Markov Models (HMM) to learn the normal activities of a

user. This method uses the information obtained from sensors and/or statuses of the home IoT

devices as the observations. By using the observations, this method learns the parameters of HMM.

Then, this method detects the anomalous operations if an operation whose probability is low occurs.

They demonstrated the accuracy of this method by using the dataset collected at the smart home

environment deployed by them. This method focuses on the case of a single user [24]. However,

a smart home may have multiple users. Therefore, in this chapter, we propose a method to detect

anomalous operations even in the case of multiple users in a home.

There exist papers on learning user behaviors in other areas. Rashid et al. proposed a method to

detect behaviors of malicious insiders of organizations by learning behaviors of legitimate users. In

this paper, the behaviors are defined by a sequence of actions stored in log files of computer systems

and modeled by a hidden Markov model. Then, this method detects the malicious insider whose

behavior does not match the learned model [46]. Haider et al. proposed a method to detect zero-

day attacks for cloud servers by modeling the users’ usage behavior. This paper also defined user

behaviors as a sequence of actions. This paper modeled the behavior by using nested-arc hidden

semi-Markov model (NAHSMM). This paper demonstrated that the method detects major attack

families such as DoS and worms by learning the model by using traffic data [47].

Methods to monitor people in a home and learn their behavior have also been proposed. For

example, Aran et al. proposed a method to detect anomalous behavior in elderly daily life. This

method monitors locations of a person in a house by using motion sensors, chair sensors, bed

sensors and so on. Then, this method uses the time series of the locations to detect anomalous

behavior [48].

Similar to our method, they learn the sequence of events, but they cannot be applied to learning

the users’ operation in a smart home. First, user behaviors depend on the conditions of the home

such as time of day, temperature, and humidity, but they do not consider the behavior changing by

the condition. Another problem is that a smart home has multiple users. As a result, a monitored

sequence may include the event by the other users, which has an impact on learning essential user

behaviors. Note that the essential event sequences include only the events from one user. Therefore,

we proposed a new method to learn users’ behaviors so as to detect anomalous operations.
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2.3 Anomaly Detection in Smart Home Operation

In this section, we introduce a method to detect the anomalous operation of home IoT devices

attributed to attackers. The proposed method considers specific patterns of user behavior depending

on diverse conditions. For example, when users return home and feel cold, they turn on a heater

and then a humidifier, whereas if it is warm, they never turn on the heater. In addition, operation

sequences reflect user behavior. For example, a user turns on the heater and then the humidifier,

whereas another user first turns on the humidifier. The proposed method learns these types of

condition-dependent operation sequences to establish behavior patterns, and it classifies deviations

from these learned patterns as anomalies.

In this section, we describe the proposed model of user behavior. Then, we explain the learning

of user behaviors and the detection of anomalous operations.

2.3.1 Learning Model

Fig. 2.1 illustrates the model to learn user behaviors. This model is defined by the conditions and

the stored user behaviors for each condition. The conditions are represented as a table in which

each cell corresponds to each condition. For each condition, we store the learned user behaviors.

The rest of this subsection explains the detail of the model of the conditions and the user behaviors

for each condition.

Conditions

We define a condition as a combination of time of day and sensor measurements such as room

temperature, humidity, and noise value. The variables representing the various components of a

condition are denoted as ci, where index i starts from 1 and reaches a maximum imax. An example,

as shown in Fig. 2.1 has two metrics, time of day and temperature to define the condition. That is,

imax is 2 and c1 represents the time of a room, whereas c2 represents its temperature. For tractability,

we discretize continuous data by using multiple thresholds for each type of data. Specifically, a

value of c1 and c2 satisfying c
(j)
1 ≤ c1 ≤ c

(j+1)
1 and c

(k)
2 ≤ c2 ≤ c

(k+1)
2 , where c

(j)
1 is the j-th

threshold of the 1st variable and c
(k)
2 is the k-th threshold of the 2nd variable, is classified into the
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Figure 2.1: Overview of detection model.

colored area of Fig. 2.1.

User Behaviors

In this chapter, we define an event as any monitored behavior of a user, including the operation of

IoT devices such as operating a heater, opening a refrigerator, and turning a TV’s volume up, and

any other behavior monitored by sensors, such as entering or leaving a room. Also, we define an

event sequence as events occurring within a timeframe of T seconds from a previous event. We

store the event sequences for each condition. Any model and data structure can be used to store

the event sequence, but in this chapter, we model the sequences by a tree where the children nodes

of the root are the initial events and the leaves are the final events. Anomalous event sequences

occur when an executed sequence is not contained in any tree. The “Learned Event Sequences”

in Fig. 2.1 shows an example of event sequences. In this example, an event sequence of “User01

Enter”, “Operate DeviceA”, and “Operate DeviceB” is observed 6 times, that of “User01 Enter”

and “Operate DeviceA” is observed 2 times and that of “User01 Enter” and “Operate DeviceC”

is observed 4 times. The learned event sequence can be used to detect anomalies. For example,

“Operate DeviceA” occurs only after “User01 Enter” occurs. Thus, the “Operate DeviceC” and
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“Operate DeviceA” are detected as anomalous.

2.3.2 Learning User Behaviors

Our method learns user behaviors by storing the monitored event sequences. In the proposed

method, we store the sequences at a home gateway that can monitor all the packets from the IoT

devices and users’ smartphones and other operation devices. However, some event sequences may

include events from different users when more than one person inhabits or visits the smart home. To

mitigate the impact of these events, which should be treated as noise, and learn only essential event

sequences, we remove events from the observed sequences. Note that the essential event sequences

include only the events from one user.

Our method learns the event sequences by the following steps. First, our method generates

multiple event sequences by removing some events from the observed sequences. Then our method

learns the frequent event sequences by using the generated event sequences. The event sequences

that occur many times are the essential sequences of events that the users often do. Therefore, we

use only the event sequences that occur many times as the learned event sequences of the legitimate

users. The rest of this paragraph explains the detail of each step to learn user behaviors.

Generation of Event Sequences

Algorithm 1 generates event sequences that are subsets of the monitored event sequence smonitored.

In Algorithm 1, we introduce a binary variable v which indicates the events included in the gen-

erated sequence; if ith bit of v is 1, the generated sequence stmp includes ith event of smonitored.

Otherwise ith event of smonitored is not included in stmp. After generating one event sequence, v is

incremented. By continuing the above steps, we generate all subsets of smonitored.

Figure 2.2 shows an example to generate event sequences when a sequence “A-B-C” is mon-

itored. The first v is set to 001, and the sequence “A” is generated. Then, v is incremented and

becomes 010. The sequence “B” is generated. These steps are continued to generate all patterns of

subsets of the monitored event sequence.
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Algorithm 1 Generating event sequences from the monitored event sequence.

Require: smonitored: monitored sequence of events
Ensure: S: List of generated sequences of events

function GENERATEEVENTSEQUENCES(smonitored)
v ⇐ UnsignedBinaryVariable(1)
S ⇐ EmptyList()

while v < UnsignedBinaryVariable(2|s
monitored|) do

stmp ⇐ EmptySequence()
for i = 1 . . . |smonitored| do

if ith bit of v = 1 then
Add ith event of smonitored to stmp

end if
end for
Add stmp to S
Increment v

end while
return S

end function

Selection of Conditions

The proposed method selects the condition based on that corresponding to the initial event in the

sequence and updates the model for the selected condition. However, to effectively use event se-

quences and learn user behaviors even from a few sequences per condition, we update not only the

model corresponding to the condition of the initial event but also models with similar conditions.

When the condition of the initial event is {croot
1 , . . . , croot

imax}, the sequence is used to update the model

for the region on which ci satisfies croot
i − αi ≤ ci ≤ croot

i + αi for some value αi, which can vary

according to index i.

Updating Tree of Event Sequences

When the home gateway observes an event sequence, nodes and links are created in the tree corre-

sponding to the selected conditions, thus including the event sequence, where the initial and final

events of the sequence are the root and leaf in that branch, respectively. Then, we increment a

counter for each link on the route corresponding to the event sequence. Algorithm 2 shows the

steps to update the tree of an event sequence. We update the tree by calling Update(root, s) where
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Figure 2.2: Generated event sequences when events A, B, and C occur in this order within T
seconds.

root is the root node for the condition. If the length of sequence s, |s| is 0, this procedure ends.

Otherwise, this procedure searches the children of the current node pos whose event is the first

event of s, s1. If a child whose event is s1 is found, we set next to the found node. Otherwise, we

add a new node and set next to the new node. Then, we update the counter for the link between

pos and next. Finally, we iteratively call Update() to update the subtree whose root is next by

using the sequence s2..|S| which is the sequence generated from s by removing s1. By repeating

this procedure, we update the tree.

We repeat this procedure to each generated sequence. As a result the count for links related

to frequent event sequences increases. Thus, we detect anomalies by using the pruned tree that

contains only the links whose counters exceed threshold nd × Lnum, where nd is an adjustment

parameter, d is the depth of the links, and Lnum is the total number of learned operations for the

target device. In this manner, we eliminate spurious events (i.e., noise) from the event sequence.

2.3.3 Detection

When the home gateway observes operation execution, it generates the corresponding event se-

quences, which are compared to learned behaviors.
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Algorithm 2 Updating the tree of each condition using generated event sequences.

Require: pos: node of the start point of update, s: event sequence
Ensure:

function UPDATE(pos, s)
if |s| = 0 then

return
end if
if pos has a child whose event is s1 then

next←child of pos whose event is s1
else

next←new node whose event is s1
add next to the list of child of pos

end if
increment counter for the link (pos, next)
Update(next, s2..|s|)

end function

Generation of Event Sequences

An executed operation generates multiple event sequences, similar to during learning, by removing

events from the sequence within a T seconds timeframe from a previous event and uses these

sequences to determine whether the operation is anomalous.

Decision-Making

We check whether an executed operation is anomalous by comparing the generated event sequences

with the learned behaviors. Algorithm 3 shows the procedure to compare an event sequence with

the learned event sequences. We compare the event sequence s with the learned event sequences

by calling Search(root, s) where root is the root node for the condition of the initial event of the

sequence s. In this procedure, we repeat searching the children until the nodes corresponding to

all events in the executed sequence are located or not. If this procedure cannot locate the nodes

corresponding to one of the events in the sequence, this procedure returns “Unmatched”. If this

procedure locates the nodes corresponding to all events and reaches a leaf node, this procedure

return “Matched”. If corresponding nodes are found for all events in the sequences, but the node

corresponding to the final event is not a leaf, we need to wait for the next event to be executed
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Algorithm 3 Comparing a new event observed sequence with learned event sequences

Require: pos: node of learned event sequences, s: observed event Sequence
Ensure: Matched, Pending, Unmatched

function SEARCH(pos, s)
if |s| = 0 and pos has no children then

return Matched
else if |s| = 0 then

return Pending
else if pos has a child whose event is s1 then

next←child of pos whose event is s1
return Search(next, s2..|s|)

else
return Unmatched

end if
end function

because the sequence matches only the subset of the learned sequence and it depends on the next

event whether the sequence completely matches the learned sequence. In this case, the procedure

return “Pending”.

This checking is performed for all generated event sequences. If the above procedure returns

“Unmatched” for all generated event sequences, the operation is classified as anomalous, whereas

if the above procedure returns “Matched” for one of the generated event sequences the operation is

classified as legitimate. If the procedure returns “Pending” for one of the generated event sequences,

we wait for the next event to be executed. If the next event does not occur within T seconds,

searching is terminated. Otherwise, we generate event sequences including the next event and

compare the resulting sequences with learned behaviors by using the same procedure described

above.

2.4 Evaluation and Results

2.4.1 Data

To obtain data for the evaluation of the proposed anomaly detection method, we constructed a

network of home IoT devices in our laboratory, as shown in Fig. 2.3. We deployed two access
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Figure 2.3: Experimental home network environment.

points; one access point is used to connect electronic devices and another access point is used to

connect smart phones. Both of the access points are connected to the gateway switch. The gateway

switch relays all packets from/to electronic devices and smart phones. By configuring the gateway

switch, we captured all packets from/to electronic devices and smart phones without loss.

In this experiment, we deployed 13 types of connectable consumer electronics listed in Ta-

ble 2.1. These home electronic devices can be connected to the Internet, are commercially avail-

able, and can be deployed in our laboratory. Before starting the experiment, we analyzed the packets

from/to the deployed electronics when we control the devices and clarified the features of the pack-

ets when devices are operated. By using the features, we detect the operations of the electronics

devices from the captured packets. In addition to the operations of the devices, we monitored the
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Table 2.1: Deployed home IoT devices in the experimental home network environment to evaluate
anomaly detection.

Device Quantity
Air purifier 2

Automatic cooker 1
Coffee maker 1
Electric fan 4

Heater 1
Humidifier 1

Lighting equipment 6
Microwave oven 1
Monitor camera 1

Recorder 4
Refrigerator 1

Robot vacuum 1
Television 4

time when users entering or leaving a room. The time when users entering or leaving a room is

obtained by monitoring the packets from smart phone of each user.

In this experimental home network environment, four students from our laboratory participated

in the chapter. We allowed the participants to use the home IoT devices freely every other month

for a total duration of 6 months. Additionally, we asked them to fill logs with information including

time of operating the deployed electronics and time of entering and leaving the laboratory. We

confirmed that these times can be matched with the monitored time of operating the electronics and

the time of entering and leaving the laboratory from the captured packets.

We also captured sensor data such as temperature, humidity, and noise. As these sensor mea-

surements remained at stable levels in the laboratory environment, we considered the time of day

as the only condition for detection in this chapter.

We used two datasets, A and B, obtained in April, June, and August, and in May, July, and

September 2017, respectively. The same participants used the IoT devices during the acquisition

periods of the datasets.

For evaluation, we used the misdetection and detection ratios.
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Misdetection Ratio

To determine the misdetection ratio, we require sufficient legitimate operations in the test data.

Given the limited number of legitimate operations we were able to collect during the study period,

we determined the misdetection ratio by using leave-one-out cross-validation [49], which divides

the dataset into multiple sets and evaluates one of them after training using the others. After ver-

ifying all the combinations from these sets, we can obtain the overall results. We separated data

in a daily timeframe. Then, we used the data of one day for testing and those of the other days

for learning legitimate behaviors. Finally, we calculated the misdetection ratio from the number of

misdetections to the total number of operations that turning on the power of each device.

Detection Ratio

The evaluation also included anomalous operations besides the observed legitimate operations. We

used a strategy similar to that for misdetection to obtain the detection ratio. We separated the dataset

by day and used the data of one day for testing and the remainder for learning.

We added 100 anomalous operations that resembled legitimate operations of turning on each

device into the test data for each day and attempted to detect them. Then, we calculated the detection

ratio from the number of detected anomalous operations over the days.

2.4.2 Compared Methods

To evaluate the effectiveness of our method we compared our method with the other methods. In

this evaluation, we compare our method with the method proposed by Ramapartuni et al. [24].

By comparing with this method, we demonstrate the effectiveness of our method. Moreover, we

also compare the methods without some part of our method. By comparing them, we evaluate the

necessity of each part of our method.

HMM Method [24]

This method learns the users’ behavior by HMM. This method uses the observations obtained by

the sensors and/or statuses of devices. This method learns the parameters of the HMM so as to
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Table 2.2: Settings of proposed and its variant methods.

Method Condition Sequence Noise removal
Proposed method ✓ ✓ ✓
Only condition ✓ —
Without condition ✓ ✓
No noise removal ✓ ✓
Only sequence ✓

suit the sequences of the observations. Then, by using the learned model, this method detects

anomalous operations if an operation whose estimated probability is less than a threshold occurs.

In this evaluation, we use the states of devices shown in Table 2.1 and the list of users currently in

the room as the observations.

Variant of our methods

Table 2.2 shows the variants of our method used in this section. The details of the variants are as

follows.

Only condition One important aspect of the proposed detection method is the use of event se-

quences and operation conditions. To investigate the effectiveness of using event sequences, we

compared the proposed method with a variant using only condition information. For this evalua-

tion, we used only the time of day as a condition, which was stored as part of the training data.

Then, we defined an anomaly when the number of operations that occur in the timeframe from

Time− α1 to Time + α1 is below n1 × Lnum, where Time is the time of day of the tested operation.

Without condition In a smart home, user behavior depends on the conditions. To investigate the

effectiveness of condition information, we compared the proposed method with a variant using only

sequence information with noise removal. This method learns all event sequences in the same way

as our method except that it does not use the condition information.

No noise removal A smart home may have multiple users and monitored event sequences may

include the operation of multiple users. Thus, noise removal when learning the event sequences

– 27 –



2.4 Evaluation and Results

Table 2.3: Evaluation parameters in each dataset to evaluate the proposed anomaly detection
method.

Dataset T α1 n1, nd(d ≧ 2)

Dataset A 540 600, 1200, . . . , 43200 0.00, 0.01, . . . , 1.00
Dataset B 370 600, 1200, . . . , 43200 0.00, 0.01, . . . , 1.00

is also one of important aspects of our method. By removing noise (i.e., spurious events), the

method learns essential event sequences. To investigate the effectiveness of noise removal, we

also compared the proposed method with its variant without removing noise. Anomaly detection

proceeded in the same manner for both compared methods. Specifically, when events A, B, and

C are monitored, the comparison variant only learns the sequence A, B, C, whereas the proposed

method learns the sequences generated by removing noise shown in Fig. 2.2.

Only sequence This method simply learns user behaviors based on only sequences of events

without noise removal method similar to the existing methods that learn user behaviors. By com-

paring our method with this method, we demonstrate the advantages of our method over the existing

methods.

2.4.3 Evaluation Parameters

The proposed method has three types of parameters, T , α1, n1, and nd. We set T according to the

procedure in our previous work [31]. We adjusted the other parameters and evaluated the method

to obtain the misdetection and detection ratios, whose relations were depicted as receiver operating

characteristic curves. Table 2.3 lists all the evaluation parameters for this chapter.

2.4.4 Results

Fig. 2.4 and 2.5 show the receiver operating characteristic curves of the proposed method and five

compared methods, where the detection ratio is plotted according to the misdetection ratio. The

proposed method detects more than 90% of attacks, whereas misdetection reaches only 10% of the

legitimate operations for most devices.
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Figure 2.4: Receiver operating characteristic curves of detection using the proposed method and
comparison variants in dataset A.

The detection ratio of the variant using only the condition (i.e., time of day) is much lower than

that of the proposed method. This confirms that using the event sequences effectively improves

detection.

The detection ratio of the variant without noise removal is much lower than that of our method.

Hence, noise removal is necessary to learn essential event sequences. For example, we observed the

following sequence: user 2 enters the room, opens the refrigerator, and operates electric fan B, but

the refrigerator was operated by another user. Hence, the event sequence was not essential, which
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Figure 2.5: Receiver operating characteristic curves of detection using the proposed method and
comparison variants in dataset B.

corresponded to user 2 entering the room and operating electric fan B, leading to a misdetection for

the legitimate fan operation. In addition, the detection ratio of the HMM method is much lower than

that of our method. This is because, the HMM method does not consider that multiple users are in

the home. In the case that multiple users are in the home, the number of states required to model

the home is significantly large. On the other hand, the number of observed operations on home IoT

devices is limited. As a result, we cannot estimate the proper parameters of the HMM due to the

lack of the observations.

The proposed method achieved similar detection ratios to the method using the sequence in-

formation with noise removal except for the results of coffee makers. That is, the effectiveness of

considering condition information was not large. This is because we used only time of day to define

the conditions. If we use the other sensors to define the conditions, the difference may become

larger.

