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Abstract—In 5G, the network is divided into slices to pro-
vide communications with different characteristics, such as low
latency and reliable communications (URRLC), multiple connec-
tions (MTC), and high speed and high capacity communications
(eMBB), for different applications. Although the selection of
network slices is often static, in practice, dynamic slice selection is
required depending on the application situation. However, there
are issues such as the slice change itself changing the application
situation and the delay associated with the slice change. In
this paper, we realize dynamic slice selection by recognizing
the rough situation and the mapping between the recognized
situation and the slice. The Bayesian Attractor Model (BAM)
is used for recognition to achieve consistent recognition and is
extended to the Dirichlet Process Mixture Model (DPMM) to
achieve automatic attractor construction. The mapping between
situations and slices is also automatically learned by using
feedback. As an application of dynamic slice selection, we also
show slice selection based on the video streaming situation.
Through numerical examples, we show that our method can keep
the quality of video streaming high while reducing slice changes.

Index Terms—Bayesian Attractor Model, Dirichlet Process
Mixture Model, MPEG-DASH

I. INTRODUCTION

Virtualization of network resources and construction of
virtual networks are becoming more and more popular to
flexibly support diverse services [1], [2]. In 5G, the network
is divided into slices to provide communication with different
characteristics such as low latency and reliable communica-
tion(URRLC), multiple connections(MTC), and high speed
and large capacity communication(eMBB) for different appli-
cations [3]. In general, slices are pre-built and the commu-
nication is mapped to the appropriate slice according to the
characteristics of the application type [3]. This makes it pos-
sible to provide network quality for different communication
requirements even on the same network.

Network slice selection is often static, but in practice, dy-
namic slice selection is required depending on the application
situation. For example, in the case of the Tactile Internet [4],
whether low latency is required depends on how fast the
operator’s hand moves. If the hand movement is slow, then
some delay is acceptable. Providing low latency even in such
a slow-moving case would impose excessive communication
costs on the user. Dynamic slice selection is also useful for
video streaming [5]. Also during streaming, if there are enough

videos in the buffer to be read ahead of time, it will not affect
the streaming quality even when the download is delayed. At
such moments, high-capacity communication is unnecessary,
and it is desirable to temporarily switch to a slice that provides
low-cost communication.

However, there are several difficulties involved in dynamic
slice selection. First, since the slice change itself changes the
application situation, it is difficult to identify the application
situation and the appropriate slice for that situation. It is
difficult to assume the interaction between the slice change and
the application in advance, and therefore the overall objective
function cannot be defined in advance. This makes normal
optimization methods unrealistic in dynamic slice selection.
In addition, additional slices are expected to be added in
future extension of 5G, and it is required to make appropriate
choices when new slices are constructed. Second, there is a
cost associated with changing slices. Since changing a slice
involves changing the configuration of devices on the network,
there is a delay until the change is completed [4]. In addition,
changing the slice changes the route on the network, which
may cause a decrease in the throughput of TCP [6]. For this
reason, frequent slice changes are undesirable.

In this paper, dynamic slice selection is achieved by learning
to recognize a rough situation and the mapping between the
recognized situation and the slice. Our research group is
investigating a method for network control using the Bayesian
Attractor Model (BAM), which makes decisions in noisy
observation information. By using BAM, it is possible to
make choices that avoid unnecessary slice changes even in
a fluctuating environment. However, BAM needs to be given
the assumed situation as an attractor in advance. Previous re-
search [7], [8] has proposed methods for adding and updating
attractors, but in all cases, the number of attractors and the
conditions for adding them must be given by the designer.
It is difficult to assume every situation in advance because
the application situation varies with time and slice selection.
Therefore, it is necessary to build attractors automatically
based on the data without assuming any prior assumptions. In
the field of clustering, there is a non-parametric method called
Dirichlet Process Mixture Model (DPMM) [9], which does not
assume the number of classes or class features in advance.
Thus, we extend the BAM with DPMM, called extended BAM
to automatically estimate attractors, including the number of



attractors and automatically construct attractors from observed
data. Then, for the constructed attractor, extended BAM learns
the mapping to the appropriate slice by feedback.

