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Abstract

LPWA is a general term for low-power and wide-area communication technologies that

are expected to be used as networks for IoT. In particular, LoRaWAN has become a major

research target in LPWA because of its ease of development and the possibility of building

self-managed networks. In LoRaWAN, the data rate of each node can be dynamically

controlled by the gateway node through changing the scaling factor parameter of nodes,

and this control can be performed according to the network conditions. However, it is

difficult to grasp the individual states of a large number of nodes immediately, calculate

the optimal data rate, and assign the appropriate scaling factor to the nodes due to the low

communication speed of LoRaWAN compared to conventional wireless networks. In this

thesis, we propose a spreading factor allocation method for LoRaWAN that simultaneously

improves throughput and network lifetime even in an environment where network condi-

tions fluctuate. Our proposed method is based on the evolutionary mechanism of living

organisms. Specifically, in contrast to the traditional genetic algorithm, which is one of the

evolutionary algorithms, we use the thermodynamical genetic algorithm, which can adapt

to dynamically changing environments by maintaining the diversity of the population. The

thermodynamical genetic algorithm balances the fitness and diversity of each individual.

The diversity of individuals is expected to contribute greatly to the acquisition of better

solutions. In addition, for environments where the optimal solution differs greatly before

and after environmental changes, we use a feedback mechanism for thermodynamical ge-

netic algorithm to keep the diversity of the population at a predetermined value. Through

computer simulation, we show that our proposed method can perform appropriate control

of the scaling factor adaptive to dynamically changing network environments. Compared
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to a conventional genetic algorithm that do not maintain the diversity of population, our

proposal can achieve higher fitness in fluctuating environments.
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1 Introduction

Low Power Wide Area (LPWA) is one of the wireless communication technologies with

low power consumption and long range capability, and it is already widely used in Europe

as a component of the Internet of Things (IoT) [1]. A Long Range Wide Area Network

(LoRaWAN) is one of the communication networks belonging to LPWA, which consists of

nodes and gateways that use LoRa modulation [2]. Generally the communication speed

of LPWA techniques is slow, ranging from a few hundred bps to a few tens of kbps, it

provides power efficiency better than Bluetooth and ZigBee, and communication distance

as well as or longer than 3G and LTE mobile communication. There are many other

LPWA standards such as Sigfox and NB-IoT in addition to LoRaWAN, but compared to

other standards LoRaWAN has the feature of being easy to develop and build user’s own

networks, and therefore it has become a major research target for IoT networks [3].

Since LoRa uses unlicensed bands and its communication modules are readily available,

users can freely construct their own networks. In the future, there will be a situation

where multiple self-managed networks with many LoRa nodes exist in the same area,

and therefore wireless communication will cause packet collisions. LoRa uses the ALOHA

protocol in its MAC layer. Therefore, since the data rate of LoRa communication is low,

the data transmission time of the node becomes long, which increases the probability of

packet collisions.

Although the LoRa chip has a carrier sense function, the antenna reception sensitivity

of LoRa is higher than existing wireless communication modules. If using the Clear Chan-

nel Assessment (CCA) threshold of about −80dB used in IEEE 802.11, since the signal

lower than the threshold reach the gateway, collisions are expected to occur. On the other

hand, if the threshold is lower, nodes are exposed to more wireless communications from

more nodes due to the very wide communication range of LoRa, and the possibility that

the wireless channel is busy is higher.

In the current LoRa communication standard, there are multiple data rates available

for nodes to take into account the interference. In LoRaWAN, the gateway can dynamically

control the data rate (adaptive data rate; ADR) by changing the Spreading Factor (SF)

of the node through the control signal [4]. Note that even in the same frequency band,
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radio signals with different spreading factors can be received simultaneously by LoRa gate-

ways [5]. In general, the larger the spreading factor, the lower the data rate and the longer

the transmission time, which increases the power consumption, while the signal-to-noise

ratio (SNR) increases, which increases the reception sensitivity and the communication

range.

Previous studies of LoRaWAN showed performance related to coverage and scalabil-

ity [6,7]. In recent years, studies have been conducted to improve throughput and extend

service lifetime by controlling the data rate [8]. In the original specification of LoRaWAN,

ADR is performed by the gateway [4]. The problem of determining the data rate of

individual nodes in order to maximize the throughput is a combinatorial optimization

problem, and it is difficult to find the optimal solution in a realistic time when there are

huge number of LoRa nodes.

