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Abstract—New network services using real spatial information
are expected to emerge in remote areas. For the advancement
of services, it is important to understand real space from real
spatial information, and for this purpose, object identification
using machine learning is widely employed. Instead of directly
identifying real space information using machine learning tech-
niques, in this study, we represented real space as a field of
probabilistic superposition of objects, which incorporates the
results of the object identification as well as information about
neighboring objects. We obtained the neighbor information based
on positional relationships of objects in real space from a
dataset used by the machine learning algorithm, and built an
empirical knowledge base of the positional relationships. Then,
we developed a method to use the empirical knowledge to
modify the object identification results. Our results show that the
outcomes of object identification are changed by the empirical
knowledge and the accuracy of the identification is improved
when confidence in the machine learning algorithm is low.

Index Terms—point cloud; object detection; machine learning;
semantic segmentation; Bayesian estimation

I. INTRODUCTION

New network services using real spatial information are
expected to emerge in remote areas. Services such as remote
shopping services that can provide a shopping center experi-
ence from home require understanding real space from real
spatial information and information processing. Specifically,
it is necessary to transfer real spatial information acquired
remotely via a network and provide users with services
obtained from real spatial information through applications.
These network services need to understand real space from
real spatial information. In fact, much research has been done
on object identification in different situations, for example,
for data on roads with a mixture of features such as vehicles,
passersby, and buildings, and for indoor data with various
types of furniture [1], [2]. These are among the tasks required
in environments where information in real space must be
recognized with high accuracy, such as automatic driving of
automobiles and autonomous control of self-driving robots [3].

Currently, research is underway to acquire real-world infor-
mation as 2D data such as video images and apply machine
learning techniques such as deep learning to present real-
world information to the user [4]. However, because real-

world information is reduced to 2D data, it cannot handle 3D
information, such as overlapping objects. Therefore, in recent
years, there has been much research on object identification
using machine learning for 3D spatial information that can
be acquired by Lidar sensors or depth cameras [5], [6].
Existing object identification methods are implemented by
automatically learning features within the data from a large
amount of training data. However, it has been pointed out that
it is difficult for humans to understand the rules that guide
the object identification results of existing machine learning
methods [7]. Another issue is that object identification ignores
real-space knowledge that we humans have, such as the fact
that a kitchen and a sofa are unlikely to be adjacent to each
other.

In this study, we developed a way to represent real space
as a field of probabilistic superposition of objects, instead
of directly identifying real space information using machine
learning techniques and other methods. A field of probabilistic
superposition of objects is a field that does not uniquely iden-
tify objects in real space but is represented by the probabilistic
superposition of object categories. Specifically, we focused
not on estimating objects for specific scenes, but rather on
using probability to quantify the empirical knowledge that we
potentially acquired during our lives. To represent the field
of probabilistic superposition, we focused on the informa-
tion of neighboring objects. By collecting object proximity
information from a large amount of data, for example, a
chair and a desk being in close proximity, we quantified
latent and empirical knowledge in real space as statistical
information. We obtained the neighbor information based on
the positional relationships of objects in real space from a
dataset used by machine learning, and the correlation between
object adjacencies in real space was statistically determined.
We used 3D point cloud data collected for the machine
learning to obtain statistical information in real space, and
point cloud data in real space was represented as a probabilistic
field. In this study, we obtained probability fields from point
cloud data reflecting the indoor environment of over thousands
rooms, focusing on the number of objects and their adjacencies
for 20 different objects, such as desks, chairs, beds, and



windows. Furthermore, to examine the application of the field
of probabilistic superposition, we examined the modification
of object identification results by a Bayesian estimation. This
will aim to improve recognition of real-space information for
point cloud data with the empirical knowledge.