As an application example to the proposed dynamic slice
selection using extended BAM, we also study dynamic slice
selection in video streaming. On the video player, Adaptive
Bitrate (ABR) is usually running, and the bitrate of the video
changes according to the streaming situation [10]. The ABR
also reacts during slice selection, and the situation changes in
a complex manner. By using extended BAM, appropriate slice
selection is performed according to the video streaming situa-
tion. Through evaluation using numerical examples, we show
that extended BAM is capable of appropriately recognizing
situations without knowing the algorithm of the ABR running
on the video player. We also show that extended BAM can
maintain high bitrate streaming while suppressing excessive
slice changes by automatically acquiring the granularity of the
situation to be recognized.

The structure of this paper thereafter is as follows. In
Section II, we summarize related slice selection research. In
Section III, we propose a dynamic slice selection method using
DPMM+BAM. In Section IV, we describe the application of
the dynamic slice selection method to streaming. In Section V,
we evaluate the behavior of the proposed method during
streaming through numerical examples. Section VI presents
the conclusion of this paper.

II. RELATED WORK

In 5G, functional requirements are defined according to the
application, and slices are built in advance according to each
requirement. Slice selection is expected to be provided as a
function of the base station when the device is accessed.

Slice selection methods considered in existing research
include (1) rule-based slice selection [3], (2) slice selection
based on the status of the slice at the start of the session [11],
[12], and (3) dynamic slice selection based on the application
status [5].

In rule-based slice selection, the performance requirements
for a slice are defined in advance, and the slice is selected
fixedly according to the type of application. Specifically, at
the start of a session, the device sends a Service Description
Document (SDD) describing the type of service, such as video,
voice, eMBB (high speed and large capacity), URLLC (high
reliability and low latency), MTC (multiple connections), etc.,
and assigns slices according to the SDD [3].

Reference [11] proposes a method for allocating an appro-
priate slice at the start of a session based on the performance
requirements of the slice and the actual performance of the
slice. In this method, the metrics (latency, throughput, etc.)
of each slice are evaluated by weighting them, and the slice
with the best evaluation is assigned. In [12], slice selection
including the selection of the base station to which the device
connects is done by solving an optimization problem. In the
optimization problem, the allocation is done by maximizing
the degree to which the transmission rate requested by the user
is satisfied. Since this is a combinatorial optimization problem,
a heuristic solution method using a genetic algorithm is used.

All of the above assumes that a slice is selected at the
beginning of a session and the same slice is used until the
session ends. In reference [5], a method to dynamically select

and switch slices depending on the video streaming status
is studied. Specifically, two types of slices with different
characteristics are constructed: one is a fast slice with low
latency but a small number of concurrent connections, and the
other is a normal slice with high latency but a large number
of concurrent connections. The high-speed slice is used at the
start of video loading, and a method is proposed to shorten
the video loading time and achieve a high response. The video
streaming status is monitored by receiving notifications from
the device. When the video is loaded sufficiently and the buffer
is filled, the slice is returned to the normal slice.

III. DYNAMIC NETWORK SLICE SELECTION WITH
EXTENDED BAM

In order to select appropriate slices while reducing slice
changes, we propose a method that roughly recognizes the
situation and learns the appropriate slice mapping for the
recognized situation. In this method, we use extended BAM,
which is an extension of BAM, to automatically construct at-
tractors from observed information and recognize the situation.
By clustering the situations, consistent control is possible even
when noise is included. One may think that a moving average
can deal with noise problem, but if it fluctuates around a
control threshold, the control will oscillate. Also, discretizing
similar situations together increases the affinity with learning
using feedback.

