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Abstract—With the development and diversification of appli-
cations on the Internet, applications that require high respon-
siveness, such as video streaming, are becoming mainstream.
Application responsiveness is not only a matter of communication
delay but also a matter of time required to grasp changes in
network conditions. Network control to improve responsiveness
needs to handle the trade-off between accuracy and measurement
time appropriately. The most familiar example that deals with
the trade-off between the amount of information to be acquired
and the understanding of the situation is human cognition. When
making decisions, people are known to make appropriate choices
based on relatively small samples. Although there have been
various studies on models of human decision-making, a model
that integrates various cognitive biases, called ”quantum decision
making,” has recently attracted much attention. However, the
modeling of small samples has not been examined much so far.
In this paper, we model decision-making with a small sample
using quantum decision-making. For the change in the cognitive
state due to the sample, amplitude amplification is extended to
a manipulation that reflects the sample value. We analytically
estimate the number of samples required to make a correct
choice in the model and show that a small number of samples is
appropriate.

Index Terms—Quantum Decision Making, Small Sample,
MPEG-DASH

I. INTRODUCTION

With the development and diversification of applications
on the Internet, applications that require high responsiveness,
such as video streaming and tactile internet [1], are becoming
mainstream. Such requirements have led to the development
of technologies to reduce communication latency, such as edge
computing [2] and Ultra-Reliable Low-Latency Communica-
tion (URLLC) for 5G [3]. With these technologies, it is pos-
sible to maintain low communication latency by changing the
settings appropriately according to the network conditions. On
the other hand, the responsiveness of an application depends
not only on the communication delay but also on the time
required to grasp the changes in the network status. In general,
an accurate grasp of the situation requires a long time to
be measured, depending on the accuracy. Therefore, network
control to improve responsiveness needs to handle the trade-
off between accuracy and measurement time appropriately.

The most familiar example that deals with the trade-off
between the amount of information to be acquired and the
understanding of the situation is human cognition. People are
known to make appropriate choices based on a relatively small
sample of information when making decisions, and research
has been done on modeling this [4], [5]. The literature [4]
discusses sample-based decision making under conditions of
constrained cognitive resources, using the time required to
obtain a sample as a cost relative to the time to make a

decision. In the literature [5], the effect of a small sample
is that the difference in expected gain is amplified. Learning
from this mechanism of utilizing a small sample of people
may be a shortcut to solving the trade-off between accuracy
and measurement time.

It is known that various information processing biases exist
in human decision-making, not only in a small sample. As
a model that integrates various cognitive biases, a model
called quantum decision-making has recently attracted much
attention [6]–[8]. Quantum mechanics and quantum decision-
making are not directly related, but rather model human
decision-making by analogy through mathematical formulas
that represent quantum behavior in quantum mechanics. Our
research group uses quantum decision-making to model the
QoE of users while watching streaming video and applies it
to bitrate selection [9]. In this method, the agent uses the
user’s model to guide the user to an appropriate choice, thus
combining the user’s own choice with the system’s guidance.
Because of its versatility, quantum decision-making is also the
first choice for modeling decision-making with small samples.

However, the modeling of small samples by quantum
decision-making has not been studied much so far. In the
literature [10], decision making is modeled as an iterative
process of amplifying the probability amplitude, increasing
the probability of taking a particular option, and making a
final decision. When there is a bias in the probability of
the alternatives in the initial state, the probability of taking
a particular alternative increases with fewer iterations. The
availability heuristic is expressed by viewing the bias in
the initial state as the ease of recalling the alternatives and
the number of iterations of amplification of the probability
amplitude as the time required to make a decision. In this
model, the initial state only affects the bias of the choice, and
the nature of the sample is not taken into account.

In this paper, we model decision-making with a small
sample using quantum decision-making. For changes in the
cognitive state with samples, amplitude amplification [10] is
extended to reflect sample values. We analytically find the
number of samples required to make the correct choice in the
model and show that a small number of samples is appropriate,
as in the literature [4].