II. PROBABILISTIC FIELD REPRESENTATION OF REAL
SPACE INFORMATION AND ACQUISITION METHOD

A. Real Space Information

As real space information, we focused on information on
the position and category of objects that exist in real space. For
example, we handled information on the position and category
of objects such as furniture for indoor data and objects such as
cars and people for outdoor data. By handling such informa-
tion, various applications are possible, for example, detection
of obstacles necessary for automatic driving and autonomous
control, and recognition of information on products desired
by users in new network services, such as remote shopping
services.

We used 3D point cloud data as real-space information.
Point cloud data summarize information on points in space,
and have components that represent six basic parameters for
each point: spatial coordinate information (X , Y , Z) and
color information (R, G, B). 3D point cloud data can capture
complex shapes captured by an RGB-D camera capable of
simultaneously acquiring color and distance images and a
laser scanner that irradiates an object to obtain the object’s
coordinates from the time it takes for the laser to return and
the angle of the irradiation.

B. Probabilistic Field Representation

A probabilistic field is not a unique identification of objects
in real space, but a field represented by a probabilistic su-
perposition of object categories. In this study, we obtained
adjacency information for the positions of objects in real
space from many data, statistically determined what kind of
correlation exists between object adjacencies in real space,
and used this as prior knowledge of real space. By statistically
determining what kind of correlations exist among neighboring
objects in real space, it is possible to quantify the correlations
that humans have, or to incorporate them into other methods
as prior knowledge. In this study, we obtained numerical
information on the number of objects and adjacencies between
object categories by determining the existence and adjacency
probability distributions of the objects shown in Sections II-B1
and II-B2. In this process, it was necessary to cut out objects,
acquire their positions, and acquire their adjacencies, and we
explain the detection method in Section II-C.

1) Probability distribution of object existence: We obtained
statistical information on object existence from real space in-
formation. Using the object information existing in real space,
we obtained the existence status in the space by calculating the
existence probability of each category based on the number of
objects in each category and the total number of objects.

2) Probability distribution of adjacent objects: We obtained
statistical information on object adjacency from real space
information. Using the object information in real space, we
searched for adjacent objects based on the distance between
the center-of-gravity point of each object. The probability of
which categories of objects are adjacent to the object of inter-
est was calculated, and the objects determined to be adjacent
were aggregated to obtain the state of adjacentness in the
space. The adjacency probability was calculated by dividing
the number of adjacencies between the object category of
interest and the adjacent object categories by the number of
detected adjacencies of the object category of interest.

C. Object Detection Method for Probabilistic Field Represen-
tation

In this section, we describe the method for obtaining
information on the location and category of objects from
real-space information. There are several methods for object
detection, such as unsupervised learning (e.g., clustering) and
supervised learning (e.g., deep learning), but in this study, we
used density-based clustering. Density-based clustering is an
algorithm that separates areas with a concentration of points
from sparse areas and detects areas with a concentration of
points as objects. By performing density-based clustering on
a point cloud consisting of only points in each category, the
object location in each category is detected.

1) Density-based clustering: We used DBSCAN clustering
[8] from Open3D [9], an open-source library for 3D data. The
algorithm performs a search for points within a radius r of
a certain point and determines a point to be a cluster if the
reachable points exceed a threshold n, while reachable points
that do not exceed the threshold n are considered noise. In
our study, the threshold n of the cluster is set to be 10, which
means that the radius r is 5 [cm], and the distance between
the center of gravity points of object adjacencies is 1 [m].

2) Nearest neighbor search: As in Section II-C1, we used
the construction of a KDTree using the fast nearest neighbor
search library FLANN [10] from Open3D [9], an open-source
library for 3D data. KDTree is a spatially partitioned data
structure that classifies points in a multidimensional space, and
FLANN is a library that speeds up the search, which varies
with the number of dimensions and amount of data.

III. EXAMPLE OF PROBABILISTIC FIELD REPRESENTATION
USING 3D POINT CLOUD DATASET

A. Real Space Data

A public dataset of indoor space was used to obtain a
real space stochastic field representation. Specifically, we used
ScanNet [11], an indoor 3D point cloud dataset. This dataset
includes coordinate and color information for 1613 room
scenes surveyed by an RGB-D camera and labeled by scene
type, such as office, apartment, or bathroom. Figure 1 shows
an example of 3D point cloud data.