Then, the system learns the correspondence between the
recognized situation and the slice based on the control feed-
back. The system then learns the correspondence between
the recognized situation and the slice based on the control
feedback [7], [8]. This allows the system to automatically
acquire recognition and control at an appropriate granularity.

A. Dynamic Network Slice Selection

Network slicing is a technology for building a flexible
virtual network to meet the different performance requirements
of each application. In most cases, slices are statically assigned
for each application [3], but dynamic slice selection is required
to respond to changing application conditions [4], [5] In the
literature [4], they target the Tactile Internet and dynamically
switch slices to ensure communication with appropriate la-
tency depending on the speed of hand movements during
teleoperation.

In 5G, it is assumed that slices will be constructed for
each use case, such as eMBB (high speed and large capacity),
URLLC (high reliability and low latency), and MTC (multiple
connections), and that slices will be allocated according to
the performance requirements of each service. On the other
hand, it may be necessary to dynamically switch slices depend-
ing on the application situation, for example, using multiple
connections daily and switching to high-speed, high-capacity
communication depending on the situation.

Slice selection is performed by a slice controller located at
the edge. In the case of 5G, the slice controller is deployed as
a function of the base station.

In the case of static slice selection, slice selection is done by
the user device only at the start of communication. The user
device sends the application information to the slice controller
at the start of communication and the slice controller assigns
the appropriate slice to the user device [3].



In the case of dynamic slice selection, the user device
sequentially notifies the slice controller of the application
status, and the slice controller switches slices according to
the status [4], [5]. On the user device, the requirements for
communication vary depending on the application and the
user’s behavior. For example, in the case of Tactile internet [4],
if the user’s hand is moving quickly, low latency is required,
while some latency is acceptable if the hand is moving slowly.
In the case of video streaming, the bitrate of the video
can be dynamically switched by the Adaptive Bitrate (ABR)
algorithm or manual operation on the user device. On the other
hand, frequent switching is undesirable because slice switching
causes delays [4] and, communication instability due to route
switching. Therefore, it is necessary to switch slices according
to the situation while absorbing minor variations by capturing
similar situations in a somewhat rough manner. Thus, we
use BAM, which is tolerant to fluctuation of observations, to
recognize the situation.

B. BAM with Variable Attractors

In the original BAM, the number of attractors must be deter-
mined in advance and the representative values of the attractors
must be given. DPMM [9] is a model that also estimates the
number of classes and the representative values of the classes
from the data, and by incorporating this mechanism in BAM,
the number of attractors and the representative values of the
attractors can be estimated from the data.

Similar to DPMM, we extend BAM to have a variable
number of attractors by the following model, where the
discriminative label generation model is a Chinese restaurant
process.

Tt = Mio(z¢) + uy (1)
2t = f(ze—1) +v¢ ()
—h— (k < Ky)
— k. — n—1l4+« 3
p(¢t ) n_?_'_a (k > Kt) ( )

where M; = (u},p?,---, ui*) is a matrix of representative
values, u:,v¢ is the noise term for the observed and state
values, f(z:) is the Hopfield dynamics, o is the sigmoid
function, n; is the number of data classified into attractors k
at time ¢, K; is the estimated number of attractors at time ¢, ny
is the number of data classified into attractor k, n = 3 i Tk 18
the total number of data, and « is the parameter of the Chinese
restaurant process.

C. Merge and Delete Attractors

The Chinese restaurant process does not include any oper-
ations to reduce the number of attractors since the new data
can be classified either into existing attractors or into new
attractors. When classifying data offline in a batch-processing
manner, the likelihood is evaluated by looking at the entire
data, so the appropriate number of attractors is set even in
such a case. However, in the case of online estimation, the
only decision is whether to maintain or increase the number of
attractors at the time, so the number of attractors will continue
to increase over time and unnecessary attractors will remain.

