
Disaggregated Micro Data Center: Resource
Allocation Considering Impact of Network on

Performance
Akishige Ikoma, Yuichi Ohsita, Masayuki Murata

Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
Email: {a-ikoma, y-ohsita, murata}@ist.osaka-u.ac.jp

Abstract—In a disaggregated micro data center (µDDC),
network resources have a large impact on the performance of
applications. Thus, we propose a resource allocation method for
µDDC that allows it to efficiently utilize network resources. In
this method, we model the impact of the allocated resources
on the performance of the application. Then, we allow multiple
applications to share links if all of the processes are expected to
be completed within the acceptable time. To accommodate more
applications, if multiple candidate resources exist, this method
avoids allocating those that will be requested by applications in
the future based on their importance. In this paper, we evaluate
our method by simulating the allocation of continually generated
resource requests and demonstrate that it can accommodate more
applications without affecting the required performance.

Index Terms—Micro data center, Resource disaggregation,
Resource allocation, Multi-core optical fiber

I. INTRODUCTION

In recent years, many services have come to be provided
through cloud computing. However, some problems come
with cloud-based services, such as latency and increased
network traffic. Edge computing is one technology to address
these problems [1]. This approach deploys small data centers
(hereafter called micro data centers [µDCs]) near users.

Because a µDC has limited resources compared with larger
data centers, efficient resource utilization is important. One
approach is resource disaggregation [2], [3]. In this approach,
a µDC is constructed of resources connected by a network.
We refer to these as disaggregated µDCs (µDDCs). Unlike a
traditional DC where several resources are closely connected
in the servers, a µDDC is composed of resource units, and
each resource is independent. Therefore, the resources in a
µDDC can be easily upgraded and flexibly used by allocating
the required amount of resources to each task [4].

In a µDDC, resource allocation has a large impact on the
performance of the application, so how they are allocated
needs to be taken into account when trying to achieve a
required level of performance. Network resources in particular
have a large impact on performance [4]. Inefficient allocation
of network resources may delay the retrieval of required data
and increase the time required to complete a process. Thus,
network resources need to be considered when allocating
resources to each application.

Several resource allocation methods for a DDC have been
proposed [5], [6]. Zervas et al. proposed a method that allows

multiple applications to use the same link, but they considered
only the bandwidths and path lengths between the allocated
resources and not their impact on the performance of the
application. Amaral et al. proposed an allocation method based
on network capacity and task completion time. This method
allocates network resources to run at higher performance while
minimizing performance interference with other applications.
These methods preferentially use high-performance network
resources, which may lead to resource depletion.

In this paper, we propose a Resource Allocation Considering
impact of Network on Performance (RA-CNP). We model the
impact of the allocated resources on the application’s perfor-
mance. Then, we assume that the µDDC network is configured
with packet switches and allows multiple applications to use
the same link if all processes for them are expected to be
completed within the acceptable time. If multiple candidate
resources exist, we avoid selecting those that will be requested
in the future. Thus, we define the cost for each resource and
select the candidate whose cost is the smallest.

Our main contributions are as follows:
• We model the impact of the network on the application

performance in a µDDC.
• We propose a resource allocation method RA-CNP based

on our model and the allocation cost defined by the
importance of resources. It can allocate resources consid-
ering future requests by preserving important resources.

• We demonstrate that RA-CNP can accommodate more
applications to satisfy the required performance.

The rest of this paper is organized as follows. Section II
gives our resource allocation method. Section III evaluate RA-
CNP by simulating. Finally, Section IV concludes this paper.

II. RESOURCE ALLOCATION CONSIDERING IMPACT OF
NETWORK ON PERFORMANCE

In this section, we describe the process for modeling a
µDDC and a resource allocation request. Then, we formulate
the resource allocation problem and describe how to solve it.

A. Overview of a disaggregated micro datacenter network

A µDDC network is composed of resources such as the
CPU, memory, switches, and optical fibers. Each computa-
tional resource has a small cache. When the required data
to execute a process don’t exist in the cache and a page

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

978-1-6654-9734-3/23/$31.00 ©2023 IEEE 360

fault occurs, the computational resource obtains the data from
the memory resource. Each switch has a buffer that can cut
through switching. If the next port is available, then the switch
immediately relays the packet to it before the whole packet is
received. If the next port is busy, the switch stores the packet
in the buffer and waits for the next port to become available.