Of the total of 1613 room scenes, 1201 scenes were used
for training data to obtain the probabilistic field representation
(the remainder were split between 312 scenes for validation



Fig. 1: Indoor 3D point cloud data
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Fig. 2: Distribution of scene types in the ScanNet dataset

and 100 scenes for testing). These training scenes are anno-
tated with surface reconstruction and semantic segmentation
annotations in addition to the spatial coordinate and color
information of the point cloud.

Figure 2 shows the distribution of scene type occurrence
for the 1201 scenes in the ScanNet dataset. The vertical axis
indicates the scene type name, and the horizontal axis indicates
the number of scenes of each type. The ScanNet dataset, which
is constructed from 21 scene types, contains a variety of spaces
ranging from small-scale types (e.g., bathroom, closet, and
unit bath) to large-scale types (e.g., apartment, classroom, and
library).

Each scene contains several point cloud objects correspond-
ing to objects in the room. Hereafter, point cloud objects are
referred to as objects. The objects are manually annotated
with an object category identifier (henceforth, object category)
that represents the object. Table I shows the object category
classifications assigned to objects in the ScanNet dataset. The
category “other furniture” contains furniture not listed in the
table, such as piano and display case. Although the ScanNet
dataset includes information on walls and floors, the center
of gravity of walls and floors can be far from the center of
gravity of objects, making it impossible to properly extract the

TABLE I: Object categories

Label Category Label Category
0 wall 10 picture
1 floor 11 counter
2 cabinet 12 desk
3 bed 13 curtain
4 chair 14 refrigerator
5 sofa 15 shower curtain
6 table 16 toilet
7 door 17 sink
8 window 18 bathtub
9 bookshelf 19 other furniture

Fig. 3: Examples of object adjacencies

adjacency relationship, so this paper excludes walls and floors
to obtain real-space information.

B. Example of Probabilistic Field Representation

An example of a probabilistic field obtained by the method
described in Section II is shown below.

Figure 3 shows the object adjacency in one scene when
we obtain the probabilistic field representation. The points
represent object center-of-gravity points, the colors represent
object categories, and the lines represent adjacencies. From
this figure, it can be seen that an object that is identical in
real space is divided into multiple objects (e.g., areas a to c)
due to noise and clarity differences that occur when acquiring
point cloud data for objects using the method shown in Section
II-C1. In addition, we can confirm the adjacency situations
that appear in real space, such as the adjacency between sink,
counter, and cabinet (area c); desk and chair (area d); and
cabinet, toilet, bathtub, and shower curtain in a unit bath (area
e). This indicates that we can obtain knowledge information
for our daily life.

Information on the object presence probability distribution
and object adjacency probability distribution for all 1201
scenes in the training data is shown in Tables II and III.

Table II shows a high probability of the presence of common
room furniture, such as table, chair, and door. Next in proba-
bility are other furniture, cabinet, and desk furniture. This is
because “other furniture” includes a variety of furniture such
as pianos and display furniture, while “cabinet” and “desk”
are common furniture often included in the scene type shown
in Figure 2.



TABLE II: Existence probability for all scenes (%)

Label Category Prob Label Category Prob
0 wall - 10 picture 2.35
1 floor - 11 counter 2.11
2 cabinet 7.54 12 desk 6.26
3 bed 4.98 13 curtain 1.27
4 chair 19.61 14 refrigerator 1.28
5 sofa 3.44 15 shower curtain 0.41
6 table 22.52 16 toilet 0.81
7 door 8.56 17 sink 1.45
8 window 5.55 18 bathtub 0.57
9 bookshelf 3.55 19 other furniture 7.76