In general, wireless congestion and communication quality fluctuate due to various en-

vironmental variations. If we apply such an optimization method that takes enough time

to collect information from all nodes and solve the optimization problem, performance

degradation during this period may be unavoidable. In this paper, we focus on the evolu-

tionary mechanism of organisms that have survived under various environmental changes

in order to realize the optimization of ADR in LoRaWAN. Specifically, we use Thermody-

namic Genetic Algorithm (TDGA) to determine the spreading factor of individual node

in LoRaWAN.

TDGA is based on the genetic algorithm (GA), one of the evolutionary algorithms, and

it has a novel gene selection algorithm that provides the diversity of individuals to obtain

an adaptability to dynamic environments. TDGA takes into account not only the fitness

of each individual but also the diversity of the population when selecting individuals from

the population for the next generation, while genetic manipulations such as crossover and

mutation are the same as GA. When the temperature parameter of TDGA is set to a low

value, the focus is on fitness, and when it is set to a high value, the focus is on diversity.

We have demonstrated the performance of our TDGA-based SF-allocation method by

computer simulation assuming a LoRaWAN application that considers node mobility [9]

and gateway failures. In particular, we have shown that our proposal can find better solu-

tions faster than a GA-based method when the degree of congestion changes dynamically.
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Moreover, since TDGA has a characteristics that the diversity of population decreases

when individuals have better fitness, we apply a feedback mechanism to TDGA to keep

the diversity of individuals constant. This feedback TDGA is called FTDGA [10].

This paper is organized as follows. First, in Section 2, we describe recent related

researches on LoRaWAN. Next, Section 3 describes the thermodynamic genetic algorithm

used in this paper. Section 4 describes the communication model of LoRaWAN and

the proposed method using TDGA, and in Section 5 we evaluate the effectiveness of the

proposed method. Finally, we conclude and discuss future work in Section 6.
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2 Related work

In this section, we describe related work on spreading factor control in LoRaWAN and

discuss the difference from our proposal.

Reference [11] finds appropriate parameter values using reinforcement learning. Specif-

ically, they use a deep learning approach to tackle the distribution problem for optimizing

network resources such as spreading factor, transmission power, and channel allocation in

LoRaWAN. In [12], the authors propose a method to improve performance by spreading

factor allocation in LoRaWAN. They define an optimization problem of spreading factor

allocation to maximize the data reception rate under the constraint on the average power

consumption of all nodes. By solving this problem, it is possible to improve the perfor-

mance under the average power consumption constraint of all nodes. This paper further

develops a meta-heuristic method, which is a method for solving the defined problem based

on distributed genetic algorithm. Reference [13] investigates the impact of scalability and

densification of nodes and gateways on the reliability of the system, taking into account

the capture effect. An optimization problem is proposed to derive the node distribution

in LoRaWAN networks with multiple gateways at different spreading factor. They also

introduce an adaptive algorithm that can easily optimize the spreading factor by adjust-

ing the threshold of the signal-to-noise ratio. Reference [14] proposes a spreading factor

allocation approach that pays attention to the traffic load on both the spreading factor

and the channel. In [15], an analysis is performed to improve the average system packet

success probability (PSP) of LoRa system in ALOHA random access protocol. As a result,

they derived a lower bound for the average system PSP. They also showed that the average

system PSP can be maximized by properly assigning a spreading factor to each traffic,

which also maximizes the node connectivity. In [16], the Greedy method is used for the

fairness of power consumption as a objective function. Reference [17] shows that spreading

factor assignment using the k-means method improves the success rate of communication.

These previous work have optimized the various parameters of LPWA networks. How-

ever they do not take into account environmental changes such as the movement of LoRa

nodes in the actual operation of LoRaWAN, and do not show whether it is possible to

quickly follow environmental changes. One of the goal of our research is to find better
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solutions quickly in a fluctuating environment, and to do so we propose a method to keep

the diversity of solution candidates at a high value.
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3 Thermodynamical Genetic Algorithm

3.1 Genetic algorithm

Genetic Algorithm (GA) is a meta-heuristic algorithm that applies the process of biological

evolution to solve optimization problems. In genetic algorithms, data sequence is mapped

to elements of the problem to be solved as genomes. A set of individuals represented by

the genome is called population. An approximate solution to the optimization problem is

obtained by performing genetic operations on the iteration (generation) to evolve it.