In this paper, a µDDC network is configured using a
multicore optical fiber where each optical fiber has multiple
cores. This allows for more flexible routing between resources
because there are multiple links between the same node. In
addition, we allow the construction of an aggregated virtual
link from multiple optical fiber cores. Aggregating the links
can reduce the delay; even if some of the fiber cores in the
aggregated link are busy, the switch can still relay the packet
without storing it in the buffer so long as it has at least one
fiber core available. In this paper, we regard an optical fiber
core or an aggregated virtual link as a link.

B. Modeling the disaggregated micro data center network

A µDDC network is represented as a graph Gs(Ns, Es),
where Ns and Es are the sets of nodes and links. We have
three types of nodes: nodes with computational resources,
memory resources, and switches. In this paper, each CPU
core or the GPU is treated as a single computational resource.
We divide the memory into blocks and treat each block as
a memory resource. Cs and Ms are the sets of available
computational resources and memory resources. Also, Cs

n and
Ms

n are the sets of available computational resources and
memory resources on node n. In addition, for each compu-
tational resource c ∈ Cs, we defined Kc as the floating-point
operations per second, Fc as the clock frequency, and Vc as
the page size. We also defined two properties of the switching
capability: TN

n as the processing delay when relaying a packet
to the next node by cut-through and TQ

n as the delay when
sending the whole packet to the next node. If the node n does
not have switching capability, then TN

n and TQ
n are infinite.

For each link e ∈ Es, we define No
e as the number of fiber

cores and TP
e as the propagation delay. We define Ri,j as

the set of configurable paths between nodes i, j ∈ Ns on the
µDDC. r ∈ Ri,j is a set of links on the path r. The bandwidth
of all links is B.

C. Modeling a resource allocation request

Before running an application, the required resources are
requested. We model a resource request using two graphs,
one indicating the relationships between the required resources
(resource graph) and the other indicating the relationships be-
tween the processes that are needed to execute the application
(process graph). An example of a request is shown in Figure1.

A resource graph is given a graph structure Gv(Nv, Ev),
where Nv and Ev are the sets of nodes and links, respec-
tively. Each node corresponds to the requested computational
or memory resources. The links are added between nodes
corresponding resources to execute the process.

A process graph is given a directed graph structure
Gp(Np, Ep), where Np and Ep are the respective sets of

�

�

�����������	�
�

����	�����������	�
�

�

�

�

�

�

��������

� ����
	��������	�
��

����
�������
	�������

����������������	�
���

�����
���������

������������

����	�
�������

���
���������

�

���������
�������������	�
��

���	��������
���

����
������������
�����

���������� ����
�������
	���

��������

	

��������

Fig. 1: An example of the resource and process graphs.

nodes and links. Each node p ∈ Np represents a process that
is required to execute any task for the requested application.
Associated with each node p ∈ Np are the number of page
faults (σf

p), the number of pages transmitted per page fault
(σn

p), and the clock counts needed to execute a process (σc
p).

For a process corresponding to node p ∈ Np, λr
p is the arrival

rate of packets from the memory, and λw
p is the arrival rate

of packets to the memory. These are obtained in advance by
monitoring the application in a test environment. Each link
e ∈ Ep is a directed link indicating the order of a process.
Each path from the first process to the final process gives the
sequence of processes required to complete a particular task.

We define the set of application tasks as S. For the task
t ∈ S, Np

t is the set of processes required for the task t
and the acceptable time T a

t is defined. All tasks should be
completed within the acceptable time. Also, we define the set
of paths of the process graph in task t ∈ S as Pt. A resource
request has links indicating the resource to run the process in
the process graph. cvp and mv

p are the set of computational and
memory resources to run the process p ∈ Np.

D. Resource allocation problem
We first model the impact of resource allocation on the

performance of the application. Then, we define allocation
costs and the resource allocation problem.

1) Mapping the resources: δNi,j denotes the mapping be-
tween the requested resources and those in the µDDC. δNi,j = 1
when the resource graph node i ∈ Nv is mapped to the µDDC
network node j ∈ Ns, and δNi,j = 0 otherwise.

2) Mapping the network resources: δEx,y denotes the map-
ping between the resource graph links and paths in the µDDC.
δEx,y = 1 when the resource graph link x ∈ Ev is mapped to
the path y between nodes in the µDDC and δEx,y = 0 otherwise.