The organization of the intentions of this paper is as follows:
Section II provides an overview of decision making based
on a small sample of people and maps network control to
the problem of decision making based on a small sample;
Section III models decision making based on a small sample
of people using quantum decision making; Section IV shows
the analytical result. In Section V, we summarize the paper



and discuss future work.

II. DECISION MAKING WITH SMALL SAMPLE

A. Human Decision
In conditioning by reward, people are known to use the

phenomenon of probability matching as an example where
the animal’s choice does not necessarily result in optimal
behavior [11]. Probability matching is the phenomenon that
when repeated choices are made, each choice is made with a
probability corresponding to the ratio of the rewards. Since the
optimal action is to decisively choose the option with the high-
est expected reward, the reward cannot be maximized when
probability matching is occurring. Such probability matching
has also been reported to occur in perceptual tasks [12]. In
the literature [12], when subjects were asked to estimate the
location of a sound source based on visual stimuli (pictures)
and auditory stimuli (sounds), probability matching was found
to select the location of the sound source probabilistically
according to the intensity of the stimuli.

On the other hand, it is also known that people make
decisions based on a small number of samples, and it is
believed that a small number of samples can have the effect of
making probability matching choices more like deterministic
choices [5]. When the reward obtained for each choice and
its probability are unknown, a small number of outcomes
may be sampled to make a decision. Even if the rewards
and probabilities are known, it is also possible to simulate
a small number of samples in your mind to make decisions
as a shortcut to thinking in calculating expected values [4].
In such a case, the difference in reward for each option in
the sample tends to be larger than the difference in actual
expected value. As the difference in rewards becomes larger,
the ratio of rewards will also become more biased, so that
the choice made by probability matching will also be biased
toward a particular choice. This means that the bias caused
by probability matching will be corrected to some extent in
decision-making using a small sample.

However, in decision-making with a small sample, the
choice that is more likely to be selected as a result of an
expanded reward difference is not necessarily the choice with
the highest expected value. By integrating such small sample
decision-making into quantum decision-making, we aim to
build a model that includes bias in the small sample and correct
it by user agents.

1) Advantage of Small Sample: The literature [4] discusses
sample-based decision making under conditions of constrained
cognitive resources, using the time required to obtain a sample
as a cost relative to the time to make a decision. In a situation
where cognitive resources are constrained, deciding in a short
time, although not optimal, based on a small sample is a
rational decision. The decision-making in the literature [4]
deals with the problem of choosing one of several alternatives
with a certain probability of being a winner, and in this case,
the accuracy is greatly improved by the first sample. Therefore,
when the cost of cognitive resources is included, a single
sample may be appropriate.

In the literature [5], the effect of a small sample is that the
difference in expected gain is amplified. When the sample is
small, the absolute difference in gain estimated from a small

number of samples may be larger than the difference in the
expected gain. In the conditioning of actions and gains, there
is a known phenomenon called probability matching, where
the probability of choosing an action is proportional to the
average of the gains obtained. In the situation of probability
matching, when the difference in expected gain is small, the
choice of action approaches random, and when the difference
in expected gain is large, the choice of a particular action
becomes more likely. Thus, the difference in expected gain
with a small sample may facilitate the exclusive selection.
However, in the literature [5], they only focus on the expansion
of the absolute difference in expected gain, which does not
necessarily amplify the correct choice.

2) Disadvantage of Small Sample: When the number of
samples is small, the probability distribution of the gain cannot
be completely obtained, and thus there is a possibility of
making a wrong decision. In cases such as guessing the flip
side of a coin, it is considered advantageous to believe the
sample as it is because what is observed reflects the choice
that is likely to come up. The literature [4] is just such a
setting, and it was possible to obtain sufficient information
even with a very small sample of one.

The decision-making problem dealt with in the litera-
ture [5]is a bit more complex: choosing one lottery among
several lotteries that reward x with a certain probability p and
y otherwise. In this case, one sample is taken from each lottery.