Fig. 2.4 and 2.5 show that attacks in some devices are not accurately detected by the proposed
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method. For example, the detection ratio of attacks for the coffee maker of the proposed method is

similar to that of its variant using only the time condition. Moreover, the proposed method cannot

take a misdetection ratio for TVs A and B in dataset A and electric fan B and TV A in dataset B

below 10%.

To investigate the difference between devices whose attacks are accurately detected and those

whose attacks cannot be accurately detected, we further investigated the usage of these devices.

Fig. 2.6 shows whether the operation of each device is included in event sequences, including

multiple events. Specifically, we plot the distribution of time between an operation of each device

and its nearest event. Next, we determine the frequency of the monitored event sequences. We first

stored the event sequences in the training dataset. Then, we compared the event sequences in the

test dataset with the stored event sequences and generated the event sequences per operation in the

test dataset by removing noise, as explained in section 2.3.2. Finally, we determined the number of

stored event sequences matching each generated event sequence and obtained the maximum count

for each operation in the test dataset. Fig. 2.7 shows the distribution of the number of matching

event sequences.

From the figures above, we identified the devices whose attacks cannot be accurately detected.

Figure 2.6 clarifies the devices that tend to be used alone. The elapsed time between an operation

of the coffee maker and another event is large, compared with those of other devices. 44% of coffee

maker’s operations in dataset A and 62% of those in dataset B have no previous or next events within

T seconds. For devices that tend to be used alone, the event sequence approach does not function

properly. Consequently, the detection ratio of the proposed method for such devices is similar to that

of the variant using only the condition. Due to the similar reason, the detection ratio of attacks for

the electronic fan B in dataset B becomes also similar to that of the method using only the condition

when the parameters set so as to make the misdetection ratio smaller than 0.28. Fig. 2.6 shows

more than 25% of the operations of the electronic fan B in dataset B have no previous or next events

within T seconds. As a result, parameters in our method are set to avoid misdetection of single

operations if the misdetection ratio should be less than 0.28. One approach to prevent anomalous

operations in such devices is to deploy sensors to thoroughly monitor their operation. Another

approach to improve the detection accuracy of legitimate operations is to use more information to
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Figure 2.6: Distribution of time between an operation of each device and its nearest event.

define the conditions.

Another kind of devices that cannot be detected accurately includes TVs A and B in dataset A

and electric fan B and TV A in dataset B. Our method detects more than 90% of the attacks for

these devices but cannot make the misdetection ratio less than 10%. This is caused by rare event

sequences. Fig. 2.7 shows that some event sequences generated for such devices do not match any

previously stored event sequences. Consequently, such rare event sequences are detected. Storing

more data can avoid misdetection in such devices, but only a limited number of operations are

monitored in each home. Hence, using data from several homes can help provide more training

data.

2.4.5 Discussion

Our method can be applied to a system like an intrusion prevention system. This system moni-

tors the commands to home IoT devices and detects anomalous operations by our method. If an

anomalous operation is detected, the system avoids anomalous operations by dropping the packets

related to the operations. In this system, the detection ratio is more important than the misdetection

ratio, because if an attack is not detected, the home IoT devices operated by an attacker may cause

immediate and personal harm to users. If a legitimate operation by a user is mistakenly detected

as an anomalous operation, the command from the user is dropped. However, we can implement
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Figure 2.7: Frequency of matching behaviors.

a mechanism to enable users to operate the IoT devices even in the case of misdetections. For

example, we can send notification of the detection to the users’ smartphone and allow operations

temporally after authentication by different factors. Therefore, the parameters should be set so as

to achieve high detection ratios.

In the evaluation, if we set parameters so as to detect more than 99% of anomalous opera-

tions, our method misdetects about 6 legitimate operations per month except for the operations of

the coffee maker. However, the operations of the coffee maker are misdetected many times. As

discussed in Section 2.4, it is difficult to distinguish the legitimate operations of the coffee maker

from anomalous operations, because most of the operations of the coffee makers are single opera-

tions. As discussed above, the impact of the misdetection is smaller than the attacks that cannot be

detected. However, the frequent misdetection makes users uncomfortable. Therefore, we need to

improve the accuracy of the detection, which is one of our future work.

We should also discuss the possibility that attackers change their attacks so as to avoid detection

by our method. The attackers might mimic the behaviors of legitimate users. In this case, our

method cannot detect the command sent by the attackers. To mimic the behavior of legitimate
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users, the attackers require the knowledge of the behavior of legitimate users and the ability to

control the devices included in the legitimate event sequence. Especially if many users use a device

in the same manner, the attackers may easily infer the behavior of legitimate users. To avoid such

attacks, we need to (1) protect learned user behaviors so that attackers cannot obtain the information,

(2) make the model complicated so that the attacker cannot infer the behavior by adding more

sensors, including more events and so on, and (3) include the devices that are difficult to be operated

by the attackers in the model. The robust method against such attacks is also one of our future work.

Another point to be discussed is the number of users in a home. Our method considers the

case that multiple users in a home, and avoids misdetection by learning essential behaviors of all

users. By doing so, our method avoids misdetections even if many users are in a home and behave

differently from each other. However, as the number of users who behave differently from each

other increases, more event sequences are stored as legitimate sequences. Even if a large number

of event sequences are stored, it is difficult for attackers to operate the home IoT devices so that the

event sequence including the attack matches the learned event sequences, if the model of the event

sequence is complicated enough to avoid the inference of the legitimate behavior.

2.5 Conclusion

We validate the effectiveness of our method for detecting anomalous operations of home IoT devices

by comparing it with an existing method and some of its variants. The proposed method can learn

sequences of user behaviors according to conditions such as time of day, temperature, and humidity.

Then, when an operation command arrives, the method compares the current sequence with learned

sequences for the current condition. If the sequences do not match, the operation is considered

as anomalous. We constructed a network of home IoT devices in our laboratory and allowed four

subjects to operate the devices for 3 months. We recorded the times at which the devices were

operated along with sensor data. Using these data, we evaluated the detection and misdetection rates

of the proposed method and its variants considering only the condition or without removing spurious

events. The proposed method can detect over 90% of anomalous operations with less than 10% of

misdetections if the events related to legitimate operations can be monitored. Therefore, we found
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that the most effective way to learn user behaviors in homes for the detection of anomalous operation

is by learning event sequences and user habits when entering and leaving rooms. In addition, noise

(i.e., spurious event) removal is necessary for improved detection. When single operations that do

not correspond to observed sequences occur, the proposed method achieves a higher accuracy by

learning sequences executed multiple times than by using only condition information.

However, the proposed detection method can produce a high rate of misdetections, especially

when single or rare operations occur. In fact, as the method achieves accuracy by comparing event

sequences, the anomaly detection of isolated and rare events depends only on the operation condi-

tion. To improve the detection accuracy for such operations, we can deploy sensors that monitor

events related to these operations. Alternatively, we can use more information to define conditions.

In our evaluation, we used only the time of day to define conditions. However, defining more rep-

resentative conditions to distinguish legitimate operations can lead to improved detection accuracy.

We will explore methods to improve legitimate single operation detection in future research.

Mitigating the misdetection of rare legitimate operations is another challenge, as we cannot

obtain sufficient training data to accurately identify such rare operations in each home. To obtain

more training data, we will use data from several homes in future work. However, some problems

remain to be solved before achieving this type of data collection. For instance, different homes

and environments and varying user behaviors may render the collected data useless. Thus, we need

to gather data from several homes whose users exhibit similar behaviors. Moreover, as privacy is

a major concern, we should use anonymized data from different homes to preserve information

privacy.
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Chapter 3

Improving Anomaly Detection Method

by Estimating In-home Situation

3.1 Introduction

Smart homes with multiple internet-connected home appliances have become widespread as part of

the internet of things (IoT). More than 12 billion IoT devices were deployed in 2020, and it is esti-

mated that the number of IoT appliances now surpasses the number of non-IoT versions [50]. Users

can connect to their IoT devices (e.g., washing machines, home sensors, and cooking stoves) via

smartphones and smartwatches. The growth of this trend is expected to continue indefinitely [50].

However, with this growth, the risk of cyberattacks targeting home IoT devices increases [2].

A major type of cyberattack on home IoT devices is the distributed denial-of-service attack, which

affects multiple IoT devices simultaneously based on the devices’ inherent vulnerabilities [5, 6].

Fortunately, countermeasures exist [9–11].

Notably, it is very difficult to maintain the boundary security of IoT devices [7] because they

employ many different communication protocols and connect to many different platforms. More-

over, proper boundary security would be exceedingly expensive [8]. Therefore, anomaly detection

systems that comprehensively monitor a smart home or a smart factory to detect abnormal (out-

of-the-ordinary) IoT behaviors (e.g., signals, operating status, and error reporting) [12, 13, 51] are
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needed. For example, Sivanathan et al. proposed a monitoring system that analyzed legitimate be-

haviors of IoT devices by classifying their traffic flows [51]. Distributed denial-of-service attacks

on smart homes have been detected by comparing suspicious traffic with usual behaviors based on

home occupancy [12, 13].

Notably, cyberattacks on IoT devices create significant additional human risks [14]. In particu-

lar, attacks that take control of home IoT devices are considered dangerous not only in cyberspace

but also in the physical world. For example, simultaneous attacks on high-power IoT devices can

suddenly increase energy demands and lead to power outages [16]. As a discrete example, it has

also been shown that in-home IoT televisions can be hijacked from the internet [15]; similar attacks

have been shown to affect smart phones and smart watches [52].

To address attacks on home IoT devices leading to anomalous operations, we previously pro-

posed a detection method [32] that modeled the behavior of users from sequences of events in their

homes to assess normal behaviors. This sequence-based method trained its model by storing event

sequences based on the time of day so that deviations from operations could be detected. However,

this sequence-based method was too simplistic, and the home state was not studied in detail; hence,

it was noted that an attacker could optimize attacks by studying the time-of-day behaviors.

Subsequently, we proposed another anomaly detection method [34] that modeled home states by

estimating the sensed values and operating statuses of IoT devices. That estimation-based method

calculated the operating probability of the IoT device and assessed anomalies based on a baseline

threshold. The estimation-based method achieved a better detection accuracy than a method to

detect anomalous operation based on only the time of day information. As the estimation was

based on the current home situation, it was difficult for attackers to exploit the system because they

could not easily estimate the timing when an attack would be likely to succeed. However, this

estimation-based method could not grasp user activities in detail over short periods.

Therefore, in this chapter, we propose a detection method that models user behavior by com-

bining state estimation and behavior sequences of in-home activities performed over short periods.

Hence, our sequence-based method can grasp the short-term activities of users in detail, whereas the

estimation-based method grasps the long-term transitions of the home state. The proposed method
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stores the sequences in the estimated home states. Then, the proposed method calculates the oc-

currence probabilities of sequences, including detection target operations, and it detects anomalous

operations when the probability is lower than a threshold value.

We simulated the proposed method and compared the results to those of the previous sequence-

based and estimation-based methods using datasets of behaviors and sensor values collected from

real homes.

The remainder of this article is organized as follows. We describe anomaly detection methods

for operations of home IoT devices in Section 3.2. The proposed method, including the estimation

of the in-home situation, storage of behavior sequences, and their combinations, is described in

Section 3.3. Then, we report on the evaluation of the proposed method and the corresponding

results in Section 3.4. Finally, we conclude the chapter and discuss possible avenues for future

research in Section 3.5.

3.2 Related Works

Here, we explain detection methods of anomalous operations that learn user behaviors based on

their usage of home IoT devices.

Ramapatruni et al. proposed a method to detect anomalous operations. Their method used hid-

den Markov modeling (HMM) to learn a single user’s normal activities. HMM parameters were then

trained with information obtained from IoT sensors. Then, the trained HMM detected anomalous

operations when the probability of that operation occurring was lower than a baseline threshold.

The accuracy of this method was demonstrated using a dataset collected from a smart-home envi-

ronment. The authors collected detailed activity information on the user entering and leaving the

home and the operations of the consumer electronics therein. Additionally, IoT activities from the

living room, bedroom, bathroom, and closet devices were recorded. This method learned the be-

haviors of a single user in detail. However, the method could not be applied to a home containing

multiple users [24]; it was examined in our previous work [32]. It is difficult to deploy this method

in real homes because most involve multiple users, which greatly increases the difficulty. In con-

trast, our proposed method models the situation while focusing on the states of the home instead
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of the states of the user. Furthermore, the proposed method uses information that can be easily

collected from commercially available IoT sensors and home gateways. Therefore, our proposed

method can be applied to real home environments.

We previously proposed a method to detect anomalous operations even in cases of multiple

users by utilizing their sequence of behaviors [32]. This sequence-based method detected anoma-

lous operations at the home gateway, which was connected to all home IoT devices, sensors, and

smartphones. The home gateway collected two types of information: the state information of the op-

erations of devices (e.g., time of day, room temperature, and humidity) and the presence or absence

of users in the home based on the statuses of their smartphones. The home gateway subsequently

classified the states of the home by constructing a table of sensed values, storing the sequences of

operations of IoT devices and data on the entry and exit of users in each cell. Finally, the home

gateway judged whether legitimate or anomalous operations occurred by comparing sequences of

current operations to the stored sequences of the current state. This sequence-based method handled

cases of multiple users by constructing their sequences from the monitored operations. However,

the sequence-based method used only the time-of-day information in the table to classify the states.

Therefore, an attacker could estimate the optimal attack times based on the time of day. Owing

to the large impact of sequence information utilization, the sequence-based method achieved high

accuracy. However, the detailed analysis of state learning was deficient.

Hence, we proposed another anomaly detection method that estimated the states of a home

based on the sensed values and operating statuses of IoT devices. This estimation-based method

calculated the operating probability of each state and detected anomalies when the probability was

low. The study compared this estimation-based method to one that used only time-of-day informa-

tion, confirming that the estimation-based method was more accurate [34]. Therefore, an attacker

could not exploit the system based only on time-of-day information. However, the method could not

learn the short-term behavior patterns of users. Additionally, some details needed to be corrected,

owing to the inadequate observed data.

In this chapter, we propose a more accurate detection method that combines the estimation-

and sequence-based methods. The proposed method determines the current state in the home via

– 40 –



Chapter 3. Improving Anomaly Detection by Estimating In-home Situations

estimation and the state transitions by learning the behavior patterns of users. Furthermore, we im-

prove the estimation-based method [34] to achieve higher accuracy by fixing details and correcting

the observed data.

3.3 Anomaly Detection Method based on In-home Situation and Be-

havior Sequence

We propose a new model that learns the behaviors of IoT users in a home to detect anomalous

device operations as a safeguard against cyberattacks. The model learns sequences of user behaviors

alongside corresponding states of the home. When an operation does not match the trained model,

the model flags the operation as anomalous.

3.3.1 Models used for detection

The proposed method estimates home states and stores behavior sequences collected over time.

First, it defines a timeslot scheme and updates the home status in each slot throughout the day.

During training, the model calculates the state transition probability, a, and the operation proba-

bility, b, using the labeled home state as the training data. The method then estimates the home

state by calculating the state probability of the training data using a and b. Following the calcula-

tion, the operation sequences of the home IoT devices are stored according to the estimated home

state. High-probability sequences are considered legitimate behaviors. The overview of the learn-

ing model is described in Fig. 3.1. After storing the sequence, the proposed method calculates the

probability b′ of each behavior sequence that occurs in real time.

Next, we describe the components of the proposed model.

State of the home

The proposed method labels and estimates the current home state, su,d, which is combined with the

activity states of the users, u, and the usage states of the devices, d, obtained using the sensor values

of IoT operations.
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State State State 

Opening 

refrigerator

Using cooking 

stove

State model of the home Operation sequence

Figure 3.1: Overview of the training model of the proposed method. According to the estimated
home state “State s3”, a cooking stove is used after opening a refrigerator.

The activity state of users, u, reflects the situation of users in the home (e.g., all users are away,

at least one user is home and active, or all users are sleeping). Variable u is thus defined several ways

according to the home environment and the number and attributes of users. For example, “active,”

“out,” “sleeping,” etc. can be considered; thus, we can set u as u ∈ {active, out, sleep, . . . }.

There are four types of usage states, d, related to how home IoT devices are used. The state

prior to use is before, the state after use is after, the state during use is use, and others are none.

Thus, the device state, d, is defined as d ∈ {use, before, after, none}.

Furthermore, the proposed method calculates the state transition probability a to forecast the

changes in the home state over time. Because user behaviors differ greatly during day and night,

the state transition probability, a, in the home varies depending on the time of day. Therefore, in our

model, the state transition probabilities are defined for each timeslot of the day. The transition prob-

ability ak(i, j) from state i to state j in the k-th timeslot of each day is defined by Equation (3.1),

where sk is the state in the k-th timeslot.

ak(i, j) = P (sk = j|sk−1 = i). (3.1)

Additionally, the proposed method calculates the operation probability, b, to reflect the activity

of the users to the home states as devices are operated. The operation probability b differs for each

state i and for each operation x. Therefore, in this model, the operation probabilities are defined for

each state. The operation probability b(i, x) of the operation x in state i is defined by the following
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Equation (3.2):

b(i, x) = P (x|s = i). (3.2)

Sequence of events in the home

The event sequences in the home are stored and used for detection. The information is obtained

from the home network via IoT operation packets, including information of the connection and

disconnection of smartphones.

As with the sequence-based method, an event sequence is defined as a series of events performed

within Tseq s, where Tseq is a parameter determining whether or not events are considered as a

sequence. We consider actions A and B to be a series if they satisfy Equation (3.3), where timeA

and timeB are the times when actions A and B are performed and Diff(timeA, timeB) is a function

that obtains differences in seconds between timeA and timeB .

Diff(timeA, timeB) ≤ Tseq. (3.3)

Furthermore, after storing the sequences in the estimated states, the proposed method calculates

the behavior sequence probability b′ for detection. When the proposed method identifies an event

sequence including the operations of the detection target device, the probability of occurrence of se-

quences is calculated by multiplying the state probabilities by the behavior sequence probability b′.

The behavior sequence probability b′(i, y) in state i of the sequences y is defined by Equation (3.4).

b′(i, y) = P (y|s′ = i), (3.4)

where s′ = i means that the estimated state is i.

3.3.2 Training the model

The proposed method trains the model using data collected from the home divided into timeslots.

We assign the observed values and labels of the home states su,d to the timeslots. Then, the proposed

method calculates the state transition probability, ak(i, j), according to the labeled states, su,d. The
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Figure 3.2: Labeling rule of device state d, where TX is 3 and TY is 2.

proposed method also calculates the operation probability b(i, x) that the device is operated in each

state. Next, the proposed method calculates the state probability α(s) with a and b. The proposed

method generates multiple sequences assuming that the homes have multiple users. Based on the

calculated state probability α(s) and the generated sequences, event sequences are stored for each

estimated home state. Then, the proposed method calculates the operation probability b′(i, y) in

each estimated state. The rest of this subsection explains the details.

Labeling the training dataset

To create the training data, we divided the observed data into multiple parts using timeslots and

labeled the states accordingly. The state s is set by combining the activity state of the users u and

the usage state of the device d as defined.

The state of the users u is set using IoT sensor data according to predefined rules. Because these

rules vary depending on the target device, the type of IoT sensors, and the number of users, we set

the labeling rule according to the scenario.