Therefore, the number of attractors should be adjusted
appropriately in the online estimation by adding operations
to reduce the number of existing attractors. The operations
to reduce the number of attractors include merging several

similar attractors into one and deleting unnecessary attractors,
and each operation is described in detail below.

1) Merge of Attractors: 1f there are attractors with similar
representative values, it is appropriate to classify them as
the same attractor without distinguishing them. In this case,
the representative values of each attractor and the number
of classified data in the Chinese restaurant process can be
inherited, so that the data of each attractor can be reused. The
following procedure is used to integrate the attractors.

1) Calculate the distance of the representative value be-
tween attractors

2) Perform integration in the following steps when there is
an attractor pair a, b (a < b) whose distance is less than
the threshold

3) Merge attractor a into attractor b. The merged attractor
will inherit the following values

o Ngtp =MNg +Nyp
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4) Replace attractor b with attractor K;.
5) Delete attractor K; and decrement K.

2) Deletion of Attractors: When an attractor is newly
created for an outlier, it may remain as an unnecessary attractor
with little or no data classified in it. When such unclassified
attractors exist, they can be deleted to avoid the number of
attractors continuing to increase. However, since the deletion
of an attractor has a large impact on the loss of information
on the data classified in that attractor, the frequency of the
operation should be adjusted probabilistically so that it is not
performed frequently. The procedure for deleting an attractor
is as follows

1) Execute with a certain probability for each time step

2) Perform deletion if there is an attractor d whose number
of classifieds ng4 is less than the threshold.

3) Replace attractor d with attractor K.

4) Delete the attractor K; and decrement K.

Unlike merging attractors, deleting an attractor does not reuse
the previous data, so it is desirable to reduce the number of at-
tractors by merging attractors as much as possible. Therefore,
when merging attractors and deleting attractors at the same
time, priority should be given to merging attractors.

IV. APPLICATION OF SLICE SELECTION IN VIDEO
STREAMING

Since it is easy to build an evaluation environment by using
the existing configuration of the application, we consider the
application scenario of dynamic slice selection. We will use
video streaming as the subject of our application, as in the
literature [5].

A. Adaptive Bitrate

In a streaming, a mechanism called adaptive bitrate to
change the bitrate according to the communication status and
continue streaming is common. In MPEG-DASH [10], [13],
which is one of adaptive bitrate streaming method, the video
delivery server holds video files that have been divided into
segments at fixed time intervals in advance, with multiple
profiles of different audio and video rates. The video player
on the user’s device can change the bitrate dynamically during
video streaming by specifying a specific video profile and



downloading the video segment from the server. The video
profile may be selected manually by the user according to
his/her preference, but in most cases, Adaptive Bitrate (ABR)
is used, in which the video player automatically selects the
bitrate based on throughput and other measurement informa-
tion.

In the event of congestion on the communication channel,
ABR can automatically change the bitrate to a lower bitrate to
allow video streaming to continue. However, if the throughput
drops below the minimum bitrate profile, even if the bitrate is
changed by ABR, the video cannot be avoided from stopping.
It is more desirable to be able to avoid congestion and maintain
the bitrate by switching slices.

In this way, there is a limit to the number of situations that
can be handled by the ABR alone, and it is necessary to switch
slices according to the streaming situation. In this case, it is
necessary to recognize the situation including the behavior of
the ABR to select an appropriate slice, but since the behavior
of the ABR depends on the implementation of the player, it is
difficult to assume the behavior pattern in advance. Therefore,
it is desirable to use extended BAM to dynamically estimate
the number of attractors and their representative values.

B. Slice Selection by extended BAM

To select a slice according to the streaming situation, the
streaming situation is recognized by extended BAM. The
observed values and attractors of extended BAM are mapped
as follows.

a) Input/Observation: When selecting the bitrate for
ABR, the input is often either the length of the read buffer
or the throughput or both. In addition to the buffer length and
throughput, the input to extended BAM is the bitrate selected
by ABR and the residual bandwidth per slice. That is, we use
the following variables as input of extended BAM.

o b; : Length of video in buffer

e 7 : Throughput

e R, : Bitrate selected by ABR

o B! : Residual bandwidth of slice 1.