A typical GA is performed in the following steps. Let the size of the population be N

and the number of iterations be G.

0. Prepare a null set of the current generation and a null set of the next generation,

respectively. Generate N individuals with random genes for the first generation.

Add These individuals into the current generation.

1. Cross two randomly selected individuals from the set of the current generation and

add it to the the next generation set.

2. Repeat 1. until the number of individuals in the next generation set becomes N .

3. Add a copy of each individual in the set of the current generation to the set of the

next generation.

4. Mutate at a constant rate for each individual in the set of the next generations.

5. Select N individuals from the set of the next generation and add them to the current

generation.

6. Return to 1. If the process has been repeated G times, it will output the individual

that maximizes the evaluation function (fitness function) from the set of the next

generation and finish.

The genetic operations that appear during each step are as follows.

Crossover Crossover corresponds to mating in living organisms, in which two new off-

spring are produced using the genomes of the two parental individuals (Step. 1). In
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this paper, we use a crossover method called uniform crossover. In uniform crossover,

each gene of a parent is replaced with a gene of the same locus as the other parent

with a certain probability, and these two genomes are used as children.

Mutation Mutation corresponds to the mutation of a gene in an organism (Step. 4).

In this paper, for each gene, the probability of mutation is changed to a spreading

factor different from the current value with a certain probability.

Selection Selection corresponds to the natural selection of organisms, where the degree

of adaptation of each individual is calculated based on an evaluation function, and

the more adaptable the individual is, the more likely it is to be selected (Step. 5). In

this paper, we use roulette selection as a method of selection. In roulette selection,

the probability pi that each individual i of generation P is selected is determined by

equation (1), and a total of N individuals are selected with this probability.

pi =
f(i)∑

k∈P
f(k)

(1)

f is the fitness function defined in section 4.3.

In contrast to the TDGA described below, we will call this simple genetic algorithm

SGA (Simple GA).

3.2 TDGA: Thermodynamical genetic algorithm

It is known that the state of a system in thermal equilibrium at temperature T is a prob-

ability distribution that minimizes the free energy F in Eq. (2) (free energy minimization

principle).

F = ⟨E⟩ − TH (2)

⟨E⟩ is the average internal energy of the system and H is the entropy. When the free

energy is minimized, the right-hand side of Eq. (2) can be interpreted as ⟨E⟩ is the term

for energy minimization and −H is the term for pursuing state diversity, and T is treated

as a parameter that harmonizes the two. In TDGA, the mechanism of deriving ⟨E⟩ and
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H in such a way as to minimize the free energy F is applied to GA. In TDGA, individuals

with a high degree of fitness are retained in the solution space of the target problem, while

those with a high degree of difference from other individuals are actively retained in the

next generation. This can be expected to function effectively in discovering new solutions

after the objective function has changed.

The specific operation of TDGA is as follows. The number of individuals N , the maxi-

mum number of generations G, and the temperature schedule function T (t) are determined

in advance.

0. Set the number of generations t = 0. Initialize the population P (0) with random

individuals.

1. Let e be the elite individual with the greatest fitness.

2. Generate N childrens from P (t) by crossover.

3. Construct a candidate population P ′(t) of the next generation from P (t) and the

childrens generated in Step 2. And mutate P ′(t).

4. Add e to the next generation population P (t+ 1).

5. Set the number of individuals selected as the next generation of individuals i = 1.

6. Select one individual from P ′(t) and move it to the next generation population

P (t+ 1). In this operation, assuming that the i-th individual h from P ′(t) is added

to P (t+1), select one individual h which minimizes P (t+1)’s free energy F (Eq. (3))

as the i-th individual.

7. i = i+ 1, and if i < N , go back to Step 6.

8. i = i+ 1, and if t < G, go back to Step 1.

