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Abstract—In this paper, we mathematically generalize prob-
abilistic Grant Free (GF) scheduling models so that they can
be easily extended to deal with various problems in URLLC use
cases. To demonstrate the extensibility of the generalized models,
we introduce the reliability parameter α to the models and show
that the extended models can be more rigorous against failure
scenarios, which provides more flexible options in the design of
GF scheduling.

Index Terms—URLLC, 5G, Grant-Free scheduling

I. INTRODUCTION

Grant Free (GF) scheduling models have appealed to 5G
research community because of their intuitive approach to
deal with the tight latency requirement in various URLLC
use cases. In [1], the authors proposed probabilistic GF
scheduling models which calculate the success probability
of data transmission from UE to gNB with given allocated
radio resources. In detail, the models determine how many
radio resources should be allocated to UEs so as to transmit
data to gNB successfully within the reliability requirement,
1-10−5. However, the GF scheduling models in their paper
were described only with examples so the extensibility of
the models is limited. For this reason, we mathematically
generalize the GF scheduling models so that they can be easily
extended to deal with various problems in URLLC use cases.

II. A GF SCHEDULING MODEL WITHOUT EARLY STOPPING
AND WITH EARLY STOPPING

GF scheduling models pre-allocate resources for UEs so that
UEs can instantly transmit data when it is required. Since the
pre-allocated resources can be wasted due to the uncertainty
of future resource demand, the resources are generally shared
among UEs to be used more efficiently. However, the shared
resources cause a contention collision problem among UEs,
which results in transmission failures. Thus, K redundant
transmission was introduced to GF scheduling models to
deal with the transmission failures [2]. One obvious problem
raised by the K redundant transmission is again the waste of
resources. Thus, the concept of early stopping was introduced
to the K redundant transmission approach.

“With early stopping” means that, instead of whole K
consecutive redundant transmissions, UE stops the transmis-
sion in the middle upon receiving an acknowledgement from
gNB. Similarly, the K redundant transmission without an
acknowledgement scheme is called “without early stopping”.

TABLE I: Notation table for GF scheduling models

Nota. details

sP success probability of data transmission
DR

fPi failure probability at dedicated resource at ith transmission
SR
fPi failure probability at shared resource at ith transmission

fPi expected failure probability at ith transmission

N number of UEs in the cell

N1 number of minislots for dedicated resources

N2 number of minislots for shared resources

M number of shared resources per minislot

K total number of redundant transmissions, e.g., K=N1+N2

λ probability that UE is on or active, e.g., arrival rate [0-1]

A. A generalized GF scheduling model without early stopping
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where
PS(α,M, n) = exp(1−n)/αM (2)

The notation used in Equ.(1) is shown in Table I. This model
has two main parts; one in the left-hand side showing the
cumulative binomial distribution which calculates the proba-
bility that a certain number of UEs are active (transmitting
data) out of the whole UEs. The other in the right-hand
side has two production notations which calculate the failure
probability at the dedicated and the shared resources. Thus,
the success probability is simply calculated by subtracting
the multiplication of whole failure probabilities from one.
Different from [1], this model includes a new parameter α
representing the reliability of the system, which enables to
subtly control the model and can make the model more
rigorous.
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B. A generalized GF scheduling model with early stopping

The model is based on the geometric distribution which
determines the probability of consecutively observing non-
relevant events before actually you observe a relevant one. In
our case, it shows the probability that failures occur k−1 times
before the first success takes place at kth transmission. The
equation calculates the sums of all cases, e.g., (S1 + F1S2

+ F1F2S3,. . . ,+F1F2. . . SK). The model becomes exponen-
tially complicated as the number of redundant transmissions,
K increases, especially in the calculation of the success
probability at shared resources. The success probability at
shared resources is composed of two functions; G(·) and
F (·) shown in detail in Equ.(4). The former represents the
success probability taken place at kth transmission and the
latter represents the multiplication of the failure probabilities
taken place from 1st to (k − 1)th transmissions.

In Fig. 1, “Utilization ratio” on Y-axis represents the total
dedicated and shared resources which are allocated to UEs
in order to achieve the success probability, 1-10−5. Then,
the value is simply normalized by the maximally allocated
resources. The result with a dot line well matches to the key
result, (Fig.4 in [1]). As aforementioned, α represents the
reliability of a system, for example, when its value is small, the
model needs to allocate more resource in order to achieve the
same level of success probability. For this reason, the model
with smaller α value has the higher utilization ratio.

III. CONCLUSIONS

In this paper we mathematically generalized the probabilis-
tic GF scheduling models so that the models can be easily
extended. Then, we extended the models by introducing the
reliability parameter α to the models so as to demonstrate their
extensibility. Due to the reliability parameter α, the extended
models can be more rigorous against failure scenarios, which

10−3 10−2 10−1 100
BLER of the 1st trans ission of each packet (P1)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Ut

iliz
at

io
n 

ra
tio

 (R
)

α=0.1
α=0.3
α=0.5
α=1.0
Fig.4 [1]

Fig. 1: Full buffer with early stopping, N=32

provides more flexible options in the design of GF scheduling.
Currently, we have been further extending these GF scheduling
models in a way that it takes into account retransmissions and
some other parameters representing channel conditions.
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