We describe the characteristics obtained from Table III.
First, we see that the diagonal values of Table III are generally
large. For example, bookshelf (Label 9) has a probability of
92%, reflecting how common it is for a bookshelf to be placed
next to another bookshelf. Shower curtains, toilets, sinks, and
bathtubs (Labels 15-18) have lower probabilities but are still
considered to be important. Multiple objects of the same type
appear, even though one is sufficient for their function. This is
because when an object in real space is acquired by the method
shown in Section II-C1, it is divided into multiple identical
objects owing to noise and differences in sharpness that occur
during the acquisition of the point cloud data. In addition, unit
bath-related shower curtains, toilets, and bathtubs (Labels 15,
16, and 18, respectively) have a high probability of mutual
adjacency. Moreover, chairs (Label 4) have an adjacency of
38% for tables (Label 6), excluding diagonals, followed by
8% for desk (Label 12). In addition, there is no refrigerator
(Label 14) adjacent to the toilet (Label 16). This is thought to
reflect the characteristics of the real space as we understand it,
and the characteristics of the interior space can be expressed
in a probabilistic manner. One case (0.005%) of toilet (Label
16) occurs next to bed (Label 3), but this reflects the adjacency
of objects along the opposite wall in the scene, because the
adjacency was extracted from the recognized center-of-gravity
distance.

Similar trends are seen for presence and adjacency probabil-
ities by scene type. In addition, for example, in the bathroom
scene, the number of shower curtains, toilets, sinks, and
bathtubs was high, and the mutual adjacency between shower
curtains, toilets, and bathtubs, which is seen in unit baths,
as well as between counters and sinks around the water area,
was also high. The scene also shows many mutual adjacencies
between shower curtains and toilets and bathtubs, which are
seen in unit bathrooms, and between counters and sinks, which
are similarly seen around bathrooms.

IV. OBJECT ESTIMATION METHOD USING PRIOR
KNOWLEDGE BASED ON PROBABILISTIC FIELD

REPRESENTATION

This section presents examples of the use of the probability
fields for all 1201 scenes in object estimation based on prior
knowledge.

A. Existing Methods

We used the SparseConvNet [12] model as an existing
method for object identification using 3D point cloud data. The
SparseConvNet model identifies objects using deep learning,
and it has one of the top accuracy rankings for semantic
segmentation tasks on the ScanNet dataset [13]. Semantic
segmentation for 3D point cloud data is the task of labeling
each point with an object category. The probability of each
object category is calculated, and in general, the object with
the largest probability is labeled as the object identification
result.

Table IV shows the identification accuracy of SparseCon-
vNet using the ScanNet dataset. The identification accuracy of
semantic segmentation uses a metric called Intersection over
Union (IoU), which indicates the percentage of regions where
the object category was correctly recognized. While the exist-
ing method can identify objects with a correct identification
rate of over 80% for several object categories, some object
categories have a predicted probability in the 20% range.

Object identification methods based on deep learning, such
as SparseConvNet, are implemented by automatically learning
features within data from a large amount of training data.
However, object identification with these methods ignores real-
space knowledge that we humans have, such as the fact that
a kitchen and a sofa are unlikely to be adjacent to each other.

B. Segmentation Prediction Considering Prior Knowledge

We used the obtained probabilistic field representation to
perform object estimation for semantic segmentation predic-
tions. From the semantic segmentation prediction, we used
Bayesian estimation [14] to calculate the posterior probabili-
ties, including prior knowledge.

We focused on a certain object A in the point cloud
data. Let pA(x) be the predicted probability of the object
category x ∈ X for object A by semantic segmentation
prediction. Then, if Z1:k = Z1, Z2, · · · , Zk represents an
object’s neighboring object A, the posterior probability of
object A under observation Z1:k, P (x|z1:k) can be estimated
by Bayesian estimation:

P (x|z1:k) =
G(zk|x)× P (x|z1:k−1)∑

x′∈X
G(zk|x′)× P (x′|z1:k−1)

,

G(zk|x) = pZk
(zk)× g(zk|x)

+ [1− pZk
(zk)]× [1− g(zk|x)],

P (x|z1:0) = pA(x).