F = ⟨E⟩ − T (t)H

=

∑i
l=1El(P (t+ 1))

i
− T (t)H

(3)
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In Eq. (3), TDGA expresses the average energy ⟨E⟩ of the system as the negative

of the fitness of each individual. The simplest form of entropy H, which represents the

diversity of a system, is HALL, which treats all loci together.

HALL = −
∑
i

px log px (4)

px is the probability of the existence of species x in the population. However, in GA,

the size of the population is very small compared to the total number of possible species,

and therefore even if the population consists of only a few different individuals, HALL will

be large and impractical [18]. Therefore, TDGA uses alternative entropy definitions; H1

per locus and H2 per two neighboring loci [19]. In this report, we use H1. H1 is defined

by the following equation.

H1 =
M∑
k=1

H1
k , H1

k = −
∑

α∈allele
P k
α logP k

α (5)

In Eq. (5), H1
k represents the entropy for the gene at locus k of the population, and

P k
α is the probability of the existence of allele α at locus k.

3.3 FTDGA: Feedback TDGA

In the original TDGA, temperature T is a parameter to be determined in advance, and

considering the minimization of the free energy F in Eq. (3), the entropy of the popula-

tion decreases as the fitness value of the candidate population increases with each step

of the solution search. Feedback TDGA (FTDGA) addresses this problem by dynami-

cally changing the T in response to changes in the environment, allowing it to cope with

environmental changes of unexpected scales.

To realize a feedback type control, a temperature scheduling function T (t) defined as

Eq. (6) is proposed in [10]. This control preserves the search capability of the TDGA by

keeping the entropy at the target entropy H∗.

T (t) = exp(τ(H∗ −H))T (t− 1) (6)

where τ is a parameter called feedback gain.
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4 Spreading factor allocation method based on TDGA

4.1 LoRaWAN communication model

4.1.1 LoRa modulation

In LoRa modulation, the modulation scheme used in LoRaWAN, the bandwidth is divided

equally, and the signal is sent starting at an arbitrary frequency and increasing in frequency

as time passes. Once the signal has increased to the upper limit of the bandwidth, it is

increased from the lower limit to the frequency at the start. This one cycle of the signal

is called a symbol, and the data is represented by the frequency at the beginning of the

symbol. The number of bits of data assigned to one symbol is called the spreading factor.

When the spreading factor is SF , the data that can be expressed in one symbol is from 0

to 2SF − 1.

Increasing the spreading factor by one doubles the length and the number of bandwidth

divisions of a symbol. Therefore, the larger the spreading factor, the more the signal is

spread out in time, making it more resistant to noise, but lowering the data rate and

increasing the transmission time. If the bandwidth is BW , the data rate is expressed

as BW
2SF SF . Signals with different spreading factors have different periods of frequency

change, so even if they are transmitted simultaneously, the time of frequency overlap is

very short. This makes them regarded as practically non-interfering. An example of LoRa

modulation is shown in Fig. 1.

In the following, the available bandwidth, spreading rate, and receiver sensitivity for

each spreading factor follow the SX1276 module of Semtech, which designs and develops

LoRa modules [20].

4.1.2 MAC layer model

In LoRaWAN, there are three communication classes in the MAC layer: Class A, Class B,

and Class C. In Class A of LoRaWAN, ALOHA (pure ALOHA) is used as the communi-

cation protocol, and each node sends data packets to the gateway at an arbitrary timing.

In Class B, in addition to the communication in Class A, the gateway can broadcast data

to all nodes at regular intervals. In Class C, the gateway can send data to nodes at any
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Figure 1: An example of LoRa modulation. The number at the top of each symbol

indicates the data that the symbol represents (hexadecimal number).

time. Class C is intended for use with nodes that is always powered. In the method we

propose, we assume communication in Class B.

As described in the previous section, when two or more data packets sent with different

spreading factors arrive at the gateway at the same time, the frequencies do not overlap,

so we assume that all packets can be received normally in this case. If data packets with

the same spreading factor are received at the same time, they collide with each other and

neither can be received. In this paper, it is assumed that all the packets from the gateway

to the node can be successfully transmitted because the signal strength is sufficiently high,

and that the communication from the node to the gateway and the communication from

the gateway to the node are not affected by each other because they use different channels.