For the two lotteries i = 1, 2, if the probabilities are p1, p2
and the rewards are x1, x2(x1 ≥ x2 ≥ 0) and y1 = y2 = 0, the
gain X1, X2 and the difference between them for one sample
from each lottery are shown in Table I.

TABLE I
DIFFERENCE OF REVENUES FROM 1 SAMPLE

probability X1 X2 X1 −X2
p1p2 x1 x2 x1 − x2

p1(p1 − p2) x1 0 x1

(1− p1)p2 0 x2 −x2

(1− p1)(1− p2) 0 0 0

If we exclude the case where X1−X2 = 0 as not choosing
either lottery, then the probability of choosing lottery 1 is p1
and the probability of choosing lottery 2 is (1− p1)p2.

The condition under which lottery 1 is more likely to be
chosen than lottery 2 based on one sample is p1 > (1−p1)p2,
which can be organized as follows.

p1 >
1

1
p2

+ 1
(1)

In other words, if p1 has a probability greater than or equal
to the right-hand side, lottery 1 is likely to be selected. This
condition on p1 is the strictest when p2 = 1, and lottery 1 is
more likely to be selected if p1 > 0.5.

For example, in the case of getting x1 = 1000 with p1 = 0.1
and getting x2 = 10 for sure (p2 = 1), lottery 2 is more likely
to be chosen because p1 > 0.5 is not satisfied. This makes
it easier to make an irrational choice as the expected value
p1x1 = 100, p2x2 = 10.

Although the size of x1, x2 affects the decision of which
lottery is more likely to be chosen, the difference between
the two does not affect the decision. In other words, when
choosing with one sample, there will be a bias to only look



at the large and small relationship of the gains and ignore the
difference in the gains.

The same lottery problem is often addressed in quantum de-
cision making, but often the true expected value of the lottery
is considered, i.e., it is discussed in situations where the sample
is sufficiently large. The situation of limited thinking time in
quantum decision making is expressed in the literature [10]
by placing a limit on the number of times the amplification
of the probability amplitude. In the literature [10], there is an
assumption that positive information is always obtained, but in
reality, as mentioned above, information can be obtained that
encourages false choices through probability. Therefore, in the
lottery problem, as described above, we examine the quantum
decision-making under less information in the literature [10]
to study the quantum decision-making interpretation of small
samples.

B. Small Sample on Network

1) Bitrate Selection on Streaming: In bitrate selection, if
the picture quality is selected and the QoE corresponding to
the selected picture quality is the reward, it corresponds to the
lottery described above. At this time, the QoE corresponding
to the selected image quality will change probabilistically
depending on the streaming environment. For example, if
playback stops in the middle of streaming, the QoE is expected
to drop significantly, and the QoE will change depending on
the stochastic phenomenon of whether it stops or not.

Given the choice between high quality and low quality, the
following options are given.

• Select high quality: QoE: x1 without stopping with prob-
ability p1, QoE: y with stopping with probability 1− p1.

• Select low quality: QoE: x2 without stopping with prob-
ability p2, QoE: y with stopping with probability 1− p2.

where p1, p2 is the probability that streaming can be played
back without stopping when the respective image quality is
selected, and p1 < p2. x1, x2 is the QoE of the respective im-
age quality when not stopped. y is the QoE when stopped, and
the QoE when stopped is assumed to be constant regardless
of the image quality.

At this point, we can consider the same gain difference as
in Table I, since the generality is not lost by y = 0. If p1
is close to 1, choosing high quality will result in a higher
expected QoE. In this case, high image quality is more likely
to be chosen because it satisfies equation 1, and the choice
based on one sample induces the correct choice.

In the case of p1 = 0.51, p2 = 1, which is close to the
boundary condition of equation 1, it is easy to select a high
quality even though the high quality is more likely to stop.
Therefore, since the loss of QoE in the case of stopping is
generally considered to be large, in this case, the user will be
induced to choose a high quality even though the expected
value of QoE is higher for low quality.

By integrating the decision-making of such a small sample
into quantum decision-making, we can build a model that
includes bias in the small sample and can be corrected by
user agents.