As prior knowledge, let g(b|a) be the probability that category
a is adjacent to category b in one room scene type.

C. Evaluation

We calculated performance indicators before and after
Bayesian estimation was applied.

Accuracy, precision, recall, and F1-score are shown for the
performance measures of multiclass classification. Accuracy
is the percentage of all data that were correct, precision is the



TABLE III: Adjacency probability for all scenes (%)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 71.9 0.1 3.4 0.3 1.2 1.4 0.8 0.4 0.5 7.7 3.2 0.3 1.6 0.0 0.8 3.9 0.1 2.7
3 0.1 95.3 1.0 0.0 0.2 0.2 0.4 0.2 0.3 0.0 1.3 0.4 0.0 0.0 0.0 0.0 0.0 0.7
4 1.1 0.3 48.1 0.2 38.9 0.5 0.9 0.2 0.1 0.0 8.0 0.3 0.1 0.0 0.0 0.0 0.0 1.5
5 0.7 0.1 1.3 80.5 11.4 0.2 0.6 0.0 0.4 1.4 0.5 0.3 0.0 0.0 0.0 0.0 0.0 2.5
6 0.2 0.0 17.7 0.7 79.8 0.2 0.3 0.0 0.1 0.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.7
7 2.1 0.2 2.1 0.1 1.6 81.9 1.1 1.1 0.6 0.5 1.1 0.6 0.5 0.6 0.8 0.7 0.3 4.1
8 1.5 0.7 5.0 0.4 4.2 1.4 75.2 0.5 0.5 0.9 4.0 1.7 0.1 0.0 0.1 0.5 0.0 3.3
9 0.9 0.3 1.6 0.0 0.1 1.6 0.6 92.6 0.2 0.0 0.7 0.1 0.0 0.0 0.0 0.0 0.0 1.2

10 3.1 1.6 1.7 0.9 4.2 2.6 1.8 0.6 74.9 0.5 3.2 0.3 0.2 0.6 0.4 0.5 0.0 2.8
11 27.1 0.0 0.2 2.0 0.3 1.1 1.6 0.0 0.3 50.0 0.0 0.2 3.4 0.0 0.1 10.8 0.0 2.9
12 3.1 1.2 23.2 0.2 1.2 0.7 2.1 0.3 0.5 0.0 64.6 0.3 0.1 0.0 0.0 0.0 0.0 2.6
13 3.8 4.3 9.5 1.6 6.6 4.7 11.8 0.7 0.6 0.6 4.1 45.4 0.5 0.0 0.1 0.5 0.0 5.0
14 11.7 0.0 1.2 0.1 0.3 2.6 0.3 0.0 0.3 7.3 0.7 0.3 67.8 0.0 0.0 2.7 0.0 4.7
15 1.9 0.0 0.0 0.0 1.3 17.7 0.2 0.0 4.2 0.0 0.0 0.0 0.0 23.0 19.0 2.7 25.0 5.0
16 15.1 0.1 0.1 0.0 0.6 10.7 0.7 0.0 1.3 0.4 0.0 0.2 0.0 8.3 25.1 8.4 11.0 18.1
17 30.4 0.0 0.3 0.0 1.3 3.4 2.1 0.0 0.7 24.3 0.0 0.3 2.8 0.5 3.3 22.0 0.8 7.8
18 2.4 0.0 0.0 0.0 1.1 6.9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 17.6 17.8 3.1 45.9 4.7
19 3.8 1.0 6.3 1.4 6.1 3.8 2.5 0.7 0.6 1.2 3.7 0.6 0.9 0.2 1.3 1.4 0.2 64.1