4.1.3 LoRaWAN model

We assume situations where multiple movable LoRa nodes transmit data to multiple gate-

ways. The LoRa nodes periodically generate data and transmit them to the gateway
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immediately after they are generated. Transmission after data generation is performed

only once, no re-transmission is performed. The data sent by a node is considered to have

been successfully transmitted if it is successfully received and decoded by at least one

gateway.

When two or more signals arrive at a gateway at the same time, if they use the same

spreading factor, both signals will fail to be decoded, but if they use different spreading

factors, both signals will be successfully decoded. Moreover, it is assumed that there will

be attenuation of the signal strength depending on the distance between the LoRa node

and the gateway, which may cause probabilistic decoding errors and failure in decoding.

The spreading factor used by the LoRa node is changed by control information sent

from the gateway, but sending such information to each node has a very large overhead

in LPWA, which has a slow communication speed. Therefore, the area to be observed is

divided into several sub-areas, and the LoRa nodes belonging to the same sub-area use the

same spreading factor. The control information from the gateway is sent to each sub-area

by broadcast at once. At this time, each LoRa node needs to know to which sub-area

it currently belongs, and it is assumed that the location information can be obtained by

GPS (Global Positioning System). It is also assumed that each LoRa node can always

get accurate information about the sub-area to which it belongs because the position

estimation error of GPS is very small compared to the size of the sub-area.

4.2 Encoding representation

The number of genes in an individual is the same as the number of sub-areas in the

LoRaWAN model, and the spreading factor of each locus and sub-area corresponds as

shown in Fig. 2. Therefore, each gene locus will have a value corresponding to available

SFs (SF7 to SF12).

4.3 Fitness functions

LoRaWAN applications have various performance objectives, and we aim to improve the

data arrival rate and save energy, which are generally important in many applications.

In this thesis, we use the sum of Farr and Fpow, which will be explained later, as fitness
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Figure 2: Genes expression and spreading factor

function. The exact solution in this case requires a number of searches proportional to

NNarea
SF , where NSF is the number of selectable spreading factors and Narea is the number

of subareas. For example, if LoRa assigns 6 available spreading factors to 100 sub-areas,

6100 ≃ 6.5×1078 searches are required. In this paper, we use the FTDGA to find a solution

to this combinatorial problem.

In the ALOHA protocol, we assume that there are n nodes on the same link, and each

node generates an average of p packets per unit time. In this case, the packet generation

rate µ from all nodes is equal to np. Therefore, the probability P (x) of x packets being

generated in a unit time is represented by the Poisson distribution in Eq. (7).

P (x) =
µx

x!
e−µ (7)

If the transmission time of a single packet is T , then in order for a packet generated

at time 0 to be transmitted without collision, no other packets must have been generated

between time −T and T . This probability PALOHA is Eq. (8).

PALOHA = P (0)2 = e−2µT (8)

4.3.1 Fitness function for the arrival rate at a single gateway

In the LoRaWAN communication system, each node uses a different spreading factor. As

mentioned above, communications between nodes using different spreading factors do not
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collide each other. In addition, the packet error rate in the transmission path is different

for each spreading factor. When the packet error rate in the transmission path is PER,

the data arrival rate Farr of nodes in LoRaWAN is Eq. (9).

Farr = (1− PER)e−2µT (9)

However, in calculating the fitness function, PER is calculated assuming that all nodes

are located in the center of the sub-area to which they belong. In addition, n is the sum of

the number of nodes using the same spreading rate, and p is the reciprocal of the packet

generation period. Farr is calculated for each node, and the average value is used as the

fitness for the arrival rate.

4.3.2 Fitness function for the arrival rate at multiple gateways

In LoRaWAN, it is possible to use multiple gateways. In that case, it is assumed that

there are multiple gateways in the communication range of a node. In this paper, it is

assumed that all gateways are included in the communication range of a node m, and each

gateway is called BSi (i = 0 . . . NBS − 1, where NBS is the total number of gateways),

according to the LoRaWAN specification, the data sent by a node should be successfully

received by at least one gateway. Therefore, the arrival rate (Farr) is as follows.

Farr = N−1
all

Nall∑
m=0

{
NBS∏
i=1

(1− PER(m, i))(1− e−2µT )

}
(10)

where PER(m, i) is the packet error rate determined according to the distance between

node m and gateway i, and Nall is the total number of nodes.