3) Modeling the execution time of an application: The
execution time of task t ∈ S in a requested application is the
sum of the times to complete all processes in task t. Also, the
execution time for each process is the sum of the processing
time in the computational resource and the communication
delay to obtain the data from the memory. In this paper, we
compare the worst execution time with the acceptable time to
allocate resources that satisfy the requirements of the request.
The worst execution time T e

t for task t ∈ S is

T e
t = max

P∈Pt

(∑
p∈P

(
max
c′∈cvp

max
m′∈mv

p

(
T c
c′,p + T d

c′,m′,p

)))
.

(1)

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

361

where T c
c′,p is the processing time of process p ∈ Np in

computational resource mapped to c′ ∈ Nv and T d
c′,m′,p

is the communication delay between the nodes mapped to
c′,m′ ∈ Nv in process p.

a) Processing time for the computational resource: The
processing time T c

c′,p for a process p ∈ Np in a computational
resource mapped to c′ ∈ Nv is calculated by dividing the clock
count σc

p to complete process p by the clock frequency Fcsj
in

a computational resource csj ∈ Cs
j on node j ∈ Ns:

T c
c′,p =

∑
j∈Ns

(
δNc′,j

σc
p

Fcs
j

)
. (2)

T c
c′,p is the processing time of the computational resource

mapped to c′ ∈ Nv because δc′,j = 1 only if c′ is mapped to
j ∈ Ns.

b) Communication delay: Communication delay is the
sum of the time to obtain the head of the page and the
transmission delay. In process p ∈ Np, communication delay
T d
c′,m′,p to obtain the data from a memory mapped to m′ ∈ Nv

to a computational resource mapped to c′ ∈ Nv is

T d
c′,m′,p =

{(∑
j∈Ns δN

c′,j ·Vcs
j

B

)
σn
p + T l

er
c′,m′ ,p

}
σf
p . (3)

where erc′,m′ is the link between nodes c′,m′ ∈ Nv and csj is
a computational resource on node j ∈ Ns.

∑
j∈Ns δNc′,j ·Vcsj

is
the page size of the computational resource mapped to c′ ∈ Nv

because δc′,j = 1 only if c′ is mapped to node j ∈ Ns.
T l
er
c′,m′ ,p

is latency in path mapped to erc′,m′ in the process

p ∈ Np. In the link e′ ∈ Ev and process p ∈ Np, T l
e′,p is

T l
e′,p =∑

i,j∈Ns

∑
y∈Ri,j

δEe′,y

{∑
e∈y

(
T p
e + TR

nss
e
(λs

e,nss
e
+ λr

p, N
o
e , T

Q
nss
e
)
)}

where nss
e is the source node of link e ∈ Es when reading

data from memory. λs
e,nss

e
is the current packet rate on link

e ∈ Es occurring from node nss
e and λr

p is the packet rate
occurring from memory to a computational resource in process
p ∈ Np. Also, TR

n (λ, J,D) is a function returning response
time when buffering occurs in node n ∈ Ns based on three
arguments the packet rate λ, the number of fiber cores J , and
processing speed D at the node. This function is based on
M/D/C queuing model. However, it is difficult to obtain an
accurate response time using the M/D/C queuing model. We
use the approximation from [7]. TR

n (λ, J,D) is

TR
n (λ, J,D) = TN

n +
{1+fQ(λ,J,D)gQ(λ,J,D)}hQ(λ,J,D)

2
,

where

fQ(λ, J,D) =
(1−λD

J)(J−1)(
√
4+5J−2)

16λD
,

gQ(λ, J,D) = 1− exp
{
− J−1

(J+1)fQ(λ,J,D)

}
,

hQ(λ, J,D) = D·(λD)J

J·J!(1−λD
J)

2

[
J−1∑
i=0

(λD)J

i! + (λD)J

(1−λD
J)J!

]−1

.

4) Resource allocation costs: RA-CNP accommodate more
applications by avoiding allocating important resources for
future resource requests. Thus, we define resource allocation
costs and allocate resources to minimize costs.

