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Abstract—To realize real-time mobile augmented reality ap-
plications, various objects in the real world need to be instantly
identified, located, and represented as a digital twin through
sensor devices and edge IoT systems. However, it is challenging to
make a fast and accurate decision on what the object is from real-
time noisy streaming information. Multimodal decision making
has been expected to mitigate such incomplete information and
improve the accuracy of simplified recognition algorithms tuned
for edge devices. In this paper, we propose an object estimation
method inspired from the multimodal information processing
mechanism of the brain, which makes decisions based on multiple
types of uncertain observed information. Through computer sim-
ulations, we show that our proposed method identifies an object
accurately and quickly from uncertain observed information.

Index Terms—Mobile AR, digital twin, multimodal recognition,
Bayesian attractor model, Bayesian causal inference.

I. INTRODUCTION

Real-time mobile augmented reality (mobile AR) appli-
cations, or more generally cyber physical systems (CPS),
are promising use cases for 5G mobile network and edge
computing systems. For these uses, digital representations of
physical objects, or so-called digital twins, play a critical
role in representing the whole 3D space. To understand and
control the real world using digital twins, it is necessary to
instantly understand various objects in the real world through
sensor devices. In other words, it is necessary to uniquely
identify what kind of object exists in front of us, locate its
position, and represent it with a digital twin. In recent years,
technologies like convolutional neural networks (CNNs) have
made remarkable progress, but it is still challenging to make
a fast and accurate decision on what an object is from real-
time streaming information such as video because deep CNN
models require a huge amount of computation.

Uncertainty in image-based object recognition is another
challenge. Because the real world in front of a camera is
continuously changing, uncertainty in real-time observation of
the real world cannot be avoided owing to noise or instability
in real-time streaming information, as well as unavoidable
incompleteness of the observation itself. Moreover, when
multiple objects having a similar shape and color are located
in front of the camera, it is quite difficult to identify them
using only video information. Therefore, multimodal decision
making is expected to mitigate such incomplete information
and improve the accuracy of unimodal recognition [1], but the
tradeoff between accuracy and computational complexity of

deep CNN models has not been fully solved for edge devices
performing real-time recognition of moving objects.

In this paper, we propose a multimodal object recognition
method inspired by the superior function of the human brain
because the information processing mechanism of a brain is
a familiar example of a system that makes decisions from
such uncertain observation. The brain uses uncertain infor-
mation obtained from sensory organs to infer the state of
the surrounding environment and to make final decisions. In
recent years, mathematical modeling of the brain’s information
processing mechanisms has been promoted, and such models
include the Bayesian attractor model (BAM) [2] and Bayesian
causal inference (BCI) [3], [4].

II. METHOD

By using the BAM to estimate objects individually from
the features of the video modality and the location modality
obtained from the sensor devices, and then integrating them
with BCI to make decisions, we can achieve robust object
recognition based on uncertain observation information.

a) Object Estimation by the BAM: The BAM outputs
values called confidence, which indicate what is observed
corresponds to one of the options in memory, based on the
information acquired by sensory organs. To apply the BAM
to object estimation, it is necessary to determine the features to
be observed by the BAM in each modality, and the reference
data to be memorized in the BAM.

The feature values of the video modality are extracted
using a Siamese region proposal network (RPN) [5]. In our
proposal, a simple CNN consisting of four layers is used to
greatly reduce the computational cost. Because the recognition
decision is made by the BAM, the role of the CNN is just to
extract feature values, and an encoder like a shallow CNN
is suitable for this purpose. The feature values are 128-
dimensional data from the output of the Siamese network
corresponding to the bounding box output by the RPN.

The feature values of the location modality are the 3D world
coordinate system data calculated from the camera direction
vector and the depth information integrated from multiple
frames. Thus, the feature values to be fed to the BAM are 3D
data, such as the x-y-z location in a world coordinate system.

The BAM stores the feature values of a reference im-
age/location of the objects to be estimated. For the video
modality, to enable one-shot learning, that is, to use just one



representative image and eliminate pre-training, only the first
image of an object in the video where each object is first
seen is used to calculate the feature values. For the location
modality, the initial object location stored in memory is used
as a feature value. We assume that objects are stationary during
scene acquisition.

b) Extension of the BAM with BCI: After the BAM
performs object estimation in each modality, the BCI model
performs causal inference. Here, the confidence of the BAM,
c, is input to the BCI model as the observed value, causal
inference is performed to infer whether the same object is
observed in the video modality and the location modality, and
the result is used for multimodal integration by the model
average algorithm to output the final object.