4.3.3 Fitness function for the total power consumption of nodes

We use Eq. (11) as the fitness function for power consumption. Here, n is the number of

nodes to be controlled, Pow(SF) is the power consumption required for one data trans-

mission at the spreading factor SF , and P is the sum of the power consumption required

for one data transmission for all nodes. We use the power consumption for the case of the

largest spreading factor of 12 and the smallest of 7, and keep Fpow−total in the range of 0

to 1.
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Fpow−total = − P − nPow(12)

n(Pow(12)− Pow(7))
(11)

Note that we set a penalty on the power consumption. If the total power consumption

of all nodes exceeds the upper limit value, the fitness of the power is set to 1/100 of the

original value.
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5 Evaluation

5.1 Simulation settings

As a simulation environment, we assume that LoRaWAN where five gateways are placed

at random locations, and if data from a node is successfully delivered to any one of

the gateways, the reception is successful. Each LoRa node generates data periodically

and sends it to the gateway immediately after it is generated along with its location

information. The data transmission is done by ALOHA protocol and no re-transmission

is done.

Based on the node location information, the gateway obtains the number of nodes

belonging to each sub-area, and determines the spreading rate to be assigned to the nodes

belonging to each sub-area by the GA. After determining the allocation method, a control

signal is sent to each sub-area by broadcast, and the node that receives the message

changes its own spreading factor. The area is divided into 10× 10 sub-areas, and nodes in

the same area are assigned the same spreading factor. To demonstrate the adaptability of

the proposed method to various situations, we design a scenario with the following three

policies as the environmental setting for the simulation. The details of the scenarios are

described in the subsequent sections, corresponding to each of them.

• Evaluation in a situation where the optimal solution changes due to node mobility

• Evaluation in a situation where the optimal solution changes due to gateway failure

As the fitness of data arrival, we use the average value of data arrival rate calculated

by Eq. (9), and use Eq. (11) as the fitness for power consumption. The evaluation function

is set to be the sum of these two fitness functions. As methods for comparison, we use a

method with FTDGA replaced by a simple genetic algorithm (SGA) or a method replaced

by TDGA that does not use the feedback function T (t). In addition to the algorithm

described in Section 3.1, the compared SGA used here adopts an elite strategy in which

individuals with good evaluation values are kept as elites in the population, and the number

of elites to be kept is 40.

The parameters for GA are shown in Table 2, and other simulation parameters are

shown in Table 1.
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Table 1: Simulation settings

Parameter Value

Simulation time 10000 s

Period of calling GA 50 s

First GA call time 100 s

Power limit 118.8 mW

Table 2: Parameters for GA

Parameter Value

Size of population 500

Number of generations to

calculate for each GA call
100

Mutation rate 0.05

Crossover rate 0.3

The parameters related to LoRa communication are shown in Table 3.

Table 3: Parameters for LoRa

Parameter Value details

FIELD WIDTH 10 km Width of the area to be controlled

FIELD HEIGHT 10 km Height of the area to be controlled

AREA DIV X 10 Number of horizontal separations of the area

AREA DIV Y 10 Number of vertical separations of the area

DATA RATE 100 s Data generation period

The probability of errors in the signal reaching the gateway changes depending on the

distance between the node and the gateway and the spreading factor. In this paper, we

use the values of packet error rate shown in Table 4 for simulation.

5.2 Simulation scenarios

5.2.1 Node mobility

In this scenario, the simulation assumes that a part of nodes moves. Due to the nature of

spreading factor, using low spreading factors near the gateway and using high spreading

factors far from the gateway improves the data arrival rate, so significant changes of the

optimal solution almost never cause with the proposed method when the nodes move.

Specific environmental changes are as follows.

• In an area of 10 km square, 600 nodes will be placed at random locations. These
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Table 4: Available spreading factors and packet error rate

distance\SF 7 8 9 10 11 12

0–1km 0% 0% 0% 0% 0% 0%

1–2km 20% 10% 0% 0% 0% 0%

2–3km 40% 30% 15% 15% 10% 10%

3–4km 50% 40% 30% 25% 20% 15%

4–5km 60% 55% 45% 30% 25% 20%

5km– 80% 70% 60% 50% 40% 35%

nodes do not move.