The device state d is determined based on the time the target device is operated. As shown in

Fig. 3.2, we define the four states of the target device d as follows. use indicates that the device is in

use, and before indicates that the device will be used within TX timeslots. Similarly, after indicates

that the device has been used within TY timeslots, while none denotes other states. Variables TX

and TY are parameters.

Furthermore, to change the state for each device operation, we update them as observed. An

example of the learning data is described in Table 3.1.
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Table 3.1: Learning data samples include the observed information, the labeled states, and variable
characters. The labels change even in the same timeslot according to the operations of the devices.
In this table, we set the length of the timeslot to 1 min. As a sample rule for the state of users u,
we set sleep when the CO2 value is higher than 35 and the noise value is lower than 1, 500. As a
sample rule of the device state d, we set TX as 1 and TY as 1.

Date information Observed information Labeled states

ID Date

k-th timeslot
of the day

/ t-th timeslot
of the data

CO2 Noise Operation
Users
u

Device
d

Home
su,d

4350
2020/1/3
23:56:00

1438/4318 34 1520 — active none sactive,none

4351
2020/1/3
23:57:00

1439/4319 34 1520 — active before sactive,before

4352
2020/1/3
23:58:00

1440/4320 34 1520 — active before sactive,before

4353
2020/1/3
23:58:20

1440/4320 34 1520
Refrigerator

Open
active before sactive,before

4354
2020/1/3
23:58:35

1440/4320 34 1520
Cooking oven

On
active using sactive,cooking

4355
2020/1/3
23:59:00

1/4321 34 1520 — active after sactive,after

4356
2020/1/4
00:00:00

2/4322 41 1480 — sleep none ssleep,none

Calculating state transition probability and the operation probability

Based on the labeled home states for changing timeslots, we calculate state transition probabili-

ties ak(i, j) from state i to state j at the k-th timeslot during the day. This is used to calculate the

probability αt(s) that the home state s is in timeslot t. Although the time of the state transition

varies daily, similar state transitions occur in similar timeslots. Therefore, ak(i, j) is calculated by

Equation (3.5) by considering the data from the k−TZ-th timeslot to the k+TZ-th timeslot of each

day.
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ak(i, j) =



k+TZ∑
m=k−TZ

Nm+1,j

k+TZ∑
m=k−TZ

Nm,i

 k+TZ∑
m=k−TZ

Nm,i ̸= 0



0

 k+TZ∑
m=k−TZ

Nm,i = 0

 .

(3.5)

The variable Nm,i represents the number of timeslots in the training data at the m-th timeslot

of the day, the state of which is labeled as i. TZ denotes the number of similar timeslots around the

target. Parameter TZ has a different value for each k; thus, we set the minimum value that satisfies∑k+TZ
m=k−TZ

Nm,i ̸= 0 for all states i. Even if
∑k+Tmax

Z
m=k−Tmax

Z
Nm,i ̸= 0 is not satisfied for all states i,

where Tmax
Z is the maximum value for TZ , we set TZ as Tmax

Z .

We next explain how to calculate the operation probability b which is used to correct the state

probability α. Operation probability b(i, x) denotes the probability of the number of the opera-

tions x of the IoT device in state i. b(i, x) is calculated using Equation (3.6):

b(i, x) =



∑
k N

(x)
k,i∑

k

Nk,i

∑
k

Nk,i ̸= 0

0
∑
k

Nk,i = 0.

(3.6)

Note that N (x)
k,i represents the number of occurrences of operation x in the state i in the k th

timeslot of the day. If there are no operations x in the training data, b(i, x) is set to 1 for all states i

to avoid incorrect transitions.

Calculating state probability

The proposed method calculates the state probability α for each timeslot of the training data by

the calculated a and b. Then, the proposed method stores the sequences of home events using

the training data by the estimated home states because the proposed method stores sequences not

only in the current home state but also in similar states. To determine the similar states, we use the
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calculated state probability. By storing sequences in the states that satisfy the conditional probability

expression, we can store sequences in the similar states.

When the timeslot changes, the state transitions from the state of the previous timeslot using the

learned state transition probability, a. First, the proposed method calculates α̂t(i), the probability

of state i when the timeslot is changed to t, using the learned state transition probability ak(i, j).

α̂T (t)(i) =
∑
j

aK(t)(j, i)α(T (t)−∆T )(j). (3.7)

Variable K(t) is a function that returns the corresponding K(t)-th timeslot of the day with

timeslot t; T (t) is a function that returns the time corresponding to timeslot t, and ∆T indicates a

very small time. By considering the case that, in the previous timeslot, the state probability, α, is

updated by using the operation probability, b, Equation (3.7) uses the state probability at T (t)−∆T .

Then, the proposed method calculates α based on α̂ so that the sum of the state probabilities of each

state is 1 using Equation (3.8):

αT (t)(i) =
α̂T (t)(i)∑
j α̂T (t)(j)

. (3.8)

When we observe an operation x of a home IoT device, the proposed method updates the state

probability α using the operation probability b(i, x). First, the proposed method calculates α̂T (x)(i)

according to Equation (3.9).

α̂T (x)(i) = b(i, x)α(T (x)−∆T )(i), (3.9)

where T (x) represents the time when the proposed method observed operation x. Then, the

proposed method calculates the state probability, α, after the operation of the home IoT device

using Equation (3.8).

Storing sequences

Based on the calculated state probability α, the proposed method stores the behavior sequences to

estimated states. First, we must generate the sequences based on the observed operations and the
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users entering and leaving. This will account for multiple users operating devices within Tseq s

of each other. When the users operate devices from their respective smartphones, we can identify

correct behavior sequences by classifying those who operated which home IoT device based on the

IP address of the operating smartphones. There are many cases where it is impossible to distinguish

which user performs each operation. Thus, as with the sequence-based method [32], we generate

multiple types of sequences from a simple series of events by removing some of them for training.

For example, when actions A, B, and C are performed within Tseq s, equations Diff(timeA, timeB) ≤

Tseq, Diff(timeA, timeC) ≤ Tseq, and Diff(timeB, timeC) ≤ Tseq are satisfied. timeA, timeB , and

timeC represent the times when actions A, B, and C are performed, respectively. In this example

case, we generate and use all seven types of event sequences: A-only, B-only, C-only, A-B, B-C,

A-C, and A-B-C. If actions A and B are performed by the same user, and action C is performed by

another, the correct event sequences, A-B and C-only, are learned. However, incorrect sequences,

such as A-only, B-only, A-C, B-C, and A-B-C are also stored. If sequences A-B and C-only are

frequently performed by users, the correct sequences will be stored multiple times. Therefore, by

using only the sequences that are greater than or equal to a given threshold, we can identify frequent

behaviors.

After generating the sequences, event sequence y, which is related to the operation of the de-

tection target home IoT device, is stored for each state in which the sequences are performed. We

can determine the states for which the proposed method stores the sequences from the calculated

probability, αt(i), in state i at timeslot t. We select either Equation (3.10) or (3.11) and store the

sequences into all states satisfying the selected one.

α(T (y)−∆T )(i) ≤ Lα, (3.10)

Rank(α(T (y)−∆T )(i)) ≤ LRank. (3.11)

Note that T (y) represents the time during which sequence y occurs. Here, Rank(α(T (y)−∆T )(i))

is a function that returns the number from the top of the state probability of i of all states, such as

1st, 2nd, etc. Lα and LRank are the parameters. When there are no states satisfying the selected
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equation, the proposed method does not store the sequence.

After storing the sequences, we calculate the behavior sequence probability b′(i, y) in estimated

state i of the sequence y for detection. We can then calculate b′ using Equation (3.12):

b′(i, y) =


M(i, y)

N ′
i

N ′
i ̸= 0

0 N ′
i = 0,

(3.12)

where M(i, y) is a function that returns the occurrence times of sequence y in the estimated

state i from the training data, and N ′
i is a function that outputs the number of timeslots of the

training data estimated as state i.

3.3.3 Detection using the learned model

After training the model, when an event sequence, y, includes operations of the detection target

device, the proposed method calculates the state probability α(T (y)−∆T )(i) using Equations (3.7),

(3.8), and (3.9). The proposed method calculates the probability of occurrence δ(T (y)−∆T )(y) of

the sequence y by multiplying the state probabilities, α(T (y)−∆T )(i), by the behavior sequence

probability, b′(i, y), as described in Equation (3.13):

δ(T (y)−∆T )(y) =
∑
i

b′(i, y)α(T (y)−∆T )(i). (3.13)

When the calculated occurrence probability, δ, satisfies Equation (3.14), the proposed method

detects the operation as an anomalous operation.

δ(T (y)−∆T )(y) < nL(y). (3.14)

Function L(y) returns the length of sequence y; the length of the sequence reflects the number

of events comprising the sequence. nL(y) is a parameter of the sequence constructed by L(y) events.

We set multiple thresholds for each length of the sequence because long sequences are rare.
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3.4 Evaluation

To evaluate the proposed method, we simulated anomaly detection using data from two real homes.

We evaluated the effectiveness of each part by comparing the detection results to the results of

alternative methods.

In this evaluation, we chose the operations of a cooking stove as the detection target device. We

prepared the proposed method according to the target device and the home environments.

3.4.1 Evaluation environment

Here, we describe the details of the detection simulation of the proposed and compared methods.

First, we explain how the datasets were collected. Then, we set the proposed anomaly detection

method suitable for each home by defining the states of the home and the labeling rules. Thereafter,

we describe the metrics of the comparison and present the results.

Data collection in real homes

We collected data of user behaviors and observed the values of the installed home IoT sensors from

two real houses, A and B1. Home A had two users who operated devices, and home B had one. We

used monthly data of each home as one case for the simulation, resulting in 20 cases. We describe

the case using the data of home A as A1, A2, . . . , A10 and home B as B1, B2, . . . , B10.

First, we collected the date information of events, including operations of consumer electronics

and user entry/exit statuses, as shown in Table 3.2. Because each home included home appliances

that were not connected to the internet, we collected their information by asking users to record their

device use times. For the simulation, we assumed that each home appliance was an IoT appliance,

and the recorded operation logs were used for the purposes described. Logs were compiled as

buttons were pressed on the home appliances and when users entered and left the home. Because

there were several omissions in the collected logs, we corrected them via labeling rules, as described

in Section 3.4.1.

1The collection experiment of data on the in-home activities of users and sensor values in real homes received approval
from the Research Ethics Committee of the Graduate School of Information Science and Technology, Osaka University.
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Table 3.2: Collected operations and events by our experimental system deployed in real homes.

Device or event Action
User position Entry / Exit
Room light On / Off
Air conditioner Cooling / Heating / Turning up /

Turning down / Off
Electric fan On / Off
Heater On / Off
Washing machine On
Refrigerator Opening
TV On / Off
Cooking stove On / Off
Microwave On
Toaster oven On
Rice cooker On

Table 3.3: Collected sensor data from installed IoT sensors in real homes.

Sensor data Range of sensor values
Room temperature 0 - 50°C

Humidity 0 - 100%
Atmosphere 260 - 1,260 mbar

CO2 0 - 5,000 ppm
Noise 30 - 130 dB

Then, we installed IoT sensors in each home and collected the sensor values shown in Table 3.3

in 5 min intervals.

Settings of anomaly detection method

To simulate anomaly detection for a cooking stove, we set up the state of the home and labeling

rules. For this evaluation, the timeslot was assumed to be 1 min for capturing state transitions.

Setting home states We set the usage state of the devices d based on cooking states: d ∈

{use, before, after, none} because cooking stoves are frequently used during cooking. State use

refers to the cooking state, before and after indicate times before and after cooking, respectively,

and none implies other states. Note that to grasp the cooking state exactly, we also used operations
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of the cooking appliances other than the cooking stove to label the states d. Specifically, when the

cooking stove, microwave, toaster oven, or rice cooker was operated, we set d as use; the details are

described in Section 3.4.1.

We set the activity state of the users as u ∈ {active, out, sleep}. Hence, at least one person was

active, everyone in the home was out, or everyone was sleeping, respectively.

We set the home states su,d by combining u and d. However, states sout,use and ssleep,use did not

exist because users cannot cook while they are sleeping or out of the home. Hence, we set 10 states

excluding the above for detection.

Labeling rule Using the defined states from Section 3.4.1, we labeled each timeslot of the training

data. In consideration of privacy concerns, we labeled the home states from the observed informa-

tion taken from the IoT devices and sensors. In particular, because there were several omissions in

the collected logs, we corrected them based on the rules.

The activity states of the users u are labeled as follows.

out: The timeslots that the home was empty were tabulated by counting the number of users in

the home based on their entry and exit time information. However, when we observed an

operation of a home IoT device, we changed the number of users in the home to 1 and set

the states of the timeslot after the time corresponding to the change. This is because the logs

included some omissions of entries and exits. In this case, we excluded logs of the day from

the calculation of a and b.

sleep: The timeslots at night containing noise values were lower than a threshold, and the CO2 con-

centration value was higher than a threshold; the installed IoT sensors in each home sensed

the values. We defined the thresholds by the sleeping time that we asked of the subjects, in-

cluding the noise and CO2 values of the sleeping time. Concretely, we defined the night from

22:00 to 9:59, the noise threshold as 35 dB, and the CO2 threshold as 1,500 ppm in home A

and 400 ppm in home B. When two sleep timeslots existed within 90 min, we labeled the

timeslots between the two as sleep, because the indicators were temporarily lowered during
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sleep. When we observed an operation in sleep states, we corrected the states to active be-

cause more than one user was awake and active. Concretely, when a user operated devices

in the time frame of 22:00 to 4:59, we changed the user states to active before 5 h from the

time of operation; when a user operated devices at the time from 5:00 to 9:59, we changed

the user states to active after 4 h from the timeslot during which the device was operated.

active: This refers to states other than out and sleep.

Then, the usage states of device d (i.e., cooking or not) in this evaluation are labeled as follows.

use: This refers to timeslots in which a user operates a cooking appliance, including the cooking

stove, microwave, toaster oven, and rice cooker. Because the cooking continues for a certain

time, we set the TC timeslots after the operating cooking appliances as use, where the TC is

a parameter of cooking time. We did not include the refrigerator in the cooking appliances

because it is used frequently even when users are not cooking. Furthermore, when there are

two use states within 15 min, we labeled the timeslots between the two as use.

before: This indicates the TX timeslots before use.

after: This indicates the TY timeslots after use.

none: This indicates states other than the use, before, and after.

We labeled the home states, su,d, by combining the labeled states of the users u and those of the

devices d.

Metrics

We evaluated the proposed method using two metrics: detection and misdetection ratios. For the

simulation, we mixed 100 anomalous operations of the cooking stove at random times during the

day. Furthermore, we considered the actual operations of the home IoT devices originally included

in the recorded log as legitimate operations. The detection ratio and misdetection ratio was calcu-

lated using Equation (3.15) and (3.16).
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Detection ratio =
TP

TP + FN
(3.15)

Here, TP is the number of true positives of detected anomalous operations; FN is the number of

false negatives; and TP + FN equals 100Ndays, where Ndays indicates the number of days included

in the detection data.

Misdetection ratio =
FP

FP + TN.
(3.16)

Here, the FP is the number of false positives that are legitimate operations the methods could not

determine as legitimate; the TN is the number of true negatives.

For the evaluation, we used cross-validation. First, we trained the models with data for one

month excluding one day. Then, we simulated the detection of the trained model using the excluded

data. By changing the excluding day and summarizing the detection results, we obtained a detection

result from the monthly data.

We changed the parameter values in each combination respectively and collected the combi-

nations of detection and misdetection ratios. We describe the detection results as figures with the

misdetection ratio on the horizontal axis and the detection ratio on the vertical axis. Thus, we only

plotted the results having the highest values on the vertical axis among the results that were less

than or equal to the values on the horizontal axis.

Note that when the operation of the target device occurred, a decision was made based on the

sequence that was generated up to and just before the operation. Hence, the operations subsequent

to the target operation were not used for the detection of the target operation.

Compared methods

To evaluate the effectiveness of the proposed method, we compared it to the other methods. Thus,

we demonstrated the improvements gained by combining the sequence information. By comparing

with the sequence-based method, we confirmed the effectiveness of estimation of the in-home sit-

uation. The differences between the proposed method and the compared methods are described in
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Table 3.4: Differences between the proposed and compared methods.

Method State Sequence
Proposed Estimating situation ✓

Estimation-based [34] Estimating situation
Sequence-based [32] Time of day ✓

Table 3.4.

Estimation-based anomaly detection method We compared our new method to the estimation-

based anomaly detection method. This method estimates the states of the home based on the sensed

values and operating statuses of IoT devices. As with the proposed method, the estimation-based

method calculated the b and α using Equations (3.5-3.9). We calculated the probability that the

operation was legitimate by multiplying b to α and by summarizing them. If the value was higher

than a threshold θ the equation was regarded as legitimate, as shown in Equation 3.17.

∑
i

αT (xc−∆T )(i)b(i, xc) > θ, (3.17)

where xc denotes the operation of the cooking stove.

Sequence-based anomaly detection method We compared our new method to the sequence-

based anomaly detection method [32]. This method models the behaviors of users from sequences

of events in the home at each time of day. The sequence includes operations performed within

Tseq s. When this method observes a sequence related to the detection target operation, it counts

the number of stored equivalent sequences that occurred during the time of day within αseq s of

the observed sequence. When the ratio of the counted number of all stored operations of the target

device was greater than or equal to the threshold, nseq
d , the target operation included in the sequence

was judged as legitimate. nseq
d is the parameter, and the d denotes the length of the sequence.

Anomalous operations of the cooking stove must be detected immediately because such oper-

ations present higher risks to users compared to other devices such as TVs, air conditioners, etc.
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Table 3.5: Values of parameters for the proposed and compared methods.

Parameter Set values
TX 15, 30, 60, 100.
TY 15, 30, 60, 100.
TC 10, 15, 20, 30, 45, 60.

nl(l = 1) 0.0, 1.0× 10−7, 2.0× 10−7, . . . , 1.0.
nl(l ≥ 2) 0.0, 1.0× 10−7, 2.0× 10−7, . . . , 1.0.

Tseq 600
Lα 1, 2, . . . , 10.

LRank 0.00, 0.05, 0.10, . . . , 1.00.
αseq 0, 900, 3600, 10800, 32400, 43200.

nseq
d (d = 1) 0.00, 0.02, 0.05, 0.1, 0.15, 0.20, 0.25,

0.30, 0.35, 0.40, 0.45, 0.50, 1.00.
nseq
d (d ≥ 2) 0.00, 0.02, 0.05, 0.1, 0.15, 0.20, 0.25,

0.30, 0.35, 0.40, 0.45, 0.50, 1.00.
Tmax
Z 720

Therefore, for this evaluation, the proposed and sequence-based methods could only use the se-

quences leading up to the target operations. Additionally, the cooking stove was often operated as

the first event of a sequence when users wished to cook. These points differ from the evaluation of

the previous sequence-based method [32].

Parameter values

Training and detection were performed for each combination of values set in Table 3.5. We simu-

lated all combinations with each value set for each parameter and evaluated the detection results.

3.4.2 Evaluation results

The evaluation results of the proposed and compared methods for each month are shown in Fig. 3.3

and 3.4.

The proposed method achieved a higher detection ratio with the same misdetection ratio of

the sequence-based method in the case of home A1, A2, . . . , A10. In particular, compared with

the highest detection ratios having less than 10% misdetections, the proposed method achieved a

46.0% higher detection ratio than the sequence-based method in home A10. This occurred because
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Figure 3.3: Detection results for each month’s data of home A.

the proposed method has a narrower time range regarded as legitimate than the sequence-based

method. When the sequence-based method tries to reduce misdetections, the legitimate range is
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Figure 3.4: Detection results for each month’s data of home B.

expanded as the learning data increases because the devices are operated at various times of day.