2) Bitrate Selection with Optimal Selection: In the litera-
ture [4], the problem was like guessing the roll of a k-sided
die, where there is only one choice that is the correct answer,
and the rest are outliers. In the case of bitrate selection, we

can correspond to the problem of choosing the optimal bitrate
based on the observed situation.

Let pi be the probability that i is the optimal bitrate when
the ith bitrate is selected from among k types of bitrates. The
optimal bitrate is defined as the maximum bitrate at which the
video does not stop when played at that bitrate. This optimal
bitrate is the i∗th bitrate. In this case, i∗ is the roll of a k-sided
die, which corresponds to the problem of guessing the roll.

What we measure as a sample is the throughput Rt at time t.
The i-th bitrate is Ri, and the Ri that is the largest among the
bitrates under Rt is the optimal bitrate Ri∗ , so i∗ is determined
from the throughput Rt measured as follows.

i∗(rt) = arg max
i

{Ri|Ri < rt} (2)

The more samples, the more accurate the throughput can be
measured and the more accurate the selection can be, but
the more time is required for measurement. Therefore, it
is desirable to make the appropriate selection with a small
number of samples.

The difficulty in discriminating the appropriate choice de-
pends on the magnitude of the bias in pi, but in the present
case, the temporal stability of the measured throughput rt
determines the bias in pi. In other words, when the throughput
is stable, the probability pi∗ of obtaining the observation
corresponding to the optimal choice is high, making it easy
to discriminate it from other choices. On the other hand,
when the throughput is unstable, the probability of obtaining
observations corresponding to truly suboptimal choices also
increases to some extent, making it difficult to discriminate
among those choices. This means an increase in the number
of samples required for discrimination, but if there is little
difference between the alternatives, the benefit of sampling
will be small, so a small number of samples is desirable when
considering the balance with sampling cost.

3) Network Monitoring: An example of decision making by
a small sample of people in their daily lives is when deciding
between a route with a bridge or a tunnel to a destination,
choosing the less crowded route based on the experience of a
small number of people, considering whether the bridge or the
tunnel is more crowded. The above bitrate selection is based
on this. The bitrate selection above corresponds to such an
example, where a small sample of successful and unsuccessful
experiences of whether the chosen bitrate was optimal is used
to select the more successful choice.

Another example of how people use a small sample is
to learn a word that refers to an object, such as [4], or to
recognize a specific state. This corresponds to monitoring
the network and estimating its state from a small amount of
monitoring data.

Adaptive streaming, such as MPEG-DASH, changes the
bitrate adaptively by measuring the network throughput. The
throughput is usually measured passively when downloading
a video segment from a server [13]. That is, the throughput is
estimated by dividing the file size of the downloaded video
segment by the time taken to download it. However, the
number of video segments downloaded at a time depends
on the capacity of the buffer on the player, and in extreme
cases, there are problems such as no throughput measurement
when the buffer is full. For this reason, active throughput
measurement using probe packets has been proposed [14].
However, although sending a large number of probe packets



enables accurate measurement, the traffic for measurement
strains the network bandwidth, so here again, it is desirable to
estimate the bandwidth from a small number of probe packet
samples.

If we divide the throughput into k discrete levels and
estimate which level it is from the samples by probe packets,
we can treat it as equivalent to the problem of guessing the
roll on a k-sided die. In the case of adaptive streaming, the
k-step partitioning of the throughput is obtained by Voronoi
partitioning (partitioning bounded by points equidistant from
the reference point) concerning the bitrate that can be selected.

III. QUANTUM DECISION MAKING WITH SMALL SAMPLE

In the literature [10], quantum decision-making under insuf-
ficient information is represented using Grover’s algorithm and
state update with probability amplitude amplification. There-
fore, we model sample-based decision-making as quantum
decision-making by mapping the acquisition of information
about alternatives by samples to state updating.