• After that, 20 mobile nodes will be added to each of 20 randomly chosen sub-areas.

• Every 2500 seconds, these added nodes move to another nearby sub-area. At this

time, the destination of the 20 nodes in the same sub-area is assumed to be the

same.

5.2.2 Gateway failure

In this scenario, the simulation assumes that gateways become failure. When a gateway

fails, the optimal solution changes further than the scenario in the previous section be-

cause the nodes that were using lower spreading factors near the gateway are forced to use

higher spreading factors to communicate with other gateways. Specifically, every 2000 sec-

onds during the simulation, one gateway is selected randomly and failed. Communication

between nodes and the failed gateway becomes impossible.

5.2.3 Balancing power consumption of individual nodes

We use another fitness function for the goal of equalizing the power consumption of indi-

vidual nodes. The value of fitness for this goal changes over time.

The fitness function for balancing the power consumption of nodes is defined as

Fpow−each in Eq. (12).
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Fpow−each = −powsum − powmin

powmax − powmin
(12)

In Eq. (12), the node with the minimum remaining battery power in each sub-area

when the time of one transmission cycle has elapsed when using the spreading factor

assignment in the individual to be calculated is obtained, and the sum of the difference

between the minimum remaining battery power in those nodes and the remaining battery

power in the other nodes is set to powsum. In Eq. (12), powmax and powmin are the values

when individuals are given such that powsum is the maximum and minimum, respectively.

5.3 Results

We performed ten simulations for each single parameter setting while changing the target

entropy H∗ and feedback gain τ of FTDGA. In all simulations, the environment the same,

i.e., the placement of nodes, destinations of moving nodes, and the placement of gateways,

are the same. For reference, SGA with the elite number of 40 and TDGA were also run

with the same environment settings. GA runs every 50 seconds, and the individual with

the highest fitness value will be output as the solution. The parameters used are as shown

in Table 5.

Table 5: Parameters for TDGA and FTDGA

Parameter Value

T 10−5, 10−4, 10−3, 10−2, 10−1

H∗ 20, 40, 80

τ 0.01, 0.1, 1

5.3.1 Nodes mobility

The distribution of fitness obtained as a result of SGA and TDGA is represented by box

plots in Fig 3, and the results of FTDGA are shown in Fig. 4.

First of all, with TDGA, we can see that for T = 10−4 and T = 10−3, the solution

does not exceed the upper power limit in more than half of the simulations, but for lower

values of T , the solution may exceed the upper power limit and produce a solution with
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Figure 3: Fitness comparison with TDGA (Node mobility)
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Figure 4: Fitness comparison with FTDGA (Node mobility)
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low fitness. However, for values of T less than that, the power limit is exceeded and a

solution with low fitness is output. For T values higher than these, we were not able to

find any solution that does not exceed the upper power limit. In other words, neither too

low nor too high temperature parameters can quickly find solutions with high fitness.

With FTDGA, the entropy immediately after the start of the simulation was lower than

TDGA because FTDGA tried to maintain the target entropy H∗ forH∗ = 20, τ = 0.01 and

H∗ = 40, τ = 0.01, the initial solution finding performance was not sufficient. For H∗ = 40,

τ = 0.1 and H∗ = 80, τ = 0.01, the performance is close to that of TDGA. However, when

τ is further increased beyond these values, the change in entropy H becomes too large,

and as shown in Fig. 6, the value of H fluctuates around zero or close to the upper limit,

resulting in a decrease in performance. For smaller values of τ , the feedback function has

almost no effect on the temperature and the behavior shown in Fig. 8 is almost the same

as that of TDGA shown in Fig. 7.
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Figure 5: Entropy with H∗ = 20 and τ =

0.01
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Figure 6: Entropy with H∗ = 40 and τ = 1

5.3.2 Gateway failure

The resulting fitness distributions for SGA and TDGA are represented by box plots in

Fig 9, and the results for FTDGA are shown in Fig 10.

With TDGA, as in the environment of the previous section, the fitness of the most

output solution was superior when T = 10−3. With FTDGA, the fitness of the most

output solution was also superior when H∗ = 40, τ = 0.1 settings, as in the previous
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Figure 7: Entropy with T = 10−4
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Figure 8: Entropy with H∗ = 40 and τ =

0.001

section.

