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Abstract

Recently, image recognition AI has been introduced in various industries, such as

manufacturing and logistics, for uncrewed and labor-saving operations. Sensors used to

capture image data include not only RGB cameras but also thermal cameras and near-

infrared cameras. Since these sensors have become relatively inexpensive, the appropriate

sensor is selected according to the purpose. Furthermore, some image processing methods

that fusion images obtained from sensors capturing different wavelength ranges have also

been proposed.

The novel coronavirus (COVID-19) spread has raised considerable interest in counter-

measures against infectious diseases. One of the routes of infection is contact transmission.

It is known that the virus can remain on touched surfaces for several hours to several days,

depending on the material touched, so it is important to avoid touching the areas where

other people touched or to disinfect the area by detecting and warning of the touched

points.

Several image processing methods using a thermal camera have been proposed for de-

tecting touched points. It is known that thermal videos show a sign that the temperature

of the touched area rises, which is called heat trace. Although humans can appear in ther-

mal and RGB videos, heat traces appear only in thermal videos. Therefore, the detection

accuracy of heat traces can be improved by combining thermal and visible light videos to

distinguish between people and heat traces. In addition, since heat traces disappear and

diffuse over time, temporal thermal change is considered effective for heat trace detection.

In this study, we propose the heat trace detection method by fusion of RGB and

thermal videos with deep learning models and investigate the effectiveness of temporal

and spatial features, contributing to the development of a heat trace detection system to
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avoid contact transmission of viruses causing infectious diseases. We designed a simple

dataset and 2DCNN and 3DCNN models to investigate the influence of the type of image

bands, the time length, and the spatial size of input videos. The results show that when

the spatial area is strongly restricted, the accuracy of thermal images is higher than that

of the thermal and RGB images. On the other hand, when the spatial size was larger

and more human and environmental information was included, the accuracy improved to

93.3 % when both were used, compared to 91.0 % when using only the thermal images.

The accuracy of videos was higher than that of single images in any experiment. From

these results, we confirmed that the fusion of RGB and thermal images improves the

detection accuracy if a certain spatial area can be captured, and temporal information

is an important feature for detecting heat traces. The obtained knowledge is helpful for

designing a more optimal network to detect heat traces, thus we propose a new network

architecture for future work.
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1 Introduction

Image recognition AI is becoming widely penetrating in various industries, including man-

ufacturing and logistics, for automated and labor-saving operations. Various sensors can

respectively capture particular wavelength ranges, for example, visible light (VIS) cameras,

near-infrared (NIR) cameras, long-wave infrared (LWIR) cameras, multispectral cameras,

and so on. Since these sensors are now relatively inexpensive, they can solve a wide range

of problems, such as detecting abnormalities in machinery using a thermal camera or

measuring the vitality of crops using a multispectral camera.

Additionally, image processing methods that combine sensors of different wavelength

ranges to enhance the advantages and compensate for the disadvantages of each have

been studied [1]. In this paper, a single wavelength range is called a single band, and the

fusion of multiple bands is multi-band. This study proposes a multi-band image processing

method using visible light and thermal images.

Meanwhile, the spread of novel coronavirus (COVID-19) infection from 2019 onward

has led to a significant increase in interest in infectious disease countermeasures. Contact

infection, one of the infections ways, is caused when a non-infected person touches a

residual virus on the touched area by an infected person, and the virus enters the body.

COVID-19 is reported to survive the longest on plastic object surfaces for about 72 hours,

followed by stainless steel surfaces for about 48 hours [2]. In addition to COVID-19, Severe

Acute Respiratory Syndrome (SARS) in 2002 and Middle East Respiratory Syndrome

(MERS) in 2012 survived on plastic surfaces for up to 9 days and 2 days, respectively [3].

As seen from the outbreak years of SARS and MERS, many infectious diseases existed

before the COVID-19 outbreak, and outbreaks are repeated every 5 to 10 years. To avoid

contact infection, it is necessary to develop a system that can accurately recognize when

and where a person has touched, warn by visualizing the touched areas, and promptly tell

us to clean up the areas.

Some methods for touch detection using a thermal camera are proposed [4–6]. When

a person touches the surface of an object, the heat signature transferred from the body

temperature remains for a certain period, called a heat trace. Figure 1 shows the heat

trace in the thermal image and the NIR image at the same time. In the NIR image shown
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(a) NIR image (b) Thermal image and a heat trace

Figure 1: Image pairs after touching

in Figure 1a, you can see a human hand reaching a box, but in the thermal image shown

in Figure 1b, not only the hand but also heat traces where the person touched the box

remain. In this study, we are trying to detect touch with the surface of an object by

detecting heat traces.