The BCI model in [3] performs causal inference accord-
ing to Bayes’ theorem, as shown in the following equa-
tion: p(C|u1, u2) = p(u1, u2|C)p(C)/p(u1, u2), where p(C)
is the probability of observing the same object in both
modalities; C takes two values, 0 (observing separate ob-
jects) or 1 (observing the same object); and u1 and u2

are the observed values of each modality, respectively, in
this case the confidence value of each BAM. Reference [3]
defines p(u1, u2|C) in a continuous manner, and we re-
define it in a discrete manner as follows: p(u1, u2|C =
1) =

∑K
k=1 p(u1, u2|Ok)p(Ok) and p(u1, u2|C = 0) =∑K

k=1 p(u1|Ok)p(Ok)
∑K

k=1 p(u2|Ok)p(Ok).
c) Model Average: Based on the results of causal infer-

ence, multimodal integration is performed to output the final
object estimation results. Here, a cost function weighted by
the results of causal inference is calculated as in the equation
below, and the objects O′m that minimize it are used as the final
object estimation results for modality m (1≤m≤2). Here, if
C = 1, O′1 and O′2 output the same object, and if C = 0,
the estimation result of each modality is output as it is.
Costm(Om) = p(C = 1)

∑K
k=1 |Om − Ok|p(Ok|u1, u2) +

p(C = 0)
∑K

k=1 |Om − Ok|p(Ok|um), where |Om − Ok| is
0 if Om = Ok, and otherwise it is 1. Although the distance
error of the estimated position of the object are used in [3],
because the distance cannot be defined when performing object
estimation, it is assumed that the calculation is based only on
whether the modalities agree or disagree.

d) Object Identification Method: To use the BAM and
BCI for object estimation, in the above equation, the proba-
bility that the object Ok is observed is p(Ok). In our proposal,
the initial value of p(Ok) is 1/Nobs, where Nobs is the number
of objects and p(Ok) is updated by Bayesian inference after
every observation. For object identification, we substitute c for
u. The probability that the BAM confidence value is c when
the object Ok is observed is defined as p(c|Ok), which is
used for the calculation of p(Ok|c). Then, finally, we obtain
the object label that minimizes the cost function. Note that
because the confidence level may take very small values, all
values below the threshold are taken as the same value as the
threshold as input to the causal inference model (the threshold
in this case is 10−50).

III. RESULTS

To confirm the effectiveness of the object estimation method
applying the BAM and BCI, as described above, we conducted
a simulation-based evaluation. For the video dataset, we used
a real measurement public dataset of various objects (Yale-
CMU-Berkeley Object and Model set) [6]. For each frame

TABLE I
CORRECT RESPONSE RATE (%)

Modality Obj. 1 Obj. 2 Obj. 3 Obj. 4 Total
Unimodal video 100.0 25.2 97.8 94.6 79.4
Unimodal location 99.6 97.7 29.6 99.7 81.7
Multimodal video 99.6 82.1 98.5 98.5 93.8
Multimodal location 99.6 97.7 36.6 99.7 83.4

and each of four objects in the video data, we extracted the
features of the video modality and location modality. In the
following evaluation, for each object, we determined whether
the object was correctly identified when the video modality
and location modality features were observed.

a) Accuracy: Table I shows the percentage of correct
answers for recognition in each modality. In the table, each
“Unimodal” modality shows the results of decision making
based only on the maximum confidence output of each BAM,
and each “Multimodal” modality shows the percentage of
correct responses resulting from calculating the model aver-
age for each modality. In the model average algorithm, the
output is based on one modality while the other modality
complements the recognition result. We do not discuss in this
paper which modality should be treated as primary in the
multimodal approach, and consider it as a future issue, but
all of the results in this study show an improvement in the
correct answer rate when all objects are estimated compared
to the unimodal results.

b) Calculation Time: As for the computational time
of the proposed method, the most computationally intensive
operation is when 128-dimensional video features are input to
the BAM, zt is estimated, and the confidence level is output.
The actual computation time on a desktop computer (CPU:
Core-i7 8700, RAM: 16.0 GB) for this operation was 1.18 ms
per frame input, which can be applied to 30-fps and 60-fps
videos in this evaluation environment.

IV. CONCLUSION

In this paper, we proposed a method for object estimation
from noisy observed information based on multiple types of
uncertain observation information. We introduce a mechanism
for making appropriate decisions by processing and combin-
ing incomplete observation information from two modalities.
Computer simulations showed that the proposed method can
combine the parts that are recognized with high confidence
in each modality and can make decisions with higher accu-
racy than that of a unimodal method. Future work includes
investigating how to learn a new attractor when an object is
recognized that has not been learned beforehand and how to
estimate multiple objects by observing them simultaneously.
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