In contrast, because the proposed method estimates the state according to the state of each day,
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the legitimate time range can be narrowed. Furthermore, the detection of single operations by the

proposed method is another reason for its improved performance; the single operation means that

there are no other operations before Tseq s. When the sequence-based method cannot use short-term

information, it cannot determine legitimate/anomalous operations because it must learn from only

the time-of-day information. Because the proposed method learns from the short- and long-term

information, it can determine whether single operations are legitimate or anomalous from the long-

term information. However, the detection results of the methods were almost the same in homes B1,

B2, B3, B4, and B5. In these cases, the operations were performed at the same time of day and were

included in the same sequences. Thus, the sequence-based method learned the behaviors accurately.

The proposed method also achieved a higher detection ratio with the same misdetection ratio of

the estimation-based method in the case of homes A1, A2, A3, A5, and A6. In particular, compared

with the highest detection ratios having less than 10% misdetections, the proposed method achieved

a 15.4% higher detection ratio than did the estimation-based method in home A3. This occurred be-

cause the proposed method can learn the relations between operations of the cooking stove and the

operations of other frequently used devices, which included air conditioners, heaters, room lights,

washing machines used in the morning, and refrigerators. As an example of a legitimate behav-

ior, a user might turn off a heater before using the cooking stove in order to regulate the ambient

temperature. The estimation-based method only determines whether the users are about to cook.

When users operated non-cooking devices, the probability of cooking was only slightly increased,

and the estimation-based method could not determine the state. However, the proposed method can

learn the behavior sequence including the operations of such devices to grasp the legitimate opera-

tions of the cooking stoves. In contrast, when there were fewer operations related to non-cooking

devices, such as in homes A4, A7, A8, A9, A10, B1, B2, B3, B4, and B5, the detection results of

the proposed method were slightly improved. During the recorded months, devices such as heaters

and air conditioners were not used, and their operations were almost always single-use or used with

cooking equipment. Therefore, nearly all operations of the cooking stoves could be determined as

legitimate or not by estimating the home states.

The detection results of all methods were not stable in homes B6, B7, B8, B9, and B10. The
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numbers of operations included in these cases were too small to train the behavior models suffi-

ciently. However, the misdetections in those homes were not significant because there were only a

small number of operations.

3.5 Conclusion and Future Works

To detect anomalous operation attacks on IoT devices in a home, we proposed a detection method

that estimates the home state based on the observed values of IoT sensors and device operations

and learns the event sequences of users in the home in each estimated state. After training, when

a device operation is observed to determine whether it is legitimate or anomalous, the proposed

method calculates the occurrence probability of the sequence related to the target operation. If the

occurrence probability is lower than the threshold, the operation is detected as anomalous. For

this evaluation, we simulated anomaly detection using behavioral logs and sensor data obtained

from real homes for one month. We evaluated the improvements of the proposed method and the

effectiveness of each part by comparing the proposed method to other methods, one of which did

not use sequence information and the other did not estimate the in-home situation. We found that

the proposed method achieved a 15.4% higher detection ratio with fewer than 10% misdetections by

using the sequence information, and it achieved a 46.0% higher detection ratio with fewer than 10%

misdetections by using the estimation of the in-home situation. Thus, the proposed approach can

analyze the legitimate behavior of users and legitimate usages of the IoT devices comprehensively

by using long- and short-term information, that is, by estimating the home state transition and using

the sequence of behaviors. However, a certain amount of data was required to learn the behaviors

of users in the home.

In this chapter, we simulated the proposed method by setting a cooking stove as the target

device. Evaluating the proposed method when other devices are used as detection targets remains

as a future task. Furthermore, although we used data for one month for this evaluation, another

future task will involve collecting data for a longer period of time and from many actual homes to

verify the utility of the method.
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Chapter 4

Privacy-Preserved Cooperation

Framework for Anomaly Detection

without using Private Information

4.1 Introduction

4.1.1 Motivation

Consumer electronics such as electric fans and refrigerators have recently been connected to the

Internet; these devices are called Internet of Things (IoT) devices. Users can operate these IoT

devices by using smartphones and AI speakers via the Internet. Owing to the usefulness of IoT

devices, many IoT devices have been installed in homes.

Caused by the popularity of home IoT devices, risks of cyberattacks targeting home IoT de-

vices [40–43] and smart homes [53, 54] have increased. Cyberattacks targeting home IoT devices

have been previously observed [3,4]. Currently, these attacks mainly aim to intrude the IoT devices

to construct botnets and abuse the IoT devices as step devices for DDoS attacks [5,6]. Nevertheless,

these attacks can be detected by analyzing the behavior of the attacker [9–11] and comparing it to

the usual behaviors displayed by the home occupants [12, 13].

– 61 –



4.1 Introduction

However, these attacks differ from the attacks that target personal computers and smartphones.

This is because home IoT devices are physically close to users [14]. For example, attackers would

operate home IoT devices by sending packets via the intruded IoT devices to change the temperature

of an air conditioner or unlock a smart home lock. These attacks may make users unsafe and

could even cause physical harm. Furthermore, simultaneous attacks on high-power IoT devices can

suddenly increase energy demands, which could lead to major power outages [16]. Therefore, the

detection and prevention of these attacks are of paramount importance.

To mitigate the risk of attacks on home IoT devices, we proposed a method that could detect

attacks that targeted home IoT devices [32]. This method focused on the daily behaviors of the users

at home. The method learned their behaviors by studying a sequence of events and the conditions

of the home. The observed sequence of events included events on the home network such as the

operations of the IoT devices and the entry and exit of the users. The condition of the home was

a combination of recorded sensor values when IoT devices were being operated; these include the

time of day, temperature, and humidity. When an operation of a home IoT device differed from the

learned behavior, this method detected the operation as an anomalous operation.

The simulation results indicated that the method achieved a 95–100% detection ratio of anoma-

lous operations with less than 20% of misdetections when using a sufficient amount of training

data. Nonetheless, when we did not have a sufficient amount of training data, the method could

not correctly learn the behaviors of the users. In this case, the method recorded false negatives

of anomalous operations and continued to do so until a sufficient amount of operations had been

monitored.

However, anomalous operations still need to be detected regardless of whether the data amount

is sufficient or not. An intuitive approach is to analyze the data of other users by collecting the

behavioral datasets of many users [27]. This method uses the privacy information of the users,

including the in-home activities of the users; thus, the privacy of the user should be held in high

regard. Another approach, which does not rely on the sharing of the behavioral datasets, is to train

each model on each dataset and to construct a general model by sharing the learned results [25,26].

However, this general model constructed via the cooperation between agents may not match the

lifestyle of each user. Therefore, this approach cannot achieve accurate detection of anomalous
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operations.

4.1.2 Problem statement

Owing to the issues mentioned above, a cooperation framework for agents to detect anomalous

operations of home IoT devices that satisfy the following requirements is needed.

1. The framework must not use any information to identify the individual users. The framework

must not assign any identifiers to the users and agents. In addition, the agents must not share

the personal information of the users including the historical behavior of the users and their

personal information, such as ages, genders, and jobs.

2. The agents must avoid cooperating with agents of users who have different lifestyles, which

may cause inaccurate detections of anomalous operations.

4.1.3 Contribution and organization

In this chapter, we propose a cooperation platform to utilize the data of similar users for anomaly

detection of home IoT devices without sharing private information. In this platform, each home has

an agent that learns and detects anomalous operations in the home. When an agent cannot decide

whether a current operation is legitimate or anomalous, it sends requests to the other agents via the

platform. Only similar agents reply to the requests with only one-bit information that is legitimate

or anomalous without sharing personal information. In our platform, an identifier is set to a request

and is used to judge the similarity. When an agent receives a request that includes behaviors that are

similar to the behaviors learned by the agent, the received agent stores the ID of the request. When

the agent wants to send a request, it attaches the stored IDs to the request. When an agent receives

the request, the agent answers the request that includes IDs that have been stored by the agent.

By doing so, the other agents identify the similarity between themselves and the agent sending the

request. That is, in our framework, agents can cooperate without sharing the identity of the users.

In addition, each agent can choose to answer the request or not. That is, the agents can choose to

cooperate with others or not to avoid sharing information that the user may be unwilling to share.

– 63 –



4.2 Related work

A key idea used in our platform is judging the similarity of each agent from the past answers

without using the identifiers of the users. Hence, we can apply our platform to other systems such

as shopping recommendation systems.

In summary, our main contributions of this chapter are as follows:

• We propose a new method to cooperate with similar agents without sharing private informa-

tion including the identifiers and personal information of the agents and users.

• We simulate the proposed framework for the detection of anomalous operations of home IoT

devices.

• We also demonstrate that the cooperation between similar agents by our framework improves

the accuracy of the detection of anomalous operations targeting home IoT devices [32].

The rest of this article is organized as follows. We discuss related works, including anomaly

detection methods, an anonymous communication method, and cooperative learning methods in

Section 4.2. The proposed platform, which does not share private information but utilizes the dataset

of similar users to detect anomalous operations via the cooperation of similar users, is described in

Section 4.3. Then, we report the evaluation of our framework and the corresponding results in

Section 4.4. Finally, we conclude and discuss possible future work in Section 4.5.

4.2 Related work

Related work are discussed in this section. We explain anomaly detection methods of home IoT

devices in section 4.2.1. Then we explain an anonymous communication method, which can be

used in our framework, in section 4.2.2. Finally, we explain the methods that train machine learn-

ing models via cooperation and discuss the difference between our platform and these methods in

section 4.2.3.

4.2.1 Anomaly detection method

Ramapatruni et al. proposed a method to detect anomalous operations by learning user behaviors.

This method used Hidden Markov Models (HMM) to learn the normal activities of a user and

– 64 –



Chapter 4. Privacy-Preserved Cooperation Framework

collected the information obtained from the sensors and/or statuses of the home IoT devices as

observations. By using the observations, this method learned the parameters of the HMM. Then,

the trained HMM detected an anomalous operation when the probability of that operation occurring

was low. They demonstrated the accuracy of this method by using the dataset collected in a smart

home environment. This method focused on the case of a single user [24]. However, a smart home

may have multiple users.

Therefore, we have proposed a method to detect anomalous operations even in the case of multi-

ple users [32]. This method detects anomalous operations at the home gateway, which is connected

to all home IoT devices, home IoT sensors, and smartphones. First, the home gateway collects two

kinds of information. One is the condition information of the operations of home IoT devices, such

as the time of day, room temperature, and humidity from the connected home sensors. The other

information is the presence/absence of the users in the home from the attaching/detaching informa-

tion of their smartphones. The home gateway subsequently classifies the conditions of the home

by constructing a table of sensed values and stores the sequences of operations of IoT devices and

the leaving/entering of users in each cell of the condition table. Finally, the home gateway judges

whether legitimate or anomalous operations have occurred by comparing sequences of current op-

erations with the stored sequences of the current condition. This method can handle the case with

multiple users by constructing the sequences from the monitored operations and considering the

case with multiple users.

We have also proposed a method to define the condition of the home for the detection of anoma-

lous operations [34]. In this method, we defined the conditions of the home by the in-home activi-

ties. This method modeled the in-home activities of the users as a state transition model. We defined

the state of the home as a combination of the state of the users and the state of the devices. The

state of the users was defined by the multiple thresholds of sensor values, such as room temperature,

noise, and pressures. The state of devices was defined by the time before or after their operation.

This method calculated the transition probabilities. After the calculation, when an operation oc-

curred, the method estimated the current condition by using the modeled transition probabilities.

By using the estimated current condition, we could detect anomalous operations.

The above methods accurately detected anomalous operations when the amount of training data
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was sufficient. However, these methods overlooked a large number of anomalous operations until a

sufficient amount of operations was monitored.

Therefore, in this chapter, we propose an anomaly detection platform to utilize the behaviors of

similar users to achieve accurate detection, even if there is an insufficient amount of training data.

4.2.2 Anonymous communication

In our platform, agents need to hide their sender information, such as IP addresses and user identi-

fiers, when they communicate with other agents. In this chapter, we used Tor [55] as an anonymiza-

tion tool. Tor is a famous anonymous communication tool. By communicating via the Tor network,

agents can hide their sender IP address information. In the Tor network, only the IP address infor-

mation of the sender is hidden but the data of the sending packets are not encrypted. Our platform

does not need the data file to be encrypted; thus, our platform uses Tor for the anonymization of

communications.

4.2.3 Collaborative learning

There are some kinds of learning methods using multiple datasets.

One of the cooperative learning methods generates big data by collecting data from many clients

in one place, such as a datacenter [27]. In this method, the collected data is used to train a machine

learning model. When a new client that requires the model joins the service, the client receives the

trained model. A new client receives one of the models trained by datasets of similar attributions

and trains the model by using data collected by the clients. This method is vulnerable to attacks

that may target the data center; the collected data may be leaked if the service on the data center

is vulnerable. An example is when an attacker steals user data on the Internet cloud through a

misconfigured web application firewall [28].

Privacy-preserving machine learning is an approach used to train machine learning models hid-

ing private information [25]. One of the methods of privacy-preserving machine learning is to use

differential privacy [56]. The differential privacy preserves the data privacy of users by adding ran-

dom noise to the data. By collecting a large amount of the noised data, we can train a machine
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learning model to preserve privacy (the influence of noise can be eliminated statistically).

However, this approach is difficult to apply to the detection method of anomalous operations

on home IoT devices. This is because the normal behavior of the users depends on their lifestyle,

and accurate private information that can identify the lifestyles is required to achieve accurate de-

tections.

Federated learning is an approach that trains machine learning models by the cooperation be-

tween users [26]. In this approach, an agent is deployed for each user. Each agent first trains the

model independently by using the data obtained by itself. Then, agents share the trained models and

construct the general model by combining the shared models. This approach can train the machine

learning models without sharing private information. However, this approach also has difficulty in

handling the lifestyles of each user. The general model constructed by the cooperation among all

agents may not match the lifestyle of each user. As a result, this approach cannot achieve accurate

detection of anomalous operations.

Table 4.1 shows the summary of the comparison. As shown in this table, any existing ap-

proaches do not satisfy the requirements mentioned in Section 4.1.2. Therefore, in this chapter, we

propose a new framework that does not need the sharing of private information, where only agents

with similar data can cooperate.

4.3 Platform to utilize similar data of users to detect anomalous oper-

ations without sharing private information

Fig. 4.1 shows an overview of our platform. In our platform, an agent is deployed for users in a home

to learn the behaviors of the users and detect anomalous operations. When an agent cannot decide

whether a current operation is legitimate or anomalous, it sends requests to the other agents via the

platform to cooperate with them and decide whether the operation is legitimate or anomalous.

Each agent receiving the request first checks whether the request is sent from a similar user.

Here, “similar” means that the user and the receiver of the request have the same behaviors. If

the sender has a similar user, the agent checks whether the behavior of operations included in the

request is legitimate or not based on its learned behavior. Then, the agents vote based on their
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Table 4.1: Comparison of cooperative methods: The characteristics of various existing cooperative
methods and the proposed method.

Characteristics
Centralized

learning [27]

Centralized
learning with
differential
privacy [56]

Federated
learning [26]

Proposed
platform

Centralized
/ distributed

centralized centralized distributed distributed

Shared
information

raw data noised data
gradient of
each trained

model
yes/no answer

Generalized /
personalized model

personalized generalized generalized personalized

Requirements 1:
Non-sharing

private information
✓ ✓ ✓

Requirements 2:
Utilizing only
similar data

✓ ✓

decision. By these steps, the platform collects the votes from similar agents. As a result, the agent

that sends the request decides whether the current operation is legitimate or not by checking the

results of the votes.

Our platform performs the above steps without identifying any agents. In our platform, the

identifiers are set only to the requests. Thus, the other agents cannot identify the origin of the

request.

The similarities between agents are calculated based on the IDs of the requests. The sender of a

request attaches some IDs of past requests that the sender regards as legitimate to the request. Other

agents use the attached IDs to identify if the sender of the request has learned similar behaviors.

4.3.1 Procedure of the agent sending request

Fig. 4.2 shows the procedure of the requesting agent. When a home gateway detects an operation of

a device, an agent of the home checks whether the operation is legitimate or not. If the agent cannot

determine whether the operation is legitimate or not due to a lack of learned data, it sends a request
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it stores the ID 

of the question.
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Figure 4.1: Overview of the proposed platform.

to the platform. The request includes the information of the undetermined operation that is used

to identify whether the operation is legitimate or not. The sender randomly selects and attaches

x number of IDs of the past requests that are identified to be legitimate by the sender agent; the

x is a hyperparameter of attaching IDs. This information is used to check whether the sender has

learned similar behavior to agents receiving the request. When the hyperparameter x is set to a

certain value, the randomness of the selection is not significantly affected by the judgment of the

similarity. When sending the request to the platform, the sender can also hide the information of

who sent the request from the platform by using tools such as Tor [55]. After sending the request,

the sender agent waits for the votes from the other agents.

When the agent receives the votes from the others via our platform, it calculates the number

of votes for “Legitimate”. If the number of votes to “Legitimate” is greater than the predefined

threshold T , the agent regards the current operation as legitimate.
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Sending

the request
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votes

Agent

Figure 4.2: Flow chart of the requesting agent.

4.3.2 Procedure of agents receiving request

Fig. 4.3 shows a flow chart of the agents who receives a request. When an agent receives a request,

the agent first checks the IDs attached to the received request. The agent then compares the attached

IDs to the ID database that stores IDs of requests that the receiving agent identifies as legitimate.

The similarity between the sender and receiving agent is judged by the number of matched IDs.

If the number of matched IDs is smaller than a threshold N , the agent does not vote for the

request; this is because the sender has different behaviors. By doing so, we avoid the degradation

of anomaly detection that could be caused by using data of non-similar users whose behaviors are

different. Fig. 4.4 shows the procedure of the non-similar agents receiving a request.

If the number of matched IDs is larger than the threshold N , the agent judges the sender to be

similar to itself. Subsequently, the agent checks if the behavior included in the request is legitimate

or not by using its learned model. Then, it votes by returning its decision to the platform. The
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Figure 4.3: Flow chart of the agent receiving a request.

decision can either be “Legitimate”, “Anomalous”, or “Unknown”. “Unknown” is a case where the

agent does not have a sufficient amount of data to determine whether the behavior included in the

request is legitimate or not.

In our platform, even if the number of matched IDs is larger than N , the agent can avoid voting

if the user does not want to answer.

When the agent identifies the behavior included in the request as “Legitimate”, the agent stores
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Figure 4.4: Procedure for a non-similar agent receiving a request.

its ID into its ID database. The stored ID is used to identify the similarity of a future request of the

agent. As the number of attached IDs to a request becomes larger, receiving agents can estimate the

similarity more accurately. Fig. 4.5 shows the procedure of similar agents receiving a request.

4.4 Evaluation and Results

We have defined two requirements in Section 4.1.2; cooperation without sending personal informa-

tion and cooperation with only similar agents. The former is achieved by the proposed platform

because the platform does not require users to share their identifiers or their behaviors at home.

Therefore, in this section, we demonstrate that our platform satisfies the second requirement. For

this evaluation, we implemented and evaluated our platform and compared it to other methods by

simulating on datasets captured in real homes. In addition, we checked which agents cooperated to

show whether agents cooperated with similar agents.
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Figure 4.5: Procedure for a similar agent receiving a request.