As shown in Figure 1, a person can appear in both thermal and RGB/NIR images,

but heat traces appear only in thermal images, so to distinguish between a person and

heat traces, image processing is performed in combination with RGB/NIR images rather

than using thermal images alone. Therefore, to distinguish heat traces from persons,

the recognition accuracy of heat traces can be improved by combining thermal images

with RGB or NIR images rather than using only thermal images. In addition, since heat

traces appear only after a person touches an object and shrink over time due to heat

dissipation, temporal features are considered effective for heat trace recognition. Here,

temporal features are obtained by extracting features in the time direction, such as the

shrinking of heat traces, changes in background temperature, and the entry and exit of

people into and out of the imaging area. Therefore, it is expected that the recognition

accuracy of heat traces can be improved by simultaneously processing multiple images in

a time-series sequence. Furthermore, spatial features such as the shape of heat traces and

their positional relationship with people, which are obtained by feature extraction from a

single image, can also be considered to have an impact on the identification of heat traces

and are called spatial features.
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For this purpose, to make the comparison as easy as possible, we design a dataset

and 2DCNN and 3DCNN models that can be verified and investigate the influence of the

combination of bands of images used as input, temporal features (frame size, frame rate,

etc.), and spatial features (size of the spatial domain), and investigate the impact from

each feature on the identification system of heat traces.

In Chapter 2, we introduce the application examples of multi-band image processing,

contact detection, and related works on 3DCNN to understand the background of our

proposed method; in Chapter 3, we describe the design of our proposed method and the

deep learning model we use; and in Chapter 4, we give an overview of our experiments

from dataset collection to learning and inference. The results obtained in Chapter 5 are

evaluated in terms of band combinations, spatial features, and temporal features. Using

the obtained results, we discuss the issue and future work in Chapter 6 and the conclusion

in Chapter 7.
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2 Related Work

In this section, we introduce related work to our study, including applications of multi-band

image processing in various tasks, studies in the fields of human interface, and 3DCNN

models using spatio-temporal information for action recognition.

2.1 Multi-Bandwidth Image Processing

Currently, image sensors that capture various wavelength ranges, such as RGB, near-

infrared (NIR), and far-infrared (FIR, thermal) cameras, are widely used. Light refers to

electromagnetic waves in a specific wavelength range, especially visible light in 380–780 nm,

NIR light in 700–2, 500 nm, and thermal light in 7.5–13.5 µm. Figure 2 shows the spectral

transmittance in the atmosphere. In the atmosphere, light is diffused by collisions with

water and carbon dioxide particles, which attenuates light in some wavelength regions.

On the other hand, visible, NIR, and thermal wavelengths are relatively susceptible to

attenuation, so they are employed as sensors for capturing images. In particular, infrared

radiation is emitted from objects with an absolute temperature of more than 0 K, and its

emission increases as the temperature rise, making it possible to calculate the temperature

from the amount of infrared radiation. In this way, thermal cameras measure an object’s

temperature in a non-contact manner. Because certain information can be extracted from

each of these different wavelength ranges, multi-band image processing combining various

sensors is expected to improve the accuracy of image processing techniques that have been

performed with a single band and to extract information not captured with a single band.

This section introduces several studies on the applications of multi-band image pro-

cessing.

Speth et al. proposed the human detection method using aerial images for monitoring

and patrolling by drones in disaster relief operations [7]. People captured by drones are

so small that it is difficult to find all of them from RGB images. On the other hand, the

person’s edges are indistinct in thermal images, but its presence is easy to detect because of

the high-temperature enhancement. A combination of RGB and thermal images was used

to take advantage of these features to improve the human detection accuracy of people

with a temperature above a certain level. Compared to the input of single band images
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Figure 2: Spectral atmospheric transmittance1

to the object detection model YOLOv3 [8] by rectangles or combining their outputs, the

highest score was reported when using fused images in both bands before input to the

network.

Huo et al. proposed a glass segmentation method by combining multiple band images

[9]. The glass transmits visible light, making it difficult to detect with conventional visible

light image-based detection methods. In contrast, the glass reflects most of the FIR rays.

Therefore, by simultaneously convolving RGB and thermal images and extracting these

features, they have achieved robust detection of transparent glass without affecting the

background.

Furthermore, a crack detection method in outdoor infrastructure, such as the ground,

has been proposed [10]. RGB cameras can depict detailed spatial information under ideal

lighting conditions, but their performance is known to deteriorate in low-light environ-

ments. Thermal cameras, on the other hand, have relatively low resolution but are robust

to changes in lighting conditions. Since it is difficult to have ideal lighting conditions

outdoors, the authors report that a combination of RGB and thermal images can detect

1Cited from ”Atmospheric Transmittance,” https://www.usna.edu/Users/oceano/pguth/md_help/

remote_sensing_course/atmos_transmit.htm, accessed on January 26th, 2023.
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Figure 3: Real-time heat trace visualization system

cracks and distinguish damage types with high accuracy, even under unstable outdoor

lighting conditions.

An image fusion framework based on multi-band image processing has also been pro-

posed [11]. Importance maps are computed from images in each band based on a learning-

based approach. By reconstructing the image using the created importance maps, the

features of each band image are fused into a single image. Experimental results show

that this method is effective for various applications such as depth enhancement and haze

removal.

This research also aims to combine features of different bands to achieve highly accurate

image processing and detect thermal traces that appear in thermal images but not in RGB

images.

2.2 Touch Detection and related Studies with Heat Traces in the Field

of Human Interface

Our research group has