Computational resources that can execute applications
whose acceptable processing times are small or that re-
quire large amounts of computational resources are important.
Therefore, we define the cost as the product of available
computational resources and FLOPS. Allocation cost W c

c of
computational resource c ∈ Cs is

W c
c = (|Cs

Nodec
|) ·Kc. (4)

where Nodec is a node of the computational resource c ∈ Cs.
A memory with a large number of available memory blocks

can execute applications that require a large amount of mem-
ory. Allocation cost Wm

m of memory resource m ∈ Ms is

Wm
m = |Ms

Nodem
|. (5)

where Nodem is a node with memory resource m ∈ Ms.
The link with a high potential to be paths between im-

portant resources are important. On the other hand, if a link
has already been allocated as a path for any application, it
cannot provide high-speed communication. Thus, the cost of
an already allocated link is set to a minimal value ϵ. The
allocation cost W e

e of a link e is

W e
e =

{ ∑
c∈Cs,m∈Ms

(
Nr

c,m(e)

Nr
c,m

)(
W c

c ·W
m
m

Hc,m

)
e /∈ Ealc

ϵ e ∈ Ealc
,

(6)
where Ealc is the set of already allocated links, Nr

c,mis the
number of shortest paths between a resource c and m, and
Nr

c,m(e) is the number of shortest paths between resources c
and m that pass through the link e. Hc,m is the smallest hop
count between resources c and m.

5) Defining the resource allocation problem:
a) Resource mapping constraints: A request graph node

is mapped as a node and a request graph link is mapped as a
path in the µDDC network.

∀i ∈ Nv,
∑

j∈Ns δNi,j = 1 . (7)

∀x ∈ Ev, ∀s, t ∈ Ns,
∑

y∈Rs,t
δEx,y = δNnvs

x ,s · δNnvd
x ,t .

(8)
where, nvs

x and nvd
x are the source and destination nodes of

link x ∈ Ev from memory to computational resources.
Each requested resource must be allocated to one of the

available resources in µDDC.

∀c ∈ N c, |Cs
c | −

∑
c′∈Cv δNc′,c ≥ 0 . (9)

∀m ∈ Nm, |Ms
m| −

∑
m′∈Mv δNm′,m ≥ 0 . (10)

where N c and Nm are the sets of nodes corresponding to the
computational and memory resources in the µDDC network,

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

362

respectively. Cv and Mv are the sets of nodes corresponding
to the computational and memory resources in the resource
graph, respectively.

b) Time constraints: All tasks in allocated applications
must be executed within an acceptable time, therefore

∀t ∈ S, T e
t ≤ T a

t (11)

c) Objective: In this method, we allocate resources to
minimize the costs of resources and links.

minimize
∑

c∈Nc

∑
c′∈Cv δNc′,c(W

c
csc
)+∑

m∈Nm

∑
m′∈Mv δNm′,m(Wm

ms
m
)+∑

i,j∈Ns

∑
y∈Ri,j

[
1∑

x∈Ev δEx,y>0

(∑
e∈y W

e
e

)]
,

(12)

where 1∑
x∈Ev| δ

E
x,y>0 is 1 when

∑
x∈Ev δEx,y > 0 and 0

otherwise. csc represents a computational resource in node c ∈
N c, and ms

j represents a memory resource on node m ∈ Nm.

E. Resource allocation based on ant colony optimization

The resource allocation problem defined in Section II-D5
is a nonlinear integer programming problem and NP-hard.
Therefore, we solve this problem using one of the meta-
heuristic methods, Ant Colony Optimization (ACO). ACO
is a population-based metaheuristic where multiple agents
probabilistically search for a solution and lead to the optimal
solution. It can flexibly adapt to changes in the environment
and is suitable for µDDC that can configure networks very
flexibly. Our method is similar to the virtual network embed-
ding method based on ACO (VNE-AC) [8], but we also use
ACO for network resource allocation, unlike VNE-AC because
the network significantly affects the application performance.
In this method, each agent searches for resources and finds
resource allocation that can finish the process within an
acceptable time. Based on each agent’s resource allocation, the
pheromone is updated and the optimal resource is allocated.
The processing steps for each agent are (1) Resource search
phase, (2) Network resource search phase, and (3) Pheromone
update phase. These steps are performed multiple times.

1) Resource search phase: In this phase, an agent proba-
bilistically allocates resources corresponding to nodes in the
resource graph from the available resources. We define the
allocation probabilities pcc and pmm for computational resource
c ∈ Cs and memory resource m ∈ Ms by

pcc =
(τc)

α

(
1

(Wc
c)β

)
∑

x∈Ccd

[
(τx)α

1

(Wc
x)β

] , pmm =
(τm)α

(
1

(Wm
m)β

)
∑

x∈Mcd

[
(τx)α

1

(Wm
x)β

]
where α and β are the weight of pheromone and cost, re-

spectively. Ccd and M cd are the set of candidate computational
and memory resources. τr is the pheromone of resource r.