4.4.1 Evaluation Scenario

For this evaluation, we considered the case where a new agent was deployed at a home. The agent

learned the behaviors of the users for five days; however, it did not have a sufficient amount of train-

ing data. Therefore, the agent cannot detect anomalous operations accurately without cooperating

with other agents. Nevertheless, there still are agents that have been deployed at other homes before.

These agents have enough data and can detect anomalous operations accurately. Therefore, the new

agent would like to join our framework to cooperate with such agents who can detect anomalous

operations accurately, regardless of the different lifestyles between the users and the user of the new

agent.

To cooperate with the other agent, the newcomer agent needs to store the IDs of the questions

similar to the behavior of the corresponding user. One approach to achieving this is to send past

requests to the newcomer agents. This situation was evaluated with our method.
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By this evaluation, we demonstrate that the cooperation within our framework improves the

accuracy of the detection, even if the agent does not have sufficient training data yet.

4.4.2 Evaluation Environment

In this subsection, we describe the settings of our evaluation.

Dataset

To evaluate our platform, we collected datasets of activities in two real homes. We recorded the

behaviors of the subjects living in the homes, including the time when home appliances were being

operated, and the time the subjects entered and left the home. Some home appliances were not

connected to the Internet, and we asked the subjects to record the time. To record the logs easily,

we installed systems that included buttons, access points, and computers, as shown in Fig. 4.6. In

this system, when a button was pushed, the button sent packets to a computer and the computer

recorded the name of the button and the time of day. We put multiple buttons near each home

appliance and named the buttons after the name of the home appliance. Their names and the action

of the users are shown in Table. 4.2. We asked the subjects living in the homes to push the button

when they used the corresponding consumer electronics or when they left or entered the homes.

The collection of data on the in-home activities of users in real homes received approval from the

Research Ethics Committee of the Graduate School of Information Science and Technology, Osaka

University.

After collecting the logs, we divided the logs into multiple parts so that each part included the

monthly data of a home. We collected data for 10 months, from September 2018 to August 2019,

for home A. The data were divided and named A1, A2, . . . , A10. Data spanning 11 months was

collected in home B, from January 2019 to November 2019, and was subsequently divided and

named B1, B2, . . . , B11. For this evaluation, we simulated the case of multiple homes and some of

the users who had have different lifestyles by considering each of A1 to A10 and B1 to B11 to the

data of each home. That is, 21 homes participated in our framework in this simulation.
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Figure 4.6: System for recording time logs of using home appliances in real homes.

Table 4.2: Collected operations and events by our experimental system deployed in real homes.

Device / event Action
User position Entry / exit
Lighting ON / OFF
Air conditioner Cooling / heating / dry / raise / lower / OFF
Electric Fan ON / OFF
Heater ON / OFF
Washing machine ON
Refrigerator Opening
TV ON / OFF
Cooking stove ON / OFF
Microwave ON
Toaster oven ON
Rice cooker ON

Anomaly detection methods applied to each agent

In our platform, agents could cooperate with any anomaly detection methods. Each agent indepen-

dently detected anomalous operations and asked other agents via our platform if the agent could not
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identify whether an operation was legitimate or anomalous.

For this evaluation, we applied our anomaly detection method [32] to each agent of our platform.

This method learned the behaviors of the user as a combination of the condition of the home and

the sequences of operations in the home. When users operated home IoT devices continuously,

this method utilized the sequence information. According to the results of our previous work, the

sequence of the operations plays a significant role in the identification of legitimate operations.

However, we need a sufficient number of monitored sequences to train the model on the behavior

of the users and achieve accurate detection. If each agent does not have a sufficient number of

sequences, the agent alone cannot accurately identify legitimate operations. Thus, our framework,

which enables cooperation between agents, is required. For this evaluation, we demonstrate that

our platform works well for the agents that use the sequence of operations.

Though the sequence of operations is very powerful, we cannot use sequences that contain only

a single operation; that is, the operations on the IoT devices that are used alone. In such a case, our

detection method uses only the condition information, such as time of day, to identify the legitimate

operations on such devices. The detection based on the condition information also requires a sig-

nificant amount of the monitored operations that are used to train the model of the behavior of the

users. However, the conditions where each IoT device is used depend on the lifestyles of the users.

It should be noted that the information of the users whose lifestyles differ may degrade the accuracy

of the detection. In this chapter, we also demonstrate that our platform works in such cases.

Therefore, we simulate two cases; (1) the case where the sequences of operations are monitored,

and (2) the case where the device is used alone and the sequence cannot be used.

Metrics

For this evaluation, we used two metrics: the detection ratio and the number of misdetected legiti-

mate operations.

We considered the operations by the users included in the dataset to be legitimate operations.
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The number of misdetected operations was the number of legitimate operations detected as anoma-

lous. For this evaluation, each home included a different number of legitimate operations. There-

fore, the effects of one misdetection were different for each home. To ensure that the evaluation of

the effectiveness of our method for each home was the same, we did not evaluate using the ratio of

misdetections.

The detection ratio was defined by the number of anomalous operations detected as anoma-

lous divided by the number of all inserted anomalous operations. For this evaluation, we inserted

100 anomalous operations per day into the test dataset at random times and calculated the detec-

tion ratio. For this evaluation, each home had a dataset with a different number of days. Since

each home had a different number of inserted anomalous operations, we compared the detection

accuracy using the ratio of detected anomalous operations.

The detection ratio of anomalous operations and the number of misdetected operations de-

pended on the parameter of the detection methods and our framework. However, there was a trade-

off; the parameters set to detect more anomalous operations caused more misdetections. Therefore,

we changed the parameters of the methods and obtained the ratios of the detected anomalous oper-

ations and the number of misdetected operations.

Compared methods

For this evaluation, we compared our cooperation platform with two methods; “Do not cooperate”

and “Cooperate with all”, as shown in Table. 4.3. “Do not cooperate” is where each agent does not

use our platform but performs detection by only using the behavior data of the users monitored by

itself. By comparing the cooperation platform to “Do not cooperate”, we demonstrate the effective-

ness of cooperation with other agents. “Cooperate with all” is where agents cooperate with all the

other agents via our platform. By comparing the cooperation platform to “Cooperate with all”, we

demonstrate the effectiveness of cooperation with only similar agents.
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Table 4.3: Details about proposed platform and comparative methods.

Method Cooperation Similarity
Cooperate with only similar (proposed) ✓ ✓
Do not cooperate —
Cooperate with all ✓

Evaluation steps

We first selected a newcomer agent. Then we divided the one-month data corresponding to the

selected agent into two half-month segments. We used the second part as the test data when the first

part was used to train the model, and vice versa. By doing so, we can use the full data as the test

data. After selecting the newcomer agent and the test data, we trained the model of the newcomer

agent by using the data for the first five days that were not included in the test data. The other agents

were the agents that cooperated with the newcomer agent and their models were trained using all

of the data collected when the corresponding home was being monitored. After the models were

trained, we simulated the preparation of the cooperation by sending past requests to new agents. For

this simulation, we used the data of the first 14 days as the past requests sent to the agents. Finally,

we simulated our framework again by using the test data of the newcomer agent. We evaluated all

homes equally and only changed the new agent.

Parameters

Our platform has three parameters x, T , and N . We set x to 100, T to 1, 2, 3, . . . , 20, and N

to 1, 2, 3, . . . , 100 for our framework. We set x to 100, T to 1, 2, 3, . . . , 20, and N to 0 for the

“Cooperate with all” method.

The anomaly detection method used in this evaluation also had parameters T , α, n1, nd(d ≥ 2),

and home condition. For this evaluation, we defined the home condition by using only the time-of-

day information. We varied the parameters, as shown in Table 4.4 and 4.5.
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Table 4.4: Parameter values of the anomaly detection method applied to agents of each home that
learn by combining condition and sequence information.

Parameter Set values
T 600
α 0, 900, 3600, 10800, 32400, 43200
n1 0.00, 0.10, 0.25, 0.50, 1.00

nd(d ≥ 2) 0.00, 0.10, 0.25, 0.50, 1.00

Table 4.5: Parameter values of the anomaly detection method applied to agents of each home that
learn only from the condition information.

Parameter Set values
T 600
α 0, 150, 300, 450, . . . , 1200, 1500, 2100, 3600,

7200, 10800, 18000, 25200, 32400, 43200
n1 0.05, 0.10, 0.15, . . . , 0.95, 1.00

nd(d ≥ 2) 1.00

4.4.3 Results

For this evaluation, we added anomalous operation for the cooking stoves and evaluated the accu-

racy of the detection.

Fig. 4.7 and 4.8 show the detection results of the proposed platform and the compared methods

when we use the sequences of the operations to detect anomalous operations. In this figure, the

horizontal axis represents the number of misdetected legitimate operations and the vertical axis

represents the detection ratio. The figure is a plot of the achievable detection ratio against the

number of misdetected operations not exceeding the given value on the horizontal axis. These

figures indicate that homes A2, A4, A5, A6, A7, A8, A9, B1, and B5 has a reduction in the number

of false negatives when using our platform. They achieve higher detection ratios than the non-

cooperation method when the parameters are set to ensure that the number of misdetections is less

than 20. Specifically, home A5 records a significant reduction in the number of false negatives.

The detection ratio of the proposed method for home A5 is 50.5% higher than the non-cooperation

method when the parameters are set to achieve less than four misdetections; this is less than one

misdetection per week. The number of misdetections is greater than 23 for home A7; this is because
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one of the half-month data for the home does not include the operation data of the first five days.

When we ignore the 23 misdetections, the results show that our platform can reduce the number of

false negatives. In other words, cooperation improves the accuracy of the detection. This is because

the agents cannot learn the behaviors of the users sufficiently from the data of the first five days.

Nevertheless, by using our platform, the agents avoid the case where false negatives of anomalous

operations are caused by the lack of training data by cooperating with similar agents.

When we have enough training data in each home, which is the case for homes A1, A3, A10,

B2, B3, B4, and B6, our framework cannot reduce the number of misdetections. This is also true

when the number of legitimate operations is too small to cooperate with other agents, such as for

homes B7, B8, B9, B10, and B11. In this case, each agent has only a small amount of operations and

few requests are stored as requests that are similar to the behavior of the corresponding users. As a

result, the agents cannot cooperate with other agents via our platform. However, the misdetections

in such homes are not significant because there are only a small number of operations.

Nevertheless, the detection accuracy of our platform is similar to the method that used coop-

eration between all agents. This is because the sequences of the operations significantly aid in the

detection of anomalous operations. The method using the sequences detects anomalous operations

unless the current operations match the sequence of operations, including the operations of the

other devices. For this evaluation, we added the anomalous operations on the cooking stoves, and

the added operations were rarely included in the sequences that matched the legitimate sequence.

As a result, should an agent cooperate with the agents of users who have different behaviors, such

cooperation does not degrade the detection ratio.

Fig. 4.9 shows the heatmap of the similarity between the IDs of the requests stored by each

agent. We calculated the similarity of the stored IDs by the percentages of IDs stored by the agents

in the vertical axis that matched the IDs stored by the agents in the horizontal axis. For our platform,

agents storing the same IDs in their ID database were defined as similar agents. From this figure,

agents who corresponded to the same real home cooperated in our platform. That is, our platform

achieved cooperation with agents with similar behaviors.

We also evaluated our framework when the anomaly detection method was only based on the

condition of the home. Fig. 4.10 and 4.11 show the results for each agent, where the anomaly
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Figure 4.7: Detection results of each month in home A. Each agent performed the anomaly detection
method using by considering both the condition of the home and the sequence of operations.
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Figure 4.8: Detection results of each month in home B. Each agent performed the anomaly detection
method using by considering both the condition of the home and the sequence of operations.
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Figure 4.9: The heatmap of matched IDs of each agent; percentages of the ID database on the
vertical axis that matched with the ID database of the user on the horizontal axis.

detection method is solely based on the condition of the home. We plotted the results in the same

way as Fig. 4.7 and 4.8. These figures indicate that homes A3, A4, A5, A6, A8, A9, A10, B1, B2,

and B5 achieve a smaller number of false negatives of anomalous operations than the method that

has cooperation between all agents. When the parameters are set to achieve a misdetections number

less than four, the detection ratio of the proposed method is 13.4% higher than that of the method

that has cooperation between all agents in home A4. This is because cooperation with agents of

different behaviors degrades the accuracy of the detection. By cooperating with all agents, an agent

uses information that does not match the behavior of the corresponding users. As a result, some

attacks that are different from the behavior of the corresponding users but match the behavior of

other users are not detected. However, in our framework, agents cooperate with only similar agents.
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As a result, our framework avoids the degradation of the detection accuracy that is caused by using

the information of users whose lifestyles are different.

Similar to Fig. 4.7 and 4.8, our method cannot reduce the misdetections for the case where the

number of legitimate operations is too small to cooperate with other agents; such is the case for

homes B7, B8, B9, B10, and B11. However, if an agent has some legitimate operations and can cal-

culate the similarities between agents, our framework achieves a smaller number of misdetections

than the method that incorporates cooperation between all agents.

4.5 Conclusion and future work

In this chapter, we proposed a cooperation framework that utilized the dataset of similar users

without sharing their private information to detect anomalous operations. In this platform, an agent

was deployed at each home. The agent learned the behavior of the users and detected anomalous

operations based on the learned behaviors. However, if the agent did not identify whether the

current operation was legitimate or not, due to a lack of training data, it asked the other agents by

sending a request. The agent informed the property of the users by attaching the IDs of the past

requests that matched the behavior of the corresponding users. Then agents who also identified the

past requests of the attached IDs as legitimate replied to it. By doing so, our framework enabled

agents to cooperate with similar agents without sharing their private information.

We evaluated our framework by using the dataset monitored at real homes. The results indicated

that our framework reduced the number of false negatives of anomalous operations by cooperating

between similar agents. We applied 21 homes to the simulation in this evaluation; however, when

the number of homes increases, the detection result of our cooperation framework becomes accurate

because the agents of users having similar behaviors increase. In particular, the importance of

similarity judgment of agents becomes high because the number of agents of users having different

lifestyles also increases. In addition, the more agents participate in the framework, the more types

of behavior patterns are regarded as legitimate excessively. The parameter tuning can eliminate the

unnecessary patterns. It is also considered that the framework scales up and the number of questions

sent by the agents is too much for the others to answer. The hierarchization of the communication
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Figure 4.10: Detection results of each month in home A. Each agent performed the anomaly detec-
tion method using the condition of the home.
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Figure 4.11: Detection results of each month in home B. Each agent performed the anomaly detec-
tion method using the condition of the home.
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protocol, such as the IP address, is one of the ideas to solve the problem. The scalability of this

framework is one of our future works.

We applied our framework to the detection of anomalous operations of home IoT devices. How-

ever, our framework can also be applied to other scenarios where cooperation between similar users

is required; this can serve as future work. For example, by applying our framework to a system that

recommends products to users, an agent recommends a product using the information on similar

users without sharing their private information.

In this chapter, we assumed that all agents behaved correctly. However, we should consider the

case where attackers join our framework to evaluate its robustness. The defense mechanism against

such attacks targeting our framework is another future work.
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Chapter 5

Improving Attack Tolerance of

Privacy-Preserved Cooperation

Framework

5.1 Introduction

Online service advertising, such as for Internet shopping, is tailored to user interests and preferences

by analyzing usage data collected in a cloud environment [57, 58]. These services are considerably

successful. For example, the Amazon recommender system accounts for more than 35% of all their

purchases [59]. Smartwatches and other wearable devices make it possible to collect biometric user

data; hence, services tailored to those variables are likely to become more diverse and widespread.

As data collection becomes more sophisticated and intuitive, personal privacy must be consid-

ered and protected. This concern is more crucial than ever with cloud-based big data becoming more

prevalent [27]. Notably, information leakages caused by human errors are a significant risk [28].

Even if a small amount of data is compromised, more detailed information can be gleaned from

it. For instance, attackers can accurately predict the gender of a user based on information about

watched television programs [60].

Privacy-preserving data collection and analysis methods that collect the gradients of each trained
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model or noisy data and share a general model trained from these do exist [25, 26]. However, these

methods cannot generate models that are tailored to the interests and preferences of users because

they are highly generalized. For example, when we apply them to a model that learns the behaviors

of users at home to detect anomalous operations of home Internet-of-things (IoT) devices [32], it is

difficult to generate a model tailored to users preferences because the in-home behaviors of different

people vary significantly.

Thus, we proposed a decentralized cooperation framework to utilize the data of similar users

without sharing their private information [38] in Chapter 4. This privacy-preserved cooperation

(PPC) framework installs an agent that learns user data. The agents train their own learning models

and collaborate with other agents to utilize the data of similar users. When an agent does not have

sufficient data, it anonymously sends a question to the other agents. The question can be answered

using 1-bit information, such as “Yes” or “No,” based on the question. The questions are identified

using question IDs. When the agent sends a question, the agent attaches multiple question IDs that,

for example, are answered (voted) with “Yes.” Only agents who vote “Yes” to the same questions

vote on the next one. The questioner summarizes the votes and uses the results. By doing so,

user data with similar characteristics can be accumulated without revealing personally identifiable

information. When an agent does not want to vote on a question, voting can easily be avoided. In

doing so, they can maintain higher levels of control over user privacy.

As an example of using this PPC framework to verify whether the information of similar users

can be obtained, we applied an anomaly detection method to detect the anomalous operations of

home IoT devices [32]. We simulated this anomaly detection method using data obtained from

actual homes and determined that the detection accuracy was improved by up to 50.5%. This is

because the PPC framework can judge the similarity using the question IDs voted “Yes” and data of

similar users who had same behaviors for detection. We found that it is possible to cooperate with

user agents having similar characteristics while protecting the identities of the sender. However,

the PPC framework assumes that all agents work properly according to the protocol and does not

consider cases in which an attacker or a malicious third party participates. Notably, an attacker can

spread false information and create a negative impact.

In this Chapter, we propose a countermeasure that ensures the functions of the PPC framework
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work properly even when a malicious third party participates. We first analyze the risks of the

scenario. Specifically, we identify the actions that can be taken from each position in the PPC

framework (i.e., questioner, respondent, or viewer—who does not vote) to make it dysfunctional and

analyze the impact of each action. In particular, we target attacks that cause agents to make incorrect

decisions within the framework. We identify the problem of attackers sending fake questions and

votes to mislead the similarity judgment between agents and to falsify the summarized results.

When an attacker sends fake questions, most are not answered because agents judge the similarity

from the ID attached to the question and answer only questions from similar agents. However, if

an attacker sends many fake questions and some of them accidentally include the question IDs that

a legitimate agent stored, the agent may store the IDs of the fake questions. The fake question ID

stored by a legitimate agent may have a negative impact on the similarity assessment. As the number

of fake question IDs stored increases, the negative impact grows. Furthermore, when an attacker

sends a fake vote, it may affect the summarized results. In contrast to fake questions, most fake

votes are accepted by legitimate agents. This is because the question similarity is judged; however,

the vote is not judged and accepted until the number of votes collected exceeds a threshold. Hence,

these attacks depend on the number of fake votes.

Currently, there are methods that prevent the mass posting of false information, such as by

limiting the bandwidth of cellular networks [61] or preventing fake reviews on Amazon [62, 63].