Let @¢ = (Ry, by, 7, BY, -+, By) be the observed values at
time ¢ of extended BAM.

b) Attractors: An attractor holds a representative value
of the observed value, ui, and the combination of these values
represents a particular streaming situation. In practice, accord-
ing to the extended BAM model, the number of attractors and
their representative values are estimated from the data.

C. Mapping streaming status to slice selection

If the current streaming situation is found by extended BAM
to be the situation corresponding to attractor ¢, then If the
current streaming situation is found to correspond to attractor
1 by extended BAM, the appropriate slice is selected according
to the situation. In this case, it is necessary to map which slice
is appropriate for which streaming situation.

One may think a rule-based mapping is possible to map
slices and situations. For example, if the buffer length and
bitrate are both small, the congestion cannot be handled by
ABR, and the slice is switched to a faster slice. However, due
to the lag of the slice switching itself, or the time required to
download the segment even after switching, the video may not
be played in time and will stop. In addition, since the bitrate
can be changed by ABR by triggering the slice switching, it

is not necessary to change the bitrate immediately after the
current status is recognized. The bitrate can be changed by
ABR by triggering a network slice switch, which may cause
an immediate change from the perceived current state.

Therefore, it is necessary to modify the mapping so that
it can be based on rule-based mappings, but can perform
appropriate switching while predicting the outcome of slice
switching. This can be achieved by learning by feeding back
the results of slice selection for a recognized situation as a
reward [8].

In this streaming case, the reward F; is defined as follows.

Ft = R; — C(St) (4)

where R; is the min-max normalized bitrate R; and C(s;) is
the min-max normalized communication cost [4] of slice s;
which is selected by slice selection. When the buffer is empty
and streaming stops, R; equals to 0. In this case, switching
the slice and resuming streaming immediately will increase the
reward per unit time. On the other hand, if there are enough
buffers and switching slices does not affect the streaming
bitrate, then selecting a slice with lower communication cost
will result in a higher reward. Note here that the cost of slice
switching is not included in the reward. The effects caused by
slice switching include the effects with other controls such as
TCP, but it is difficult to quantify these interactions. However,
in the proposed method, the number of switching can be
reduced by the consistency of the perception of the situation.

V. EVALUATION

We verified the operation of a method for recognizing
the status of streaming using extended BAM in streaming
distribution through numerical examples.

A. Environment

We use extended BAM to recognize and classify the stream-
ing situation on a player with continuously varying throughput
and automatic bitrate selection by ABR.

For streaming settings, we assumed that the video had seven
profiles (1, 3, 5, 10, 15, 30, and 50 Mbps) ranging from 1 Mbps
to 50 Mbps and that it was divided into segments of 4 seconds
each. It was also assumed that the maximum buffer length of
the video player was 30 seconds of video.

To study the behavior during congestion and recovery from
congestion, the streaming starts with sufficient throughput (1
Gbps), gradually decreases the throughput (1 Mbps), and then
gradually recovers the original throughput.

The ABR is running on the video player, and automatically
changes the bitrate of the video player in response to changes
in throughput. The following ABR is used.

a) Throughput-based ABR: When the length of the
loaded buffer of the video player is below/above the threshold
value (5 sec. / 25 sec.), it shall be set to the maximum bitrate
among the profiles that have a bitrate less than or equal to the
throughput at that time.

B. Recognition Results

Figure 1 shows the classification results of extended BAM
for each observation. The figure plots the scatter plot of the
observations with the bitrate as the vertical axis and the read
buffer length as the horizontal axis. The classified attractors



are indicated by the color of the plotted points, and in the case
of Figure 1, the attractors are classified into four types: black,
yellow, green, and red. The dotted lines in the figure connect
consecutive observations. The results of the classification of
DPMM alone are shown in Figure 2.

