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Network slice selection
• 5G defines functional requirements based on application

• eMBB: High speed and high capacity
• URLLC: High reliability and low latency
• mMTC: Multiple connections

• Separate slices for each requirement and select the slice to 
be connected at access time
• Direct mapping of terminals and slices based on requirements
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The challenge of selecting the right slice for the 
right situation
• Slice switching cost exists

• Latency to switch sessions
• Impact on TCP throughput due to route changes
• Consistency of selection by →Bayesian Attractor Model

• Difficult to cover all situations in advance
• →Automatic attractor estimation by Dirichlet Process Mixture Model

• Application response to slice selection
• Possibility that switching to a fast slice will cause the terminal to choose 

a higher bit rate
• The best choice for the situation is not always obvious
• →Use feedback
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• A cognitive model for decision making under uncertainty
• Confidence is accumulated with noisy input
• A category is expressed by a representative value

Bayesian Attractor Model(BAM)[2]
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PLOS Computingal Biology, vol. 11, no. 8, p. e1004442, Aug. 2015.
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• Overview
• A type of generative model used in clustering by Bayesian inference.
• The number of clusters can be determined by estimation without 

specifying the number of clusters in advance.

• Graphical model[1]

• 𝜑! follows an infinite dimensional Dirichlet distribution
• Data is generated from an infinite number of clusters
• 𝛼 defines the distribution of the number of clusters

DPMM: Dirichlet Process Mixture Model
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CRP： Chinese Restaurant Process
• Model a sample from an infinite dimensional Dirichlet distribution.
• Probabilistic assignment of new data to existing or new clusters

• Determine assignment probability based on cluster size
• 𝑊ℎ𝑒𝑛 𝛼 > 0, the probability of being assigned to a new category is always 

non-zero.
• 𝑇ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑟 𝑡ℎ𝑒 𝛼, 𝑡ℎ𝑒 𝑚𝑜𝑟𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 𝑦𝑜𝑢 𝑤𝑖𝑙𝑙 𝑏𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜.
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• Estimating the number of attractors by incorporating DPMM 
into BAM
• Automatically determine the number of attractors
• Realization of temporally continuous information processing for BAM

• Model

• 𝑝 𝜑! = 𝑘 = B
YZ

Y[V\]
𝑘 ≤ 𝐾!

]

Y[V\]
(𝑘 = 𝐾! + 1)

• 𝒛! = 𝑓 𝒛![V + 𝑛𝑜𝑖𝑠𝑒
• 𝑿! = 𝑀!𝜎 𝒛! + 𝑛𝑜𝑖𝑠𝑒

Estimating the number of attractors of BAM by 
DPMM
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𝜎: sigmoid function
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Attractor integration and division and control 
oscillations
• Splitting the attractor makes it more prone to vibration.

• The granularity of the control becomes finer with division, but it is susceptible 
to noise.

• Splitting the attractor makes it more prone to vibration, but it is susceptible to 
noise.

• Avoiding vibration by partial integration
• BAM takes advantage of the tendency to classify temporally continuous 

observations into the same attractor
• DPMM is based only on the distance between observations, so it is unstable 

in handling intermediate values
• Averaged values of oscillating attractors can be used, but there is a lag in 

determining the oscillation

2022/3/2 8

Attractor A

Attractor B

Attractor A+B

change
change

change change

Attractor A

Attractor B

8

Attractor Integration
1. Calculate the distance of the representative values between attractors
2. If there is a pair a, b whose distance is less than the threshold, perform 

the following integration
3. Let a be the attractor with the youngest index
4. Merge attractor a with attractor b

• Add up the number of classifieds：𝑛`\a = 𝑛` +𝑛a
• Take a weighted average of representative values : 𝜇`\a =

Ybcb\Ydcd
Yb\Yd

5. Replace attractor b with the attractor with the highest index
6. Delete the attractor with the largest index
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• Slice selection based on streaming conditions
• Number of slices is fixed.
• During streaming playback, slices can be switched according to the 

situation to avoid playback stoppage.
• Attractors support different types of situations

Application of BAM+DPMM to dynamic slice 
selection

2022/3/2 10[5] KDDI “5Gコアネットワークを利用したネットワークスライスのオンデマンド構築技術とゼロタッチ認証技術を開発”, 
https://news.kddi.com/kddi/corporate/newsrelease/2019/06/24/3880.html ,2019
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Evaluation
• Evaluation scenario

• Start with a certain number of attractors
• Initial number of attractors: 1

• Evaluate slice selection results based on player’s cognition

• Evaluation index
• Bitrate on streaming
• Number of changes in slice selection

• Target of comparison
• Classification using DPMM alone
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Classification results
• DPMM+BAM is better able to classify different classes 

according to changes in the situation.
• DPMM tends to try to assign to the previous class even when 

the situation changes significantly.
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Streaming Performance
• DPMM+BAM allows me to continue watching video at almost 

the highest bit rate.
• DPMM+BAM also reduces the number of slice changes.
• Anticipation of temporary bit rate drops is necessary.
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Summary & Future work
• Summary

• We proposed a dynamic slice selection method that switches to an 
appropriate slice depending on the application situation.

• By combining BAM and DPMM, appropriate slice switching is achieved 
without prior knowledge.

• Future work
• BAM+DPMM also causes a temporary delay in slice selection, so we 

will solve this problem by introducing prediction.
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