A. Grover’s Algorithm
Grover’s algorithm is a search algorithm in quantum com-

puters that uses quantum superposition to speed up the search
of a database. In this case, the search refers to finding one
target element from N items, and the search is performed by
querying the function f(x) whether an element x is the target
of the search or not. In the classical algorithm, O(k) queries
are required, but in Grover’s algorithm, the search can be done
with O(

√
k) queries.

The search with Grover’s algorithm is performed by iter-
ating the diffusion UD and querying the database Uω for the
k-dimensional state vector |x⟩.

|xt+1⟩ = UDUω |xt⟩ (3)
UD = 2 |D⟩ ⟨D| − I (4)
Uω = I − 2 |ω⟩ ⟨ω| (5)

Here, I is the unit matrix, |ω⟩ is the target state of the search,
and |D⟩ = 1√

k

∑
x |x⟩ is the uniform superposition state.

At each step, the probability amplitude of |ω⟩ is amplified,
so that after a sufficient number of iterations, |xt⟩ ≃ |ω⟩ is
obtained. By making observations in this final state, we can
obtain the target ω of the search with high probability.

B. Amplitude Amplification
The literature [10] uses probability amplitude amplification,

a generalization of Grover’s algorithm, to express early and
late decisions by making the time required for a decision corre-
spond to the number of iterations of probability amplification.
Since the initial state |x0⟩ influences the decision in the case
of early decision, the probability amplitude in the initial state
is regarded as the availability of the alternatives to express the
availability bias.

In the stochastic amplitude amplification, instead of |D⟩ in
Grover’s algorithm, we use |D(θ)⟩, which is generalized by
introducing the parameter θ.

|D(θ)⟩ = sin θ |ω⟩+ cos θ
∣∣ω⊥〉 (6)

Here, ω⊥ is the orthogonal state to |ω⟩. If the initial state is
|x⟩ = sin θ |ω⟩ + cos θ

∣∣ω⊥〉, then after n amplifications, the

probability amplitude of |ω⟩ is amplified to sin(2n + 1)θ. In
the case of Grover’s algorithm, θ = π/4N .

In Grover’s algorithm and the literature [10], it is assumed
that the correct state |ω⟩ is always amplified at each step. In the
case of sample-based decision making, since the information
obtained is probabilistic, it is natural that the amplified state
|ω⟩ changes according to the information obtained.

For example, in the lottery example above, let |ω1⟩ , |ω2⟩
be the state that selects each lottery, and amplify the state
ωi that selects the lottery with the largest gain i(Xi > Xj)
obtained from the samples. At this time, if the initial state is
|x0⟩ = |D⟩ and the probability amplitude is uniform, the bias
of the selection will reflect the bias due to a small number of
samples.

Thus, in amplifying the probability amplitude, by determin-
ing the target to be amplified from the sample, it is possible
to map sample-based decision making to quantum decision
making. When using probability amplitude amplification, there
is a degree of freedom in determining θ, but since the mag-
nitude of the reward affects the choice probability according
to probability matching, it is considered appropriate that θ
also reflects the magnitude of the reward. In other words, we
set θ so that the ratio of rewards corresponds to the ratio of
amplified choice probabilities.

sin2((2n+ 1)θ) : cos2((2n+ 1)θ) =
Rω

n
:
Rω⊥

n
(7)

Here, Rω, Rω⊥ represents the reward for choosing ω and
the reward for choosing otherwise. Thus, the state update of
quantum decision-making can naturally incorporate the state
update equivalent of probability matching, which gives a kind
of optimal selection policy in the multi-armed bandit problem.

IV. ANALYSIS

A. Choice Problem Setting

In the literature [4], the problem of sample-based selection
in multiple choice is addressed. In the multiple-choice prob-
lem, choosing option i out of k options yields a reward x > 0
with probability pi and a reward y = 0 with probability 1−pi
where

∑
i pi = 1. However, when choice i gives a reward x,

the other choices j ̸= i give a reward y = 0. This corresponds
to the choice of guessing the roll of the k-sided die. It also
does not lose generality as p1 > p2 > · · · > pk. In this case,
the correct answer is selecting the choice i = 1 with maximum
p1 from the obtained samples.