These methods use sender certifications to restrict input and confirm the legitimacy of users based

on past participation. However, these authentication methods are unsuitable for the PPC framework

because the sender’s information needs to be hidden. Another method that does not use personal

identification is hashcash [64], a denial-of-service (DoS) countermeasure. Hashcash requires an

arbitrary value that is added to the transmitting data. The hashed value of the data with added value

is less than a certain number of digits. The mechanism requires computation time to search for this

arbitrary value and makes it difficult to transmit false data many times. This method can be used to

limit the number of fake questions and votes. However, many fake vote attack problems cannot be

solved solely by limiting the number of votes using hashcash.

Hence, in this Chapter, we propose a countermeasure to reduce the negative effects of false

questions and votes by an attacker while maintaining the advantages of the PPC framework, in
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which agents cooperate anonymously with similar agents. First, we leverage the hashcash method

to reduce the number of questions and votes because the negative impact of fake questions is sup-

pressed by limiting the number of questions. Adding to the limitation of the number of votes, agents

summarize only the votes sent from a similar agent. When an agent votes to answer a question, it

attaches to the vote the IDs of the questions to which it answered “Yes” in the past. The questioner

agent receives the vote and checks the number of matched IDs between the attached IDs to the vote

and the stored IDs of the questions to which the questioner answered “Yes” in the past. When the

number of matched IDs exceeds a threshold, the vote is regarded as a vote from a similar agent

and is summarized. The checking process makes it difficult for attackers to send fake votes that are

summarized because the attacker does not know the IDs of the questions to which the questioner has

answered “Yes.” This allows the questioner and respondent to judge the similarity with each other

via the IDs attached to the question and vote. These IDs should have a time limit on their use; they

should not be able to use arbitrary values that are bound to past question IDs and vote data that have

been used in the past. However, they should be able to include random values in the questions and

perform hash calculations. In this way, we can restrict the preparation of many fake questions and

votes in advance. Furthermore, by attaching a public key to the question, the respondent encrypts

and sends back a vote, preventing the attacker from referring to and sending the legitimate agent’s

vote. This PPC with Countermeasure (PPCwC) framework makes it possible to reduce the negative

effects of fake questions and votes without losing the PPC framework’s advantageous features using

similar users’ anonymous data.

To evaluate the framework, we used numerical examples to confirm that even if an attacker

sends many fake questions and votes, this does not affect the anonymous similarity judgment, and

the summarized results are not falsified. Furthermore, we confirmed that these calculations can be

executed.

The remainder of this article is organized as follows. We introduce the PPC framework [32]

and analyze its risks in Section 5.2. In Section 5.3, we present the proposed countermeasure that

prevents the effects of false questions and votes while cooperating with similar agents. Then, we

discuss how our approach avoids attack risks in Section 5.4. Finally, we conclude and discuss future

work in Section 5.5.
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Figure 5.1: Overview of the privacy-preserved cooperation (PPC) framework in Chapter 4.

5.2 Overview and Risk Analysis of the PPC Framework

5.2.1 Overview of the PPC Framework

An overview of the PPC framework is given in Fig. 5.1. In this framework, agents are installed to

train their learning model with user data in a home environment of routers and smartphones. If an

agent’s data are insufficient, the agent deals with the shortage by cooperating with other agents. The

agent anonymously sends a question about the needed information; the question can be answered

with a “Yes” or a “No.” Then, the responding agents vote anonymously. Each question has an

identifier. An agent who answered “Yes” to a question stores the ID of the question. This stored

question ID is used as a key to determine similarity. The questioner selects question IDs from the

stored database and sends them anonymously to other agents. Anonymization is achieved using

Tor [55] (the onion router), which is an open source privacy network that permits users to transmit

data while hiding the sender information, i.e., IP address. The agents that receive the question judge

similarity based on whether the question was sent from a similar agent, which is based on whether

the number of matched IDs between the attached ID and its own stored ID exceeds a threshold.

Hence, agents who have answered “Yes” to the same questions in the past may collaborate with
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Table 5.1: Actions and possible effects of an attacker in the PPC framework when the attacker is a
questioner, respondent, or viewer according to each function.

Function Viewer Questioner Respondents
Posting questions Watching questions Sending fake ques-

tions
—

(Obtaining informa-
tion)

(Affecting similarity
judgment)

Voting on questions Watching votes — Voting false answers
(Obtaining informa-
tion)

(Falsifying summa-
rized results)

Summarizing votes Watching votes on
questions

Obtaining votes on
fake questions

—

(Obtaining informa-
tion)

(Obtaining informa-
tion)

each other. If they find the question was sent from a similar agent, they select “Yes” or “No” to

the question and vote on them anonymously. The respondents who vote “Yes” store the ID of the

question and use it for similarity judgment in the future. The questioner then summarizes the votes

and receives the results of the sent question.

In this framework, users control their privacy by choosing when not to vote on questions that

they do not wish to answer by adding noise to the questions or by sending dummy questions.

5.2.2 Risk Analysis of the PPC Framework

We analyze the negative impact on the framework when a malicious third party participates in

the PPC framework. In this framework, there are three roles: questioner, respondent, and viewer

(who does not vote). It has three functions for agents: sending questions, voting on questions, and

summarizing votes. Table 5.1 shows the possible actions that an attacker can take by using each

function in each role of the PPC framework and their impact.

These effects can be divided into three categories: getting information, affecting similarity

judgments, and falsifying voting results. Because agents interact anonymously and openly with

each other, information can be obtained by observing their interactions, but attackers cannot know

the sender. Here, when the questioner attaches a public encryption key to the question and encrypts
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the votes, the information in the votes is unavailable. Therefore, the information that an attacker can

obtain is limited to statistical information about the question, including descriptions and question

IDs. Furthermore, agents can add noise to these statistics by sending dummy questions.

An attacker can adversely affect similarity judgments and voting results by sending fake ques-

tions and fake votes as questioners and respondents. This may cause agents to cooperate with

inappropriate agents, or it may pollute agents’ judgments; the questioner agent may make bad de-

cisions based on falsified votes. Thus, the PPC framework cannot work properly when the function

of the framework is misused. We analyze the two impacts of fake questions and fake votes in the

following sub-subsections.

Attack by Questioner

An attacker may act as a questioner and send fake questions, which may affect the similarity judg-

ment among agents. If an agent receives a fake question and votes “Yes,” it stores the ID of the fake

question in its database. Because each agent judges similarity using the stored IDs of questions

answered with “Yes” in the past, the similarity between agents may be corrupted. For example, by

sending questions to which many agents would vote “Yes,” agents that are not inherently similar

could store the same IDs and receive votes from dissimilar agents. By contrast, sending questions

to which only some agents vote “Yes” may cause agents that are inherently similar to each other to

store different IDs, which may isolate them and make it harder for them to obtain answers from the

framework.

A small number of fake questions is considered to have little impact on similarity judgment

because the ID database of each contains many question IDs from many legitimate agents. However,

if many false questions are sent, a similarity judgment may be impacted.

If the attacker wants to store the IDs of fake questions in the ID database of other agents, the

attacker must attach a greater number of question IDs than a threshold. Therefore, the success rate

of the fake question attack depends on how much information about the question ID is stored in the

agent database.
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Attack by Respondent

An attacker may act as a respondent and cast a fake vote, which could falsify the summarized

results of all votes. If an attacker provides a false vote to a question, the questioner summarizes the

fake vote accordingly. Hence, the questioner may receive incorrect results from the framework and

may make incorrect decisions over time. For example, we applied an anomaly detection model to

the framework, which learns a behavioral model in the home environment and detects anomalous

operations of home IoT devices that deviate from the model. The framework was asked whether the

operation was legitimate or anomalous. When an agent receives false votes from the framework, an

anomalous operation may be successful.

A small number of false votes would have little effect on the summarized results because many

votes by legitimate agents would be received. However, if many false votes are made, the summa-

rized results may change.

Because votes are anonymous in the PPC framework, there is no way to distinguish between

fake votes from attackers and votes from legitimate agents. Thus, all votes are summarized until

the number of votes is collected. Therefore, the countermeasure of limiting the number of votes is

insufficient.

5.3 PPCwC: Suppressing a Large Number of Fake Questions and

Votes While Cooperating with Similar Agents Anonymously

We propose a cooperation framework that can suppress the effects of a large number of fake ques-

tions and votes while maintaining the advantages of the PPC framework through anonymous coop-

eration among similar agents.

5.3.1 Key Concept

We check the similarity between the questioner and the respondent. Specifically, when they send

the vote on a question, the respondent attaches its stored IDs of the questions to which it voted

“Yes” in the past. By doing so, the questioner can judge whether a vote is sent from a similar agent.
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We also limit the number of answers and votes using the hashcash [64] algorithm.

To limit the number of fake questions and votes, the hashcash [64] method requires arbitrary

values that are added to the sent data; the hashed value of the added data satisfies the conditions

for questions and votes. This technique is used in blockchain [65] to prevent a large number of

fake transactions. Similar to the terminology employed in blockchain, we call the arbitrary value

a “nonce.” The search for a nonce requires hashing computations. Because the hash value is not

inferable from the original value, it is necessary to perform multiple hash calculations while setting

different values for the nonce. This requires computation time and limits the number of questions

and votes. If the nonce value is incorrect, the sent data are dropped. By setting the number of

answers and votes that do not restrict the questions and votes of legitimate agents and limiting

the fake questions and votes by attackers, the framework suppresses the effects of false questions.

However, even if the number of votes is limited, false votes can still permeate the network, as in

cases where the number of attackers is larger than the number of legitimate respondents.

Therefore, along with the limitation of the number of questions and votes, the respondent must

attach their stored IDs to their vote, and the questioner must check whether the vote was sent from

a similar agent. The questioner checks whether the IDs attached to the vote matches their own

ID database according to a threshold number and accepts the vote if it satisfies the condition of

coming from a similar agent. This makes it difficult for attackers to affect the summarized results

by sending fake votes because the attacker must include the IDs stored by the questioner.

Next, we introduce a nonce generated when attaching IDs. The question IDs have an expiration

date, and questions and votes sent in the past with the same nonce value and question ID combina-

tion are discarded. Thus, it is possible to prevent a large number of combinations of nonce values

and question IDs from being generated in advance, and questions and votes are prevented from

being sent many times to the same combination of nonce values and IDs. Furthermore, the ques-

tioner attaches a random value to the question based on a nonce search for voting. This prevents the

preparation of a large number of false votes in advance.

Furthermore, the questioner generates a public key for encryption and a secret key for decryp-

tion and attaches the public key to the question. Then, the respondents encrypt the votes, and the

questioner decrypts them. Thus, the viewer does not observe the vote information while limiting
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the viewer’s information. If an attacker sends a fake question and receives votes on the question,

the attacker can obtain the vote information, which includes the attached ID information. However,

because the number of questions is limited, collectable information is also limited.

Moreover, IDs that can be attached to a vote must be within d days of the date of the question,

and IDs that can be attached to a question must be older than d days and younger than 2d days.

Even if the attacker obtains information about questions as a viewer and finds the IDs that are often

attached to the same questions, the analyzed information between IDs cannot be used to falsify

votes.

These ideas can suppress the negative impact of a large number of false questions and answers.

Because the verification of the nonce value requires a single hash calculation, the computational

load on the legitimate agent receiving the question and vote is minimal and is not a direct factor in

creating a DoS attack. The number of votes, the content of the vote, and the summarized number

of votes will vary depending on the combination of ID selections, and this framework is assumed

to depend on this combination of IDs.

5.3.2 Procedures

The communication procedure of the proposed method is shown in Figure 5.2.

Posting Questions

First, the questioner prepares to ask the question by generating a public encryption key and a private

decryption key while searching for the nonce value, nonceq. The public key is attached to the

question, and the private key is used to decrypt votes. To search for the nonce, the questioner

selects nq IDs, IDq
1, IDq

2, . . . , IDq
nq from the ID database of the questioner, IDq. Then, it searches

for a nonce value, nonceq, that satisfies (5.1).

Hash(IDq
1||ID

q
2|| . . . ||ID

q
nq
||nonceq) < Tq. (5.1)

Here, Tq is the threshold of the hash value; when the value is small, the time required for the hash

search increases. Hash denotes a hash function. By searching for the nonce value in advance, agents
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Questioner

Select 𝑛𝑞 IDs from 𝑰𝑫𝒒; 

search 𝑛𝑜𝑛𝑐𝑒𝑞 for 𝐼𝐷1,2,⋯,𝑛𝑞
𝑞

Event that questioner 

wants to ask about occurs

～～

Respondent

Generate                     ,

question ID, and 𝑟𝑎𝑛𝑑

Send a question

using anonymize tool

Verify 𝑛𝑜𝑛𝑐𝑒𝑞

Select 𝑛𝑣 IDs from 𝑰𝑫𝒗

and search 𝑛𝑜𝑛𝑐𝑒𝑣

Encrypt and send a vote

using anonymize tool

𝐼𝐷1,2,⋯,𝑛𝑣
𝑣

𝑛𝑜𝑛𝑐𝑒𝑣

Yes or No

Verify 𝑛𝑜𝑛𝑐𝑒𝑣

If 𝐼𝐷1,2,⋯,𝑛𝑞

𝑞
and 𝑰𝑫𝒗 are matched 

𝑁𝑞 or more IDs, select Yes or No.

𝑰𝑫𝒒
𝑰𝑫𝒗

Generate public 

and secret key

Decrypt the vote with 

𝑛𝑜𝑛𝑐𝑒𝑞 𝑟𝑎𝑛𝑑

Description

ID: Mf716wSN

𝐼𝐷1,2,⋯,𝑛𝑞
𝑞

Description

If 𝐼𝐷1,2,⋯,𝑛𝑣
𝑣 is matched with 

𝑰𝑫𝒒 more than or equal to 

𝑁𝑣, summarize the vote.

Wait for 𝑉𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 votes

Figure 5.2: Overview of the privacy-preserved cooperation with countermeasure (PPCwC) frame-
work.

can ask a question at any time. To prevent the same combination of nonce and question IDs from

occurring more than twice, the questioner checks that the same combination is not used. It also

checks to see if the IDs have expired. When the combination of nonce and IDs is used or expired,

the agent disposes of the combination and searches for a new nonce.

Next, when an event occurs for which an agent has a question for other agents, the questioner

generates the asking description. Then, the questioner selects the prepared question IDs, nonceq,

a public decryption key, a random string, rand, and a new question ID for the sending question.

The asking description can be answered with either “Yes” or “No.” The new question ID is set as a
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random character string that should not overlap with any ID within the usage period. The random

string, rand, is used to generate the nonce for the vote, noncev, to prevent the nonce from searching

for votes in advance. Then, the questions are sent anonymously.

Furthermore, agents can send dummy questions to prevent the collection of question informa-

tion, such as IDs and question contents. This scatters the information about the combination of

question IDs that are often attached to the same question. Dummy questions are sent using the

same process as regular questions.

Generating Votes

The respondent who receives the question verifies that the nonce, nonceq, attached to the question

and IDq
1,2,...,nq

satisfy (5.1). It also checks that the expiration date of the attached IDs has not expired

and that the same nonce and ID have not been used in the past. If an inappropriate nonce or ID is

used, the question is discarded.

After verifying the nonce, nonceq, the respondent decides whether the question is sent from a

similar agent by comparing the attached IDs and the stored ID database of the respondent. Specif-

ically, the respondent checks whether the number of IDs that match in IDq
1,2,...,nq

and IDvis more

than Nq, that is, whether (5.2) is satisfied.

Num({IDq
1,2,...,nq

} ∩ IDv) ≥ Nq, (5.2)

where Num(e) is a function that returns the number of IDs that satisfies e.

When the respondent judges the question is sent from a similar agent, it selects “Yes” or “No”

for the question. If the respondent does not want to vote on the question, the agent can choose not

to answer it. When the respondent selects “Yes,” the respondent stores the ID of the question into

its ID database, IDv, which is used for similarity judgments in the future.

To send a vote, the respondent generates a nonce, noncev, and attaches it to the vote. The

respondent selects nv IDs from the ID database and searches for the nonce with randthat is attached
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to the question. Specifically, the respondent searches for the noncevthat satisfies (5.3).

Hash(IDv
1||IDv

2|| . . . ||IDv
nv
||rand||noncev) < Tv. (5.3)

This can prevent a large number of votes from being sent because multiple calculations are required

to find the nonce, which requires considerable calculation time. By adding randto the hash cal-

culation, we prevent the attackers from searching for a combination of IDs and nonces before the

question is asked. After searching for the nonce, the respondent attaches “Yes” or “No” and an ID

with a nonce to the vote.

The respondent then encrypts the vote using the public encryption key attached to the question

and votes anonymously. Encryption prevents the viewer from watching the vote, and attackers

cannot collect the vote information. If a respondent votes on a fake question by an attacker, the

attacker will get information about the vote and its attached IDs. However, it is not possible to

obtain information about who sent the votes. Furthermore, the number of questions is limited; thus,

the amount of information obtained is limited.

Summarizing Votes

The questioner who receives the votes decrypts them with the secret key and verifies the noncevattached

to the vote using (5.3). The questioner then checks whether the attached ID is within the expiration

date, and the same combination of nonce and IDs is not used. The votes, including inappropriate

nonces and IDs, are discarded. This prevents the same combination of nonces and IDs from being

used multiple times.

The questioner checks whether the vote is sent from a similar agent and checks to see if the IDs,

IDv
1,2,...,nv

, attached to the vote matches the questioner’s ID database, IDq, greater than or equal to

Nv. That is, when the IDs satisfy (5.4), the questioner considers the vote to be sent from a similar

agent.

Num({IDv
1,2,...,nv

} ∩ IDq) ≥ Nv, (5.4)

where Nv is the threshold. By attaching IDs to the votes, summarized votes are selected, and the
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attacker cannot send the summarized vote easily. This is because the attacker must randomly select

nv IDs from the questions stored and match Nv or more with the IDq.

When the questioner receives more than or equal to Vthreshold votes, the questioner stops receiv-

ing the votes, summarizes them, and decides the result based on the number of “Yes” and “No”

votes. After a certain number of votes are received, the questioner halts the operation; this prevents

the receipt of votes sent by attackers many times. The decision method is set as appropriate for the

application that is applied to the PPCwC framework.

5.4 Discussion

Numerical examples confirm that the proposed method prevents the negative effects of large num-

bers of questions and votes, and that these computational times are within the executable time. In

this discussion, the agents used an anomaly detection method for home IoT devices that learns the

behavior of users in each home for detection based on the usage of the IoT devices [32]. We as-

sumed an environment in which agents who learn the behavior of users in the home cooperate with

each other to compensate for the lack of data in each home in a city. Specifically, we assumed that

the city has Rl = 40, 000 homes. We also assumed that each home operates its home IoT devices

100 times per day, on average. On average, the agent wants to ask about 1% of these operations.

Thus, 40, 000 questions are sent to the framework on average per day. We set the validity period of

the ID to 7 days. We list the assumptions, representations, and assumed values in this discussion in

Table 5.2.

5.4.1 Impact of Attacks by Questioner

We confirmed that the PPCwC framework obviates the negative impact of a large number of false

questions based on similarity judgments and limiting the number of questions. If a large number

of false questions are sent, and false question IDs are stored in the respondent’s ID database, the

similarity judgment may be adversely affected. In this evaluation, we compared how the probability

that agent B votes on the question by agent A changes before and after the attack in the PPCwC

framework and the PPC framework. We evaluated two cases: an imitating attack in which an

– 102 –



Chapter 5. Privacy-Preserved-Cooperation Framework with Countermeasure

Table 5.2: Assumed city environment and representations for this discussion.