TABLE IV: Result of Semantic Segmentation on SparseCon-
vNet

Label Category IoU Label Category IoU
0 wall 0.7951 10 picture 0.2436
1 floor 0.9509 11 counter 0.5920
2 cabinet 0.6021 12 desk 0.5850
3 bed 0.7874 13 curtain 0.6768
4 chair 0.8907 14 refrigerator 0.4372
5 sofa 0.8249 15 shower curtain 0.6142
6 table 0.7151 16 toilet 0.9161
7 door 0.5354 17 sink 0.6636
8 window 0.5052 18 bathtub 0.8807
9 bookshelf 0.7651 19 other furniture 0.4921

avg. IoU 0.6737

TABLE V: Evaluation Results

(a) Comparison of each indicator

Accuracy Precision Recall F1-score
predicted label 65.3% 60.1% 59.9% 60.0%
posterior label 67.5% 70.8% 62.4% 66.3%

(b) No. of changes for each label

posterior label
= annotated

posterior label
6= annotated

predicted label
= annotated

6678
(88.7%)

850
(11.3%)

predicted label
6= annotated

1099
(27.5%)

2896
(72.5%)

percentage of those predicted as class Li that were correct,
recall is the percentage of class Li data that were correctly
predicted, and F1-score is the harmonic mean of precision
and recall.

For all objects in the 312-scene validation data, we validated
the correlation between predicted and posterior probabilities
for semantic segmentation. We show the performance indices
in Table V before and after applying Bayesian estimation.
Here, “predicted label” represents the label before applying
Bayesian estimation, i.e., the label with the highest predicted
probability among pA(x) and “posterior label” represents the
label after applying Bayesian estimation. Precision, recall, and
F1-score are the average of the indicators for each class.

Table Va shows that precision was improved by about
10%, which is a concrete beneficial effect. Recall, however,
only improved by about 3%. A high rate of improvement in
the precision rate is thought to indicate that the number of
correctly compensated objects tends to be large. Conversely,
the low improvement rate of recall suggests that there a certain
number of objects in a particular class La have been assigned
to another class. There are many classes for which precision
increased significantly but recall is still low. Table Vb shows
the distribution of posterior labels depending on whether the
posterior label is consistent with the predicted label or not and
on whether they are true label or not. Table Vb shows that,
by the Bayesian estimation, 27.5% of predicted labels, which
differ from annotated labels, can be modified to the annotated
labels. This is a factor for improving the indicators in Table Va.
However, 11.3% of predicted labels was mistakenly modified
by the Bayesian estimation, which is why the improvement in
Table Va was marginal. Although this suggests that Bayesian
estimation can be applied to correct certain object predictions,
some of object predictions cannot be corrected by Bayesian
estimation.

To see when and how such the mistake happens, in Figure
4, we show histograms of the cases where the predicted labels
changed dependent on the highest predicted probability. In the
figure, the histogram with magenta shows the case when the
wrong label has been properly corrected, and the histogram
with green shows the case when the correct label has been
mistakenly modified to a wrong label. Figure 4 shows that
the patterns that led to correct labels are concentrated around
0.5 to 0.6 of the prediction probability. The patterns that led to
wrong labels are concentrated in 0.9 or more higher prediction
probabilities before Bayesian estimation. These results show
that our Bayesian estimation should not be applied to objects
taking a high prediction probability by the machine learning
techniques.

V. CONCLUDING REMARKS

In this study, we worked on the representation of real-space
information as a probabilistic field. We obtained adjacency
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information for the positions of objects in real space from
an indoor 3D point cloud dataset, and obtained a real-space
probabilistic field by statistically determining what kind of
correlation exists between object adjacencies in real space.
Next, we presented an object estimation method based on prior
knowledge as an example of using the obtained probabilistic
field for The evaluation results confirmed that the object
estimation method based on prior knowledge improved the
estimation accuracy to a certain degree in the accuracy, preci-
sion, recall, and F1-score metrics. It was also confirmed that
object estimation based on prior knowledge is effective when
segmentation prediction by existing methods is not sufficiently
accurate.

Our future work is to improve our object estimation method
by acquiring probabilistic fields of real-space information from
multiple datasets such as the dataset of outdoor fields.
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