2) Network resource search phase: In this phase, an agent
searches paths between the resources selected in the resource
search phase. To search them, the agent generates sub-agents.
Each sub-agent probabilistically allocates paths corresponding
to links in the resource graph from links in µDDC. The paths

are searched starting from the source resource. First, the link
from the source resource is selected. Then, the next link from
the destination node of the first link is selected. This process
is continued until a link to the destination resource is found.
At each step of this process, the link e ∈ Es is selected based
on the probabilities pe,n in node n ∈ Ns.

pe,n =
(τe)

α 1

(We
e)β∑

x∈Ecd
n

[
(τx)α

1

(We
x)β

]
where α and β represent the relative importance of pheromone
and cost, respectively. Ecd

n is the set of all candidate links
adjacent to node n. τr is the pheromone of resource r.

3) Pheromone update phase: After finding the resources,
the agent updates the pheromone. It is updated based on
pheromone decrease rate ρ (0 < ρ < 1). The pheromone τr of
any resource or link r is updated to ρτr. The pheromones of
the resources and links of the best solution for each iteration
are enhanced based on the pheromone increase rate ϕ and the
resource allocation cost. Pheromone enhanced value h is

h = ϕ∑
c∈Cb W c

c +
∑

m∈Mb Wm
m +

∑
e∈Eb W e

e

where Cb, M b, and Eb are the sets of computational
resources, memory resources, and links in the best solution.

III. EVALUATION

We evaluate the performance of the RA-CNP by simulation.
We set the parameters for the resource allocation to the values
shown in Table I.

A. Simulation settings

1) µDDC network: We assume that the µDDC network is a
2D torus with a large number of routes between resources and
flexible routing. In this paper, we use a 3×3 2D torus network
as shown in Figure 2. Each CPU pool has 28 computational
resources and each memory resource pool has 250 memory
resources. Additionally, each optical fiber has 4 optical fiber
cores. Parameter settings for the µDDC network are shown in
Table II. We use these values to calculate the execution time
of the application and resource allocation cost.

2) Resource request: We generate 4 types of requests. All
requests have the same structure as shown in Figure 1 and each
of them includes three processes; Process 1 selects the resource
to execute the task, Process 2 loads the required data, and
Process 3 executes the main process of the task. Considering
the role of processes, we allocate the same memory resource
to Processes 1 and 2 and the same computational resource

TABLE I: Parameter settings for RA-CNP

Parameters Value
Number of agents and sub-agents 20

Number of agent generations 20
Pheromone decay rate 0.1

Pheromone enhancement rate 100
Pheromone weight 2

Allocation cost weight 1
Initial pheromone value 1000

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

363

�

��

�

�
�

��

�

�

������

��	
���

�

����

�

�
���

����������������
����

�

Fig. 2: A 3× 3 two-dimensional torus network.

TABLE II: Parameter settings for the µDDC network

Parameters Value
CPU FLOPS 13.619 GFLOPS

CPU clock speed per core 2.9GHz
GPU FLOPS 35.7 TFLOPS

GPU clock speed per core 1.7 GHz
Propagation delay 0.025 µs

Switch latency when buffering 3 µs
Cut-through latency 300 ns

Page size 4 KB
Bandwidth of each optical fiber core 50 Gbps

to Processes 2 and 3. Also, Processes 1, and 2 use small
data and don’t cause page faults. Table III shows parameter
settings for the resource request. The parameters are set
based on the average clock counts obtained by running the
image classification application by machine learning models
using Intel(R) Xeon(R) CPU E5-2687W. For request 1, we
use ResNet [9], assuming that request 1 is related to the
application that requires accurate prediction by using large
machine learning models. For request 2, 3, and 4, we use
YOLO [10], assuming that they are related to time-sensitive
applications such as real-time identification of the objects. We
generate requests at a rate of 20% per minute. The probabilities
for the arriving requests are shown in Table IV. p1, p2, p3, and
p4 are the probabilities that the generating request is request 1,
2, 3, and 4, respectively. We have 5 patterns for each request
sequence to evaluate. The application lifetime is 60 minutes,
making the total simulation time 300 minutes. Also, 3 cases
determine the number of required resources:

• Case 1: Loose constraint request requires many resources
• Case 2: All requests require the same amount of resources
• Case 3: Strict constraint request requires many resources

TABLE III: Parameter settings for the resource requests
Request 1 Request 2 Request 3 Request 4

Acceptable time 3000 ms 500 ms 150 ms 150 ms
Total required CPU (Case 1/ 2/ 3) 4/7/4 4/4/4 4/4/7 1/1/1
Total required GPU (Case 1/ 2/ 3) 0/0/0 0/0/0 0/0/0 1/1/1

Total required memory resources (Case 1/ 2/ 3) 4/7/4 4/4/4 4/4/7 3/3/3
Process 1

Clock count 0.035 0.035 0.035 0.035
Packet rate to memory (/ms) 0.000495 0.003 0.0075 0.0075

Packet rate from memory (/ms) 0.000495 0.003 0.0075 0.0075
Required CPU (Case 1/ 2/ 3) 1/1/1 1/1/1 1/1/1 1/1/1

Required memory resources (Case 1/ 2/ 3) 1/1/1 1/1/1 1/1/1 1/1/1
Process 2

Clock count 0.054 0.054 0.054 0.054
Packet rate to memory (/ms) 0 0 0 0

Packet rate from memory (/ms) 0.000495 0.000495 0.0075 0.0075
Required CPU or GPU (Case 1/ 2/ 3) 3/6/3 3/3/3 3/3/6 1/1/1 (GPU)

Required memory resources (Case 1/ 2/ 3) 1/1/1 1/1/1 1/1/1 1/1/1
Process 3

Clock count 2371.33 1960.36 1960.36 1960.36
Packet rate to memory (/ms) 2.805 2.85 2.85 2.85

Packet rate from memory (/ms) 5.565 5.145 5.145 5.145
The number of page faults 67543.25 56661.29 56661.29 56661.29

The number of pages per page fault 5.27 4.84 4.84 4.84
Required CPU or GPU (Case 1/ 2/ 3) 3/6/3 3/3/3 3/3/6 1/1/1 (GPU)

Required memory resources (Case 1/ 2/ 3) 3/6/3 3/3/3 3/3/6 2/2/2

TABLE IV: Parameter settings for generating requests

Request sequence p1 p2 p3 p4
Request sequence 1 0.75 0.05 0.05 0.15
Request sequence 2 0.35 0.15 0.35 0.15
Request sequence 3 0.05 0.05 0.75 0.15

B. Method comparison

We obtain the results in this section by using ACO, which
is similar to our proposed method.

a) Resource allocation using the shortest path (SP): This
method allocates resources based on the shortest path between
resources. To do this, the link cost is defined by W e

e = 1.
This method is very simple and we evaluate whether a simple
routing is sufficient for a µDDC resource allocation.

b) Resource allocation by considering network perfor-
mance (NP): This method allocates paths based on whether
there is a low traffic volume and short path lengths between the
computational and memory resources. This method allocates
resources focussing on performance and is similar to policies
in [5], [6]. The cost of link e ∈ Es with node n ∈ Ns as the
source is defined by

W e
e,n =

λs
e,n

Ncore
e

λmax +
Di,j

Dmax

where λmax is the maximum traffic volume, Di,j is the
shortest path length from node i ∈ Nv to node j ∈ Nv ,
and Dmax is the network diameter.

c) Resource allocation without link aggregation (w/o A):
This method allows multiple applications to share the same
link but doesn’t aggregate links. We show the effectiveness of
link aggregation by comparison with w/o A.

d) Resource allocation without link sharing (w/o S): In
this method, each optical fiber core is limited to being used by
a single application. We show the effectiveness of link sharing
by comparison with w/o S.

C. Metrics

We compare the number of applications whose requirements
are satisfied. We use a simple scenario wherein requests whose
corresponding resources cannot complete the required pro-
cesses within the acceptable time are blocked, though we can
accommodate them if the resulting performance degradation is
acceptable. Then, we compare the number of blocked requests.

D. Results

Figure 3 shows the blocked requests for each case. The
results shown in the graph are the sum of the number of blocks
in the five patterns of request sequences.