The DPMM does not classify well, but the extended BAM
classifies in a rough but meaningful way. Specifically, in
extended BAM, black attractors indicate the best streaming
conditions with the highest bitrate. As the throughput de-
creases, the buffer length decreases, and the ABR switches
to streaming at a lower bitrate, which is classified as a yellow
attractor. When throughput drops further, the lowest bitrate
is used, which is classified as a green attractor. When the
throughput starts to recover, the bitrate is gradually increased
by ABR, and this recovery state is classified as a red attractor.

The reason why DPMM alone does not classify well is
thought to be that it does not work consistently to classify suc-
cessive inputs in the same way. In extended BAM, the BAM
state model produces a somewhat consistent classification for
successive inputs, whereas DPMM lacks such consistency.
In Fig. 2, we can also see that the classification sometimes
changes in detail for consecutive inputs connected by dotted
lines. In this way, even if the data is classified into a new class,
the data classified into that class will not be accumulated. As a
result, the largest class that already exists becomes dominant,
and most of them are considered to be classified as the same
class.
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C. Slice Selection Results

We also evaluate the dynamic slice selection with recog-
nized results to confirm that slice selection based on extended
BAM can preserve the bitrate of the video while suppressing
slice changes.

Figure 3 represents the result of not performing dynamic
slice selection and continuing to use the slow slice. In the
figure, the throughput of the selected slice at each time, the
downloaded buffer length, and the bitrate selected by ABR
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Fig. 2. Classification Result of DPMM ((ABR: throughput-based)

are plotted. There are two types of slices: low-speed slices
and high-speed slices. The throughput of the low-speed slices
varies with time, while the high-speed slices can communicate
at a constant high throughput. However, high-speed slices
are more cost-expensive, and it is preferable to use low-
speed slices unless it affects the quality of video streaming.
The mapping between the perceived situation and the slice is
learned by using the video bitrate and cost as feedback. When
a slow slice is continuously used, ABR switches to low bitrate
streaming when the throughput drops. In order for the bitrate
to recover, it waits for the throughput to recover on the slice.
Therefore, the streaming at low bit rate continues for a long
time.

Figure 4 shows the time series of the video streaming status
when slice selection is performed based on the recognition
by extended BAM. To see the results of learning, the third
round of repeating the same situation is plotted in the figure.
Also, Figure 5 shows the results when DPMM is used for
classification. The ABR was throughput-based.

From the figure, it can be seen that when extended BAM
is used, the time for the bitrate to decrease is kept to a short
time, while the number of slice switching is also reduced.
In the case of using extended BAM, the slice is switched to
a slice with higher throughput at the time when the buffer
length is shortened and the bitrate switching occurs due to
ABR. In DPMM, the situation is not well classified, resulting
in frequent slice switching. Also, in DPMM, the delay in slice
switching results in a period of low bitrate that lasts for about
ten seconds. In extended BAM, there is also a momentary
drop in bitrate, but this is quickly addressed by switching
slices, thereby minimizing video quality degradation. Ideally,
the bitrate drop should be predicted in advance and the slices
should be switched in advance. One of the future work is to
realize slice selection based on the prediction.

VI. CONCLUSION
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In this paper, we proposed a method for dynamic slice
selection by learning the recognition of a rough situation and
the mapping between the recognized situation and the slice.
While the use of BAM enables consistent recognition, the
extension to DPMM enables automatic attractor construction.
In addition, we added the integration and deletion of attractors
to maintain only the necessary number of attractors. The
system then learns the appropriate slice for the perceived
situation using feedback. Evaluation using numerical examples
showed that extended BAM can be used to reduce the number
of slice changes while reducing the quality degradation of
video streaming.

Future work includes the realization of slice selection that
considers the control lag by incorporating prediction mecha-
nism.
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