5.3.3 Balancing power consumption of individual nodes

In this section, the half of the fitness function for power consumption is set to Fpow−each

and the other half of it is Fpow−total. The distribution of fitness obtained as a result of

SGA and TDGA is represented by box plots in Fig. 11, and the results of FTDGA are

shown in Fig. 12.

With TDGA, the appropriate temperature T was 10−3 or 10−4 in the previous environ-

ment. But with this environment setting, the performance was better at T = 10−4, while

the solution satisfying the power constraint was not found at T10−3. With this setting,

the performance was better at T = 10−4, while T = 10−3 did not find a solution that

satisfied the power constraint, indicating that the performance was better at T = 10−5

where the temperature was lower.

On the other hand, FTDGA performs almost as well as the other settings at the setting

of H∗ = 40 and τ = 0.1, which was the best in the two previous environments.

5.4 Discussion

In our proposed method using TDGA, when selecting individuals, it sequentially selects

one by one the individuals to be left for the next generation. When selecting the first

few individuals, the higher the temperature T , the more heterogeneous individuals will
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Figure 9: Fitness comparison with TDGA (Gateway failure)

be selected as the next generation population, because there is a tendency to try to leave

individuals that are significantly different from the previously selected individuals in order

to increase the entropy value to some extent in order to minimize the free energy F .

Because of this nature of the selection operation of TDGA, it is likely that a certain

value of entropy in FTDGA will be sufficient to achieve sufficiently good fitness in most

environments to be attainable in the design of the gene expression.

Moreover, since FTDGA can automatically set T , we believe that it can be used as a

method to search for T when the appropriate temperature is not known. In this case, it

is necessary to know the appropriate target entropy H∗ , but this is not very dependent

on the environment, so it is easier to set the parameters H∗ and τ than trying different

temperatures with TDGA.

Regarding the relationship between fitness and actual performance, first of all, for

power, the higher the Fpow−total and Fpow−each definitions, the more power can be saved.
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Figure 10: Fitness comparison with FTDGA (Gateway failure)

As for throughput, the actual data collection rate (shown by the green line) during the

simulation and Fthr (shown by the green line) are almost identical as shown in Fig. 13.

The data extraction rate (DER) is the ratio of packets sent by the terminal to those

received by the gateway during a certain period of time. The calculation range of DER in

Figure 13 is 500 seconds.
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Figure 11: Fitness comparison with TDGA (Balancing power consumption)
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Figure 12: Fitness comparison with FTDGA (Balancing power consumption)
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Figure 13: Data extraction rate and Fthr (H∗ = 40 and τ = 0.1)
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6 Conclusion

LoRaWAN is a kind of LPWA communication technology targeting IoT networks, which

has a higher degree of freedom in development than other LPWA technologies, and has

become a major research target for IoT networks. LoRaWAN can dynamically change

the data rate and transmission power of devices using control packets, and control them

according to the network conditions. However, since the data rate of LoRaWAN is low,

ranging from several hundred bps to several tens of kbps, it is more difficult to obtain

sufficient information on the network required than conventional wireless networks, making

it difficult to perform the optimal control according to environmental changes.

In this thesis, we proposed and demonstrated the effectiveness of a method for appro-

priately controlling the spreading factor to simultaneously improve the throughput and

energy consumption of LoRaWAN nodes in a fluctuating environment. By using FTDGA,

which uses the evolutionary mechanism of living organisms and keeps the diversity of

populations, to determine the spreading factor assigned to each node, we show that it is

possible to control the spreading factor to rapidly follow environmental changes such as

changes in the distribution of the number of nodes and the failure of gateway nodes. We

also show that keeping the diversity of the population in our FTDGA based scaling factor

allocation method has an advantage to design parameters. Given an appropriate diversity

in FTGDA, it is possible to obtain higher fitness than SGA, and the same level of fitness

as TDGA with sufficient parameter tuning.

Future work includes the development of a qualitative method to determine the ap-

propriate target entropy H∗ and feedback gain τ . We expect that these parameters are

determined once the gene encoding is determined.
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