If there are k alternatives, let ni be the number of samples
in which choosing alternative i rewards x. Then n1, · · · , nk

follows a multinomial distribution with the total number of
samples n =

∑
i ni and the probability p1, · · · , pk as a param-

eter . Therefore, the expected value, variance, and covariance
of each follow.

E[ni] = npi (8)
V [ni] = npi(1− pi) (9)

Cov[ni, nj ] = −npipj . (10)

B. Quantum Decision Making Setting

We build a model with quantum decision-making by ampli-
fying the probability amplitude of each alternative according
to the sample of events. In other words, when an event (eH )



occurs with probability p, the probability of choosing the
option (ωe) is amplified.

In database search, Grover’s algorithm required O(
√
k)

times amplification of the probability amplitude when k items
are present. On the other hand, in the literature [4], the number
of samples required is proportional to log k for k number of
choices. This difference arises mainly from the difference in
the percentage of correct answers we are trying to achieve.

The number of amplifications in Grover’s algorithm is
calculated based on the assumption of a sufficiently high
probability of getting the correct answer. On the other hand,
in the literature [4], the correct response rate decreases as
k increases, with a correct response rate of about 50% for
k = 4 and a reward to sampling cost ratio of γ = 1000.
In the literature [4], sampling is stopped when a certain
percentage of correct answers is achieved because the change
in the percentage of correct answers due to obtaining samples
is commensurate with the sampling cost.

C. Condition of Correct Choice
Suppose that we choose the option with the largest ni as

a sample-based decision, we make the choice with the largest
expected value of reward when n1 is the largest. In other
words, making the right choice is equivalent to the following
event S.

S = {n1 > ni|i = 2, · · · , k} (11)

Therefore, the goal is to find the required number of samples
as n such that the probability P (S) of S occurring is above
a certain level.

Although P (S) depends on the probability p1, · · · , pk of
each choice, depending on the value of p1, · · · , pk, the sam-
pling cost may exceed the gain of distinguishing the choices.
For this reason, it makes sense to analyze in the parameter
region where the gain from distinguishing the alternatives
exceeds the sampling cost.

If the cost per sample is a, then for each option i, the
condition that the gain is greater than or equal to the sampling
cost is

an < x(p1 − pi) i = 2, · · · , k. (12)

but p2 > pi(i = 3, · · · , k), so we end up with

an < x(p1 − p2). (13)

Thus, when there is gap between the probability of the most
probable option and that of the second option, it makes sense
to obtain a sample.

D. Approximation of Optimal Number of Samples
To discuss the factors that determine the number of samples

required, we derive an approximate formula for the number of
samples.

Expanding P (S) by conditional probability, we get

P (S) = P (n1 > n2, · · · , n1 > nk) (14)
= P (n1 > n2|n1 > n3, · · · ) · · ·P (n1 > nk).(15)

Now, if we approximate n1 > ni as being independent of each
other, then

P (S) = P (n1 > n2) · · ·P (n1 > nk). (16)

Therefore, the condition that P (S) > θ is obtained by
taking the logarithm of both sides∑

i

logP (n1 > ni) > log θ. (17)

The expected value and variance of n1 − ni is, due to its
linearity

E[n1 − ni] = n(p1 − pi) (18)
V [n1 − ni] = n{p1(1− p1) + pi(1− pi) + 2p1pi}.(19)

From the one-sided Chebyshev’s inequality, we get

P (n1 > ni) = 1− P (n1 ≤ ni) (20)
= 1− P (ni − n1 ≥ 0) (21)

≥ E[n1 − ni]
2

V [n1 − ni] + E[n1 − ni]2
. (22)

Since the expected value and variance are proportional to n,
we can divide n and the proportionality constant (depending
on p1, pi) as E[n1ni] = nCE(pi), V [n1 − ni] = nCV (pi).
Thus, we can rewrite the inequality as

P (n1 > ni) ≥ 1
1
n

CV (pi)
CE(pi)

+ 1
. (23)