Explanation Represen-
tation

Assumed
value

Number of questions flowing through the framework per day Rl 40,000
Expiration date of question IDs d 7
Number of IDs attached to the question nq 100
Number of IDs attached to the vote nv 100
Threshold of matched IDs of the attached IDs of the question and the
respondent stored

Nq 30

Threshold of matched IDs of the attached IDs of the vote and the
questioner stored

Nv 30

attacker misleads by making two dissimilar agents similar, and an isolating attack that misleads by

making two similar agents dissimilar.

We define the storing number of IDs of legitimate questions in a day as Ql. When a question is

sent from a questioner of the user having similar characteristics as a respondent, and the respondent

votes “Yes,” the ID of the question is stored. Here, we set the ratio that an agent judges the legitimate

questions to be sent from similar users’ agent and votes to the number of all legitimate questions in

a day, Rl, as rs. The probability of voting “Yes” to the similar questions that are judged to be sent

from agents of users having similar characteristics is denoted by py. We can denote Ql in (5.5).

Ql(rs) = pyrsRl. (5.5)

Similarly, we define the number of stored IDs of questions sent by the attacker for a day as Qa.

Here, the probability that a respondent voted on a fake question depends on how the attacker can

limit the IDs that the respondent stores for all IDs. If the attacker can limit the IDs held by the

respondent agent to 1/c of the all IDs, the probability that the respondent votes on the fake question

by the attacker is denoted as crs. This is because the fake question is c times more likely to be

accepted by the respondent. We assume that the number of questions an attacker can generate per

day is Ra and the probability that a fake question is voted “Yes” is pa; Qa is represented by (5.6).

Qa(Mq, rs) = cparsRa(Mq), (5.6)
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where Ra is the number of questions that an attacker can generate in a day. If an attacker can search

one nonce for Mq s on average, Ra is expressed by (5.7).

Ra(Mq) =
86400

Mq
, (5.7)

where 86400 is the seconds in a day.

We also define the number of IDs that the questioner, Agent A, and respondent, Agent B, store

in common in a day. The number of legitimate questions’ IDs that Agents A and B commonly

store for a day, Cl, is calculated by the ratio of the number of question IDs that Agents A and B

commonly store to the number of all legitimate questions, xl. In addition to (5.5), we calculate

using (5.8).

Cl(xl) = pyxlRl, (5.8)

where xl takes a larger value if Agents A and B are similar, and a smaller value if they are not.

The number of false questions’ IDs that Agents A and B store in common in a day, Ca, is denoted

by (5.9), where xa is the probability that Agents A and B store IDs of false questions in common to

the total number of false questions.

Ca(Mq, xa) = cpaxaRa(Mq), (5.9)

where xa is assumed to be large when an attacker performs an imitating attack and small when an

attacker performs an isolating attack.

The number of IDs, S, that an agent holds after more than d days is denoted by (5.10):

S(Mq, rs) = d(Ql(rs) +Qa(Mq, rs)). (5.10)

For the number of stored IDs, SAB, that both Agents A and B hold, we use (5.11).

SAB(Mq, xl, xa) = d(Cl(xl) + Ca(Mq, xa). (5.11)

Here, we define two similarities of Agent B from the perspective of Agent A. We first set
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the similarity for legitimate questions between Agents A and B as Xl (0 ≤ Xl ≤ 1), where Xl

represents the ratio of the number of legitimate question IDs commonly stored by Agent B to the

number of legitimate question IDs stored by Agent A. Xl is close to 1 when Agents A and B are

similar and close to 0 when they are not. We also set the similarity of the attacker’s questions from

Agents A and B as Xa (0 ≤ Xa ≤ 1), where Xa is the ratio of the number of the attacker’s question

IDs stored by Agent B to the number of the attacker’s question IDs stored by Agent A. When an

attacker tries the imitating attack, it generates fake questions for acceptance by both Agents A and

B; when it tries the isolating attack, it makes the fake questions for acceptance by either Agent A or

B. Hence, Xa is close to 1 when the attacker attempts the imitating attack, and it is close to 0 when

the attacker attempts the isolating attack.

In this case, the probability, Preceive, that Agent B votes on Agent A’s question and Agent B’s

vote is accepted by the Agent A is calculated by the probability, Pquestion, that Agent B votes on

Agent A’s question, and the probability, Pvote, that Agent A accepts Agent B’s vote. The ratio of the

number of legitimate questions that Agents A and B vote on the number of legitimate questions is

r{s,A} and r{s,B}, respectively, and Preceive is represented by (5.12).

Preceive =


PquestionPvote, otherwise,

Null, Xlr{s,A} > r{s,B} ∨Xar{s,A} > r{s,B},
(5.12)

where Xlr{s,A} is the ratio that Agents A and B voted on legitimate questions to all legitimate

questions; Xar{s,A} is the ratio that Agents A and B voted on fake questions to all fake questions.

There is no case in which the number of questions answered by Agents A and B in common exceeds

the number of questions answered by Agent B; thus, we can set this case as Null. Pquestion and Pvote

are the probabilities of selecting nq and nv IDs and more or equal question IDs than a threshold

Nq and Nv attached to the question and voting from the IDs held by the questioner and respondent,
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respectively. These are expressed by (5.13) and (5.14).

Pquestion =

nq∑
i=Nq

(
SAB(Mq, Xlr{s,A}, Xar{s,A})

i

)
(
S(Mq, r{s,A})− SAB(Mq, Xlr{s,A}, Xar{s,A})

nq − i

)
/

(
S(Mq, r{s,A})

nq

) (5.13)

Pvote =

nv∑
j=Nv

(
SAB(Mq, Xlr{s,A}, Xar{s,A})

j

)
(
S(Mq, r{s,B})− SAB(Mq, Xlr{s,A}, Xar{s,A})

nv − j

)
/

(
S(Mq, r{s,B})

nv

) (5.14)

We list the representations of these equations of Subsection 5.4.1 in Table 5.3.

Impact of the Ratio of Agent Votes, r{s,A} and r{s,B}, and the Average Time of Nonce Searching,

Mq

In the case of imitating and isolating attacks, we discuss the probability that Agent B’s vote is

accepted for Agent A’s question, Preceive, changed by the ratio of Agents A and B votes on the

question, r{s,A} and r{s,B}, and the average time of nonce searching, Mq s. We compare the change

in Preceive using the proposed method with the case in which there are no attacks. The no-attack

case is set as Qa = 0 and Ca = 0. We also compare Preceive of the PPC framework. In the PPC

framework, we assume that an attacker sends one fake question per second, Mq = 1; thus, it sends

86,400 fake questions per day, as shown in (5.7).

In the case of an imitating attack, we show the difference in the no-attack case, as shown in

Fig. 5.3). In this case, the similarity of Agent B from the perspective of Agent A is set to Xl = 0.2,

and the attacker’s target of the imitating attack is Xa = 0.9. The case in which Preceive is Null is

described in white. Using PPCWC and setting Mq to an appropriate value, as shown in Fig. 5.3d,

the value of Preceive is almost the same as that in the case without an attack. By contrast, in the PPC
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Table 5.3: Representations in Section 5.4.1.

Explanation Representation
and value

Number of stored IDs of legitimate questions in a day Ql

Number of stored IDs of fake questions in a day Qa

Number of questions an attacker can generate in a day Ra

Number of stored IDs of legitimate questions that both Agents A and B
store in common in a day

Cl

Number of stored IDs of fake questions that both Agents A and B store in
common in a day

Ca

Number of IDs that an agent holds after more than d days S
Number of IDs that both Agents A and B store in common after more than
d days

SAB

Ratio of the number of legitimate questions that an agent votes to all legit-
imate questions

rs

Probability of voting “Yes” on the legitimate questions that includes same
IDs more than or equal to the threshold as IDs the respondent stored

py = 0.9

Percentage of IDs that an attacker assumes that Agents A and B stored to
all IDs

1/c

Probability that a respondent votes “Yes” on a fake question that includes
same IDs more than or equal to the threshold as IDs the respondent stored

pa = 1.0

Averaged seconds that the attacker can search the nonce for a question Mq

Ratio of the number of legitimate question IDs that Agents A and B com-
monly store to the number of all legitimate questions

xl

Probability of the number of fake questions that Agents A and B store in
common to the total number of fake questions

xa

Ratio of the number of legitimate question IDs that Agent B commonly
stores to the number of legitimate question IDs that Agent A stores

Xl

Ratio of the number of the attacker’s questions’ IDs stored by Agent B to
the number of the attacker’s questions’ IDs stored by Agent A

Xa

Ratio of the number of legitimate questions that Agent A votes to the num-
ber of legitimate questions

r{s,A}

Ratio of the number of legitimate questions that Agent B votes to the num-
ber of legitimate questions

r{s,B}

Probability that Agent B votes on Agent A’s question and that the vote is
accepted

Preceive

Probability that Agent B votes on Agent A’s question Pquestion

Probability that Agent A summarizes Agent B’s vote Pvote

framework shown in Fig. 5.3a, the probability that Agents A and B are mistakenly judged as similar
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Figure 5.3: Difference of Preceive between imitating attack and no attack, where c = 3. (a) is the
case using the PPCwC framework, where Mq = 1, and is also the case for the PPC framework.
(b) is the case using the PPCwC framework, where Mq = 10. (c) is the case using the PPCwC
framework, where Mq = 60. (d) is the case using PPCwC, where Mq = 300.

by the imitating attack and Preceive was high. This is because the PPCwC framework limits the

number of questions by nonce searching and suppresses the negative impact of false questions on

the similarity judgment. When Mq is small, the PPCwC framework does not suppress the negative

impact. Because Mq is the average seconds taken to search for the nonce of a question, we can
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reduce the negative impact of false questions by setting the nonce search to an appropriate difficulty.

However, if the value of Mq is extremely large, the nonce search seconds required for one question

becomes too long, which may result in an unimplementable execution time. The conditions on Mq

were evaluated in Subsection 5.4.3. In this evaluation, we found that Mq = 300 is sufficient to

reduce the impact of the fake question attack. Additionally, if the number of question IDs stored by

Agent A is less than 1/3 of the number of IDs stored by Agent B, Pquestion and Pvote are both small,

and there is no change in the case with no attack. By contrast, the impact of the imitating attack is

wide when the number of IDs held by the questioner, Agent A, is large.

Similarly, for the case of the isolating attack, we show the changes in Preceive compared with the

case where there are no attacks by changing r{s,A} and r{s,B} in Fig. 5.4). For this isolating attack,

we set the similarity of Agent B from Agent A as Xl = 0.8 and the similarity of the attacker’s goal

as Xa = 0.1. Similar to Fig. 5.3, using the proposed method and setting Mq to an appropriate value,

as shown in Fig. 5.4d, the value of Preceive is almost the same as in the case of no attacks. This is

because, in the PPCwC framework, the search for the nonce requires more time, thus reducing the

negative impact of false responses on the similarity judgment. By contrast, in the case of the PPC

framework shown in Fig. 5.4a, the isolation attack causes Agents A and B to incorrectly perceive

that they are dissimilar, and the probability of voting becomes low. This is caused by the receiving

of fake questions geared towards isolating Agents A and B. That is, attempting to suppress the

negative impact of the fake questions solely via similarity checks based on the attached IDs is

inadequate. The effect of isolating attacks is larger when the number of IDs stored by questioner

Agent A is smaller than that of Agent B.

Regarding the fake questions, the proposed countermeasure limits the number of questions by

nonce searching in addition to the PPC framework’s similarity check based on the IDs attached to

questions. This reduces the impact of fake questions to almost the same level as in the case without

an attack.
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Figure 5.4: Difference of Preceive between the isolating attack and no attack, where c = 3. (a) is
the case using the PPCwC framework, where Mq = 1, which is the same as the case of the PPC
framework. (b) is the case using the PPCwC framework, where Mq = 10. (c) is the case using
PPCwC, where Mq = 60. (d) is the case using the PPCwC framework, where Mq = 300.

Impact of the Amount of Question ID Information Known by the Attacker, c

In the case where the attacker can limit the number of IDs that the target agent stores to 1/c of the

total number of IDs, the fake question is c times more likely to be accepted by the respondent. For

the case of the imitating attack, we show the changes in Preceive compared with the case where there
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Figure 5.5: Difference of Preceive between imitating attack and no attack, where Mq = 300. (a) is
the case using the PPCwC framework, where c = 3. (b) is the case using the PPCwC framework,
where c = 10. (c) is the case using the PPCwC framework, where c = 25. (d) is the case using the
PPCwC framework, where c = 50.

are no attacks by changing c with r{s,A} and r{s,B} in Fig. 5.5). As shown in Figs. 5.5a and 5.5b,

even when the attacker could limit the number of IDs that Agents A and B stored to 1/3 and 1/10

of all IDs, the attack has no impact. This is because the PPCwC framework limits the number of

questions, and even if an attacker can limit the information about the question’s IDs to 1/10, the
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impact of fake questions on the similarity judgment is suppressed. However, as shown in Fig. 5.5c

and 5.5d, if the attacker can limit the information on the IDs held by Agents A and B to 4 and 2%

of the total IDs, the fake question may affect to the similarity judgement. However, because the

number of questions is limited throughout the framework, and there is little opportunity to collect

information about the IDs of questions that the attack target is likely to keep, it is difficult for an

attacker to limit the question IDs that the attack target is likely to keep to a few percentages. If the

attacker trains its own model using the attacker’s data as well as the legitimate agent for limiting

the question IDs, an attack against the agent of users having similar characteristics as the attacker’s

own learning model may succeed. However, in this case, the attack target is limited to the agent of

the user who has very similar characteristics that can limit the number of stored IDs to only 2%.

5.4.2 Impact of Attacks by Respondent

We ensure that the PPCwC framework suppresses the negative impact of a large number of false

votes. When an attacker tries to send a large number of valid votes, it is necessary to attach the IDs

stored by the questioner to the vote and search for the nonce value. We ensure that the summarized

results are not affected by false votes by calculating the percentage of summarized votes given by

the attacker in all summarized votes that the questioner received.

We define the number of summarized votes by legitimate respondents and attackers as a function

of time. The total number of summarized votes collected by the questioner, V , is represented by

the sum of Vlegitimate—the number of summarized votes by legitimate agents—and Vattack that is the

number of summarized votes by the attacker. We denote t as the number of computations needed to

verify one nonce value and to send votes, represented by (5.15).

V (t, cl, y) = Vlegitimate(t, cl) + Vattack(t, y). (5.15)

When V exceeds a threshold, Vthreshold, the collecting of votes is terminated. Moreover, the mini-

mum value of t that satisfies the condition is t∗, which is obtained using (5.16).

t∗ = Min(t|V (t, cl, y) ≥ Vthreshold). (5.16)
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The legitimate agent and attacker generate votes on the question and send them to the questioner.

When a questioner receives a vote, the questioner verifies its nonce, and whether the same IDs are

attached to the ID database of the questioner or not. Therefore, the number of votes to be adopted,

Vlegitimate, is obtained by multiplying the number of votes sent by the legitimate agent with the

correct nonce, L, by the probability, pl, that the questioner stores the same IDs as the IDs attached

to the votes based on the threshold. This is given by (5.17).

Vlegitimate(t, cl) = plL(t, cl), (5.17)

where pl is assumed to be 0.9. Because legitimate agents will only send votes on the questions that

sent from agents of users having similar characteristics, the probability that the questioner holds

the IDs attached to the vote is considered high. When a legitimate agent votes, it must search for a

nonce and send the vote as soon as the nonce is found. We set the probability of finding a proper

nonce value in one hash calculation to pn. The probability of finding a nonce by t-time calculations

is expressed as pn
∑

k=1 t(1− pn)
k−1. If the number of agents attempting to vote is cl, the number

of received votes from legitimate agents, L, obtained for the number of computations, t, is expressed

by (5.18).

L(t, cl) = clpn

t∑
k=1

(1− pn)
k−1 . (5.18)

pn is expressed by (5.19), where the hash calculation outputs a decimal number, and the nonce value

satisfies the condition that the top x digits are 0.

pn =
1

10x
. (5.19)

Similarly, for the attacker’s votes, the attacker selects the question IDs for attaching to the vote

and searches for a nonce. Similar to (5.17), we use the number of false votes by the attacker, A,

and the probability, pattack, that the IDs attached to the attacker’s vote match the questioner’s ID
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database with a threshold. We can define Vattack by (5.20).

Vattack(t, y) = pattack(y)A(t). (5.20)

Unlike the legitimate respondents, the attacker sends votes multiple times. When the number of

nonce searches is executed t times, the probability of finding k nonces is expressed as tCkp
k
n(1 −

pn)
t−k, and the expected value of the number of nonces that can be found is

∑t
k=1 ktCkp

k
n(1 −

pn)
(t−k). Thus, we assume that the attacker has ca times the calculation power to a legitimate agent,

and the total number of answers, A, sent by the attacker is represented by (5.21).

A(t) = ca

t∑
k=1

k

(
t

k

)
pkn(1− pn)

(t−k). (5.21)

The probability that the ID attached to the vote by the attacker matches the IDs held by the ques-

tioner, pattack, depends on how the attacker limits the IDs held by the questioner. We assume that

the attacker keeps B IDs within the expiration period, and yB IDs are common to the questioner’s

ID database, where y is the ratio of the attacker having the same IDs as the questioner to all the IDs

that the attacker keeps. The probability, pattack, that the attacker’s fake votes will be summarized by

the questioner is the probability that the attacker will select NV or more IDs of the yB IDs when

selecting nv question IDs from B IDs. It is expressed by (5.22).

pattack(y) =

nv∑
i=Nv

(
yB
i

)(
(1−y)B
nv−i

)(
B
nv

) . (5.22)

In this discussion, attackers have B = 20, 000 IDs.

We define Rv as the ratio of summarized votes sent by legitimate agents to the total number of

summarized votes on a question, as in (5.23).

Rv(cl, y) =
Vlegitimate(t

∗, cl)

V (t∗, cl, y)
. (5.23)

When we calculate t∗, we set the threshold, Vthreshold = 100.
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Table 5.4: Representations in Section 5.4.2.

Explanation Representation
and value

Number of summarized votes V
Number of summarized votes from legitimate agent Vlegitimate
Number of summarized votes from attackers Vattack
Threshold of V Vthreshold = 100
Ratio of summarized votes by legitimate agents to all summarized votes Rv

Number of summarized votes from legitimate agent of PPC framework V̂legitimate

Number of summarized votes from attackers of PPC framework V̂attack
Computation times for verifying one nonce value and send a vote t
Minimum time that the questioner receives Vthreshold or more votes t∗

Number of received votes by the legitimate agent with the correct nonce L
Probability that the agent has stored the same IDs with the IDs attached to
the received votes and accepts the vote

pl = 0.9

Probability of finding a nonce value in one hash calculation pn
Number of agents attempting to vote cl
As a conditional expression for nonce, the number of digits that should be
0 from the top in each digit of the hash value

x

Number of false votes by the attacker A
Probability that the questioner have stored the same IDs attached to the
attacker’s vote and accepts the vote

pattack

Calculation power times of attacker to a legitimate agent ca
Number of IDs that the attacker holds B = 20, 000
Ratio of the attacker having the same IDs as the questioner to all the IDs
that the attacker keeps

y

We list the representations of the equations of Subsection 5.4.2 in Table 5.4.