In RA-CNP, blocking occurred only in environments with
a high arrival rate of requests with a high amount of required
resources (Figure 3b, 3h, 3i). On the other hand, blocking
occurred in SP and NP even in environments where blocking
does not occur in RA-CNP. In particular, SP and NP have
more than twice as much blocking compared to RA-CNP even
when blocking occurs in RA-CNP. More blocking means that
fewer applications can run simultaneously. This difference is
due to the resources that are available when requests required

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

364

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(a) Request sequence 1 (Case 1)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(b) Request sequence 2 (Case 1)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(c) Request sequence 3 (Case 1)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(d) Request sequence 1 (Case 2)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(e) Request sequence 2 (Case 2)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(f) Request sequence 3 (Case 2)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(g) Request sequence 1 (Case 3)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(h) Request sequence 2 (Case 3)

RA-CNP SP NP w/o S w/o A
0

20

40

60

80

B
lo

c
k
e
d
 r

e
q
u
e
s
ts

Request 1

Request 2

Request 3

Request 4

(i) Request sequence 3 (Case 3)

Fig. 3: Comparison of blocked requests for each case and request sequence

many resources arrive. NP allocates resources in a way that
prioritizes achieving the best network performance. Also, SP
does not consider performance and future requests. As a result,
there are not enough paths with acceptably small execution
times for requests, which requires many of them. On the other
hand, because our method avoids using the resources that will
be required by future requests, it can allocate more requests.

The results also indicate that more applications can be
accommodated by link sharing because so many rejections
occur in w/o S. By sharing links, we preserve the links that do
not communicate frequently. In addition, the results indicate
that link aggregation also increases the number of allocated
resources. This is caused by the reduction in latency that
results from aggregating links. As a result, even requests
whose acceptable execution time is short can be accepted.

IV. CONCLUSION

We proposed a resource allocation method for a µDDC
that achieved an efficient usage of network resources. In this
method, we modeled the impact of the allocated resources on
the time required to complete the processes involved in an
application. Then, we allowed multiple applications to share
links if all of the processes involved with them were expected
to be completed within the acceptable time. By avoiding
the use of important resources, this method preserves them
so that they can be used by future applications, and more
applications can be accommodated. In this paper, we evaluated
RA-CNP by simulating the allocation of continually generated
resource requests and demonstrated that it can accommodate
more applications without affecting the required performance
compared to the traditional resource allocation policy.

In future work, we plan to further investigate the structure
of a µDDC, including the network topology and the location
of resources, and to consider the resource allocation within it.

ACKNOWLEDGMENTS

This work was partially supported by the National Institute
of Information and Communications Technology (NICT).

REFERENCES

[1] K. Bilal, O. Khalid, A. Erbad, and S. U. Khan, “Potentials, trends, and
prospects in edge technologies: Fog, cloudlet, mobile edge, and micro
data centers,” Computer Networks, vol. 130, pp. 94–120, Jan. 2018.

[2] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker,
“Network support for resource disaggregation in next-generation dat-
acenters,” in Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, Nov. 2013, pp. 1–7.

[3] Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent
advances in optical technologies for data centers: a review,” Optica,
vol. 5, no. 11, pp. 1354–1370, Nov 2018.

[4] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal,
S. Ratnasamy, and S. Shenker, “Network requirements for resource
disaggregation,” in Proceedings of 12th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 16). Savannah, GA:
USENIX Association, Nov. 2016, pp. 249–264.

[5] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Optically
disaggregated data centers with minimal remote memory latency: Tech-
nologies, architectures, and resource allocation [invited],” Journal of
Optical Communications and Networking, vol. 10, no. 2, pp. A270–
A285, 2018.

[6] M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang, A. Morari,
B. D’Amora, A. Youssef, and M. Steinder, “Drmaestro: orchestrating
disaggregated resources on virtualized data-centers,” Journal of Cloud
Computing, vol. 10, pp. 1–20, mar 2021.

[7] T. Kimura, “Approximations for multi-server queues: System interpola-
tions,” Queueing Systems, vol. 17, pp. 347–382, 1994.

[8] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann, “VNE-AC: Vir-
tual network embedding algorithm based on ant colony metaheuristic,” in
Proceedings of 2011 IEEE International Conference on Communications
(ICC), Jun. 2011, pp. 1–6.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[10] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 779–788.

2023 IEEE 20th Consumer Communications & Networking Conference (CCNC)

365