E. Optimal Number of Samples under Multiple Choices
In order to examine the effect of increasing the number

of choices, we will analyze the situation where the effect of
the number of choices is large, i.e., when there is a certain
amount of probability that the reward will be obtained with
the second or later choice. The case with fewer choices is
included as a case where the probability is biased toward a
particular choice, as in pi = 0(i > k′). Therefore, the effect
of having more choices appears largest when the bias of pi is
small. Assuming that p2 = · · · = pk = p, in which the effect
of the number of choices are maximized, then

logP (S) ≥
∑
i

log
1

1
n

CV (pi)
CE(pi)

+ 1
(24)

= (k − 1) log
1

1
n

CV (p)
CE(p) + 1

> log θ. (25)

Therefore, we obtain the following conditional expression
for n.

n ≥ CV (p)

CE(p)

1

θ
1

1−k − 1
(26)

The CE(p) = p1−p represents the difference in the probability
of getting a reward for choosing the correct option, and when
this is small, n becomes infinitely large, but the sampling cost
requires that p1 − p be somewhat large within meaningful
parameters.

F. Numerical Simulation and Analysis Result
To check the validity of the analysis results, we compare

the required number of samples determined by the analysis
(Equation 26) with the number of samples calculated by the
numerical simulation.

In the numerical simulation, the operation of selecting the
option with the largest number of samples when n samples are
obtained from the k-nomial distribution is taken as one trial,



and sample-based selection of N = 1000 trials was performed
for each n, k combination. For each n, k, the number of times
the choice with the highest probability of winning is selected
is Ns(n, k), and the required number of samples n∗ is n such
that the proportion of correct choices P (S̄) = Ns(k,n)

N exceeds
a certain probability θ.

n∗ = min{n|P (S̄) =
Ns(k, n)

N
> θ} (27)

The required number of samples n∗ obtained by this nu-
merical simulation is compared to the lower bound of n
in Equation 26. The solid line represents the result of the
numerical simulation, and the dashed line represents the lower
bound of equation 26. The results for different values of θ
are also shown in different colors. The probability was set to
p1

p = 1.75 (p = p2 = · · · = pk).
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Fig. 1. Numerical Results and Approximation of Optimal Number of Samples

From the figure, we can see that the lower bound on the
number of samples in Equation 26 is larger than the actual
number of samples required. This is because, in the process
of analysis, the lower limit of the probability is estimated by
Chebyshev’s inequality for the difference n1−ni between the
number of times the best option and the other options are
hit. Since Chebyshev’s inequality holds for any probability
distribution, it tends to give a conservative lower bound for a
specific probability distribution. Therefore, a large number of
samples is obtained, which is estimated on the safe side than
the actual sample required.

Although there is a difference in the values, there is a similar
trend in the way the required number of samples increases
when the number of choices increases. In other words, the
results of both numerical simulation and analysis show that
the required number of samples increases almost linearly with
the number of choices.

The number of samples required to achieve θ = 0.5, that
is, the probability of selecting the correct answer is more
than 50%, even when there are 10 choices, the number of
samples does not exceed 50 in both the numerical simulation
and analysis results, and only a relatively small number of
samples are required.

This indicates that the lower limit of the number of samples
in Equation 26 is appropriate to be used as a safe estimate
of the required number of samples, and that the number of
samples is small even if it is estimated on the safe side.

V. CONCLUSION

In this paper, we model small sample-based decision-
making by quantum decision-making for network control with
a small sample. In the proposed model, the cognitive state
specifies the probability of choosing each option, and the
change in the sample-based choice is modeled by updating the
cognitive state based on the sample. Specifically, the state is
updated by a process of quantum amplification of probability
amplitudes for the choices associated with the sampled values.
We also analyzed the behavior of the proposed model. The
results of the analysis show that the number of samples
required to make a correct choice is sufficiently small, as in
the literature [4].

In future work, we will work on the application of the
proposed model for decision making with a small number of
samples in actual network control, such as bitrate selection in
streaming and network measurement.
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