Impact of Number of Agents Who Vote on Questions, cl, and Amount of Question ID Infor-

mation Known by the Attacker, y

We calculate Rv for each cl and y, as shown in Fig. 5.6). In Fig. 5.6, even if there are 50 attackers,

the negative impact is suppressed when y is 20% or lower. This is because in the PPCwC frame-

work, the questioner summarizes the votes with avoiding the votes sent from attackers judging by

the IDs attached to the votes. Here, we discuss y. The case in which y becomes high, or the case in

which the available amount of ID information is large, is rare. One reason for this is that the votes

– 115 –



5.4 Discussion

0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

0.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.

cl

y

0.2

0.4

0.6

0.8

Figure 5.6: Ratio of accepted votes by the legitimate agents out of all accepted votes, Rv, for the
number of agents that voted on the question, cl, and the ratio of the attacker having the same IDs
as the questioner to all the IDs that the attacker keeps, y. The attacker sets ca = 50 times the
calculation power of a legitimate agent with the PPCwC framework.

are encrypted and the viewer cannot collect the information of IDs attached to the votes. Another

reason is that the expiration terms for attaching IDs between questions and votes differ, and the

attacker cannot utilize the ID information collected by watching the question as a viewer. Even if

the attacker sends fake questions and collects the ID information from the votes on the questions as

a questioner, the collectable ID information is limited because the number of questions is limited.

Thus, when the questioner answers fewer than 20% of the questions, it is difficult for y to exceed

20%. The border value, 20%, of y is changed by the setting of a parameter Nv; this is discussed
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in Section 5.4.2. Only in a case where an attacker uses its own data to train a model does it be-

come possible to attack agents of users with similar characteristics using the IDs collected by the

attacker’s agent. Even in the rare case where y is large, that is, the attacker generates its own model,

it is possible to suppress the negative impact with a certain number of votes.

Impact of the Calculation Power of Attackers, ca

We discuss the calculation power of the attackers, ca, which is equivalent to the number of attackers.

We calculate Rv for each cl and y, as shown in the heat map in Fig. 5.7). In Fig. 5.7d, even

if the number of attackers exceeds the number of legitimate respondents who vote, the proposed

countermeasure can suppress the negative impact when y is 0.20 or lower. This is because the

questioner judges the similarity to the votes in the PPCwC framework and the framework limits the

votes by the nonce searching. Thus, the proposed countermeasure suppresses the negative impact

of a large number of false votes.

Impact of the Threshold, Nv, of Matched IDs Between the Attached IDs to Votes and Ques-

tioner’s ID Database

We evaluated Rv by changing the Nv with cl and y, as illustrated in Fig 5.8. By changing the

threshold, Nv, even if there are more attackers than the legitimate votes, and the attacker can limit

the IDs held by the questioner, y, from 0.2 to 0.4, the proposed framework can suppress the neg-

ative impacts. Thus, by setting appropriate a threshold value for applying services to the PPCwC

framework, PPCwC framework can fit multiple types of services.

Comparison of PPCwC and PPC Frameworks

We compare the PPCwC with the PPC framework to discuss the effectiveness of the proposed

countermeasure. In the PPC framework, both the attacker and the legitimate agent can generate

a vote at t = 1 because a questioner does not require nonce searches. Therefore, in the PPC

framework, the number of summarized legitimate votes, V̂legitimate, and the number of summarized

attacker’s votes, V̂attack, are defined by equations (5.24) and (5.25). Because legitimate agents can
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Figure 5.7: Ratio of summarised votes by the legitimate agents out of all summarised votes, Rv, for
the number of voting agents, cl and the ratio of the attacker having the same IDs as the questioner
to all the IDs that the attacker keeps, y, using the PPCwC framework. (a) Attacker sets ca = 10
times the calculation power of the legitimate agent. (b) ca = 50. (c) ca = 100. (d) ca = 1, 000.

generate votes at t = 1 and the PPC framework summarizes all votes until the number of received

votes is greater than the threshold, Vthreshold, we denote the number of people who voted as cl
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Figure 5.8: Ratio of summarized votes by the legitimate agents out of all summarized votes, Rv, for
the number of voting agents, cl, and the ratio of the attacker having the same IDs as the questioner to
all the IDs that the attacker keeps, y, with the PPCwC framework. There are ca = 1, 000 attackers.
(a) Threshold of Nv was set to 30. (b) Nv = 50.

in (5.24).

V̂legitimate(t, cl) =


0, t = 0

cl, t > 0.
(5.24)

Then, because the attacker votes many times, we denote V̂attack using ca in (5.25).

V̂attack(t) = cat. (5.25)

We set the proposed method and describe the percentage of accepted votes by legitimate agents to

all accepted votes, Rv, for the number of legitimate agent who votes on the question, cl, as shown

in Fig. 5.9). We set y = 0.2.

The proposed method maintains a high percentage of legitimate votes. For example, in Fig. 5.9d,

the PPCwC framework accepted more than 90% of legitimate votes when the 1,000 legitimate

agents and the 1,000 attackers voted. That is, the proposed countermeasure suppressed the impact

of the fake votes to less than 10%. However, the ratio of accepted legitimate votes of the PPC
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Figure 5.9: Ratio of summarized votes by legitimate agents to all summarized votes, Rv, with the
PPCwC and PPC framework to the number of respondents cl, where y = 0.2. (a) The number of
attackers is ca = 10. (b) ca = 50. (c) ca = 100. (d) ca = 1000.

framework remains lower than 50%. This is because the number of false votes is limited, and the

questioner checks whether the vote is sent from a similar agent and avoids the votes sent by the

attackers in the PPCwC framework. We also found that the PPCwC framework is robust to changes

in the number of attackers because the ratio of the summarized legitimate votes exceeds 90% in any

case in Fig. 5.9.

We confirmed that even when many false votes are given, the impact on the summarized results

can be suppressed by conducting a nonce search and determining the similarity by attaching IDs to

the votes. Only in a case where an attacker uses its own data to train a model will it be possible

to attack agents of users with similar characteristics to the attacker using the IDs collected by the
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attacker’s agent.

5.4.3 Evaluation of Implementability by Computation Time

In this section, we evaluate the relationship between the time required for nonce searching and the

number of questions and votes required and check whether the proposed countermeasure can be

implemented. If the time required for the nonce search is too long, it will be difficult to ask and

answer the required number of questions and votes. Conversely, as discussed in the Sections 5.4.1

and 5.4.2, if a nonce search can be performed easily, the impact of false questions and votes may

not be suppressed. Therefore, we confirm that our method is feasible by checking the calculation

seconds per day.

The PPCwC framework requires nonces to be searched for the questions and votes. The time

required for a question is calculated by multiplying the averaged calculation time for finding a

nonce for a question, Mq, and the number of questions, u. The time required for voting is also

calculated by multiplying the calculation time for finding a nonce for a vote, Mv, and the number

of votes, Rlrs, where Rl is the number of questions asked by all agents in a day, and rs is the ratio

of questions voted by an agent to all questions. The computation seconds, F , per day is represented

by the sum of these values. When F does not exceed 1 day, 86,400 seconds, it can be calculated.

Thus, the condition is denoted by (5.26).

F (u, rs) = uMq +RlrsMv ≤ 86400. (5.26)

At this time, Mv is expressed in (5.27) using the calculation seconds, Tnonce s, per hash calculation.

We assume that the search for the nonce of a vote is performed at least t times hash calculations,

such that the probability of finding the nonce for the vote is greater than the threshold, Tv.

Mv = TnonceMin(t|pn
t∑

k=1

(1− pn)
k−1 > Tv), (5.27)

where the value of Tnonce varies depending on the computing environment, and pn
∑t

k=1 (1− pn)
k−1
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Table 5.5: Representations in Section 5.4.3.

Explanation Representation
and value

Total computation seconds per day F
Number of questions per day u
Seconds required to search one nonce for a question Mq

Number of questions asked by all agents in a day Rl

Ratio of questions answered by an agent to all questions rs
seconds required to search one nonce for voting Mv

Calculation seconds per hash calculation Tnonce

Threshold of percentage that an agent found a nonce for a vote Tv

Hash calculation times t

is the probability that a nonce satisfying the condition is found for the first time in the t-th hash cal-

culation.

We list the representations in Table 5.5.

We show the computation seconds, F , for rs and the sum of seconds for the question, uMq,

while varying the seconds, Tnonce s, per nonce search in Fig. 5.10 as a heatmap, where Tv = 0.999.

If the computation seconds does not satisfy the condition of (5.26), we show that in white.

We found that, by setting up the computing environment appropriately and setting the value of

Tnonce correctly, the constraint on the computation time can be satisfied. For example, regarding

the discussed cases in this section, in Fig. 5.10b, we set u = 1 and Mq = 300 such that the value

can avoid the negative impact of the fake questions based on Subsection 5.4.1, and rs = 0.025,

which means voting for 1, 000 questions and it can suppress the negative impact, as discussed in

Subsection 5.4.2, the calculation seconds, F , is 20, 100 s, which satisfies the condition. Thus, we

can prepare a calculation environment in which the value of Tnonce is 0.3. Moreover, by changing the

calculation resources, the proposed framework is applied to multiple services that require different

numbers of questions and votes. In summary, we confirmed that the proposed method can be

implemented within a computationally feasible range by preparing a computational environment

according to the number of questions and answers.
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Figure 5.10: Computation seconds, F , for the ratio, rs, that an agent votes on the questions and
the calculation seconds for questions in a day, uMq, where Tv = 0.999. (a) sets Tnonce as 0.1. (b)
Tnonce = 0.3. (c) Tnonce = 1.0.

5.4.4 Limitations of the PPC Framework and the Countermeasure

We analyzed the security risks of the PPC framework, not only those of false questions and vote

problems, but also those of service suspension attacks by DoS and acquisition of statistical informa-

tion and information provider information based on the Information-technology Promotion Agency,

Japan’s security risk analysis guide [66]. We show the results and countermeasures in Table 5.6.

Threats, vulnerabilities, and business damage are rated on a scale of 1 to 3, with higher numbers

indicating greater risk. Risk values are rated on a scale of A to E, with A being the highest risk and

E being the lowest.

The high risk of attacks on similarity judgments by fake questions and votes and falsifying

voting results can be resolved by the proposed countermeasure. The leakage of informants can
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Table 5.6: Risks of the PPC framework, their respective risk levels, and countermeasures.

Risk Threats Vulner-
abilities

Business
Damage

Risk
Value

Countermeasures

Attack on
similarity
judgments

3 3 3 A The proposed countermeasure reduces
the impact of a large number of ques-
tions.

Falsifying
voting
results

3 3 3 A The proposed countermeasure reduces
the impact of a large number of votes.

Leakage of
informants

1 1 3 C This can be addressed by anonymiza-
tion.

Acquisition
of statistical
information

3 3 1 C Encryption of votes, and dummy ques-
tions can be used to some extent, but
owing to the open specification of this
framework, the acquisition of statistical
information itself cannot be prevented.

Out of ser-
vice (DoS)

1 3 1 E It does not affect the agent’s learning it-
self, but the framework is not available,
and data from other homes are not avail-
able. One of the countermeasures is to
monitor the network pathway [67].

be prevented by the anonymization of the PPC framework. However, it is not possible to prevent

the leakage of statistical information. This is because this framework is open to everyone and

communicates in the open. It is possible to prevent viewers from obtaining information about the

votes by encryption. It is also possible to reduce the amount of information by adding noise to the

information obtained from questions by using dummy questions. Moreover, because this framework

is a decentralized and open framework with which anyone can participate, it is difficult to deal with

service outages caused by DoS attacks. When such a service-shutdown attack occurs, it does not

give false data to the agents, but the framework becomes unavailable. This means that other users’

data are not available, and the data shortage cannot be resolved. One countermeasure method that

drops packets of the same signature on the path of the network using software-defined network

technology is considered [67].
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5.5 Conclusions and Future Work

The privacy-preserved cooperation (PPC) framework enables users to cooperate with others having

similar characteristics without sharing information about who the sender is. However, if an attacker

sends a large number of false questions and votes, legitimate agents cannot cooperate with the agents

of similar users and receive false information. In this Chapter, we proposed a countermeasure for

this weak point of the PPC framework that obviates the negative impact of a large number of false

questions and votes. In the proposed method, the agents utilize the information that only agents of

users having similar characteristics know to avoid accepting false questions and votes. The agents

attach the IDs of the questions to which they voted “Yes” to their questions and votes. When the

number of matched IDs between the attached IDs and the IDs for which the received agent voted

“Yes” exceeds a threshold, the question and the vote are accepted by the received agent. Because

fake questions and votes could be accepted if the attached IDs accidentally match the IDs that the

receiver stored, the countermeasure also limits the number of questions and votes that agents can

send by requiring that a nonce be searched for to enable sending a question and voting. The nonce

is an arbitrary value that is added to the attached IDs and the hash value of the added value is less

than a specified threshold. We showed that the countermeasure is effective via a numerical example

that showed the probability that an agent votes on a question sent from another agent remains

unchanged from no-attacks; the ratio of the accepted votes sent from attackers to all accepted votes

is suppressed to less than 10%. Moreover, we ensured that the calculation time is reasonable via a

numerical example by setting up the computing environment appropriately.

One future task is to confirm that the system can be applied to various social issues by imple-

menting actual applications. We adapted the anomaly detection method of home IoT in Chapter 4.

To determine the pros and cons of this framework, we will apply other services and evaluate them.

We will also study how to ensure scalability when the number of users increases.
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Conclusion

Anomalous operation attack that an attacker operates home IoT devices by sending packets via

an intruded smartphone or an IoT device is an important problem. In this thesis, we proposed

a detection method focusing on the behaviors of users. Learning the behaviors sufficiently may

require a large amount of data, but the amount of data collected in each home is limited. However,

anomalous operations still need to be detected regardless of whether the data amount is sufficient

or not. In this thesis, we also proposed a framework to utilize data of similar users without sharing

private information.

First, we proposed a method to detect the anomalous operations based on user behavior. We

validate the effectiveness of our method for detecting anomalous operations of home IoT devices

by comparing it with an existing method and some of its variants. The proposed method can learn

sequences of user behaviors according to conditions such as time of day, temperature, and humidity.

Then, when an operation command arrives, the method compares the current sequence with learned

sequences for the current condition. If the sequences do not match, the operation is considered

as anomalous. We constructed a network of home IoT devices in our laboratory and allowed four

subjects to operate the devices for 3 months. We recorded the times at which the devices were oper-

ated along with sensor data. Using these data, we evaluated the detection and misdetection rates of

the proposed method and its variants considering only the condition or without removing spurious

events. The proposed method could detect over 90% of anomalous operations with less than 10%
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of misdetections if the events related to legitimate operations could be monitored. Therefore, we

found that the effective way to learn user behaviors in homes for the detection of anomalous oper-

ation is by learning event sequences and user habits when entering and leaving rooms. In addition,

noise (i.e., spurious event) removal is necessary for improved detection. When single operations

that do not correspond to observed sequences occur, the proposed method achieves a higher accu-

racy by learning sequences executed multiple times than by using only condition information. To

distinguish whether the single operation is usual usage or not, we proposed the estimation-based

method.

Second, to detect anomalous operation attacks on IoT devices in a home, we proposed a detec-

tion method that estimates the home state based on the observed values of IoT sensors and device

operations and learns the event sequences of users in the home in each estimated state. After train-

ing, when a device operation is observed to determine whether it is legitimate or anomalous, the pro-

posed method calculates the occurrence probability of the sequence related to the target operation.

If the occurrence probability is lower than the threshold, the operation is detected as anomalous.

For this evaluation, we simulated anomaly detection using behavioral logs and sensor data obtained

from real homes for one month. We evaluated the improvements of the proposed method and the

effectiveness of each part by comparing the proposed method to other methods, one of which did

not use sequence information and the other did not estimate the in-home situation. We found that

the proposed method achieved a 15.4% higher detection ratio with fewer than 10% misdetections by

using the sequence information, and it achieved a 46.0% higher detection ratio with fewer than 10%

misdetections by using the estimation of the in-home situation. Thus, the proposed approach can

analyze the legitimate behavior of users and legitimate usages of the IoT devices comprehensively

by using long- and short-term information, that is, by estimating the home state transition and using

the sequence of behaviors. However, a certain amount of data was required to learn the behaviors

of users in the home.

Third, we proposed a cooperation framework that utilize the dataset of similar users without

sharing their private information to detect anomalous operations. In this platform, an agent was

deployed at each home. The agent learned the behavior of the users and detected anomalous oper-

ations based on the learned behaviors. However, if the agent did not identify whether the current
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operation was legitimate or not, due to a lack of training data, it asked the other agents by sending a

request. The agent informed the property of the users by attaching the IDs of the past requests that

matched the behavior of the corresponding users. Then agents who also identified the past requests

of the attached IDs as legitimate replied to it. By doing so, our framework enabled agents to co-

operate with similar agents without sharing their private information. We evaluated our framework

by using the dataset monitored at real homes. The results indicated that our framework reduced the

number of false negatives of anomalous operations by cooperating between similar agents.

Finally, we proposed a countermeasure for the framework that suppress the affection by a large

number of false questions and false votes by checking the similarity of the questioner and respon-

dent each other and required computation time through the search for nonce. In this countermeasure,

we check the message is sent from the similar agent by checking the attached IDs to the message.

If the agent who received the message answered “Yes” to the same questions of the attached IDs,

the agent accepts the message. By doing so, the agent avoids to accept the messages that sent from

attackers because it is difficult for attackers to attach the IDs that the agent answered “Yes” in the

past. By the numerical example, we showed that it is possible to suppress the negative impact of a

large number of questions and answers, and that the countermeasure is workable.

By combining all methods proposed in this thesis, we can construct an anomaly detection sys-

tem that can detect anomalous operations based on user behavior even if each home does not have

enough amount of data. In this system, an agent in a home learns user behaviors based on the

combination of event sequences and home states. When a command arrives at a home IoT device,

the agent verifies whether it matches with the legitimate behaviors. If the command does not agree

with the learned behavior, it is classified as an anomaly and dropped. When the agent cannot decide

whether the command is legitimate or not, it can ask agents that learn similar behaviors via the

cooperation framework.

In this thesis, we did not set a concrete goal of detection percentages, but, our methods could

detect anomalous operations that the users cannot observe physically, such as the cases that all users

are out of home, sleeping, or doing other tasks. In other words, users can find the operated devices

anomalously and can stop the devices by themselves. Hence, the damage from the anomalous

operations could be limited. In addition, users can accept some omissions of anomalous operations
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and misdetections, considering the running of the anomaly detection system. The acceptable range

differs from the types of devices and environment of users. For example, if a heater is operated

in a home of a student living alone in summer, the damage may be only the electricity cost, but

in a home with a baby, the damage would be fatal such as heat stroke. Therefore, in this thesis,

we calculated and described the achievable detection ratio with each misdetection for each IoT

device; we discussed the accuracy of anomalous operation detection for IoT devices in general.

Nonetheless, the final goal of anomalous operation detection for smart home IoT devices is to detect

all anomalous operations without misdetections despite the types of IoT devices. However, this

requires more different and detailed sensor data, such as location information, usage of smartphones

or AI speakers, and biodata obtained from smartwatches, for learning the behaviors. Thus, one of

our future work is to achieve the perfect detection.

Another challenge is to apply the method to learn user behaviors to other services such as au-

tomations of operating home appliances. By learning user behaviors, we can estimate the users’

preferable operations and control home appliance based on the estimated preferences. We also plan

to apply our cooperation framework to other applications. For example, by applying our frame-

work to a system that recommends products to users, an agent recommends a product using the

information on similar users without sharing their private information.

We believe that the whole discussion in this thesis and the remained research topics above will

contribute for activating efforts in development of more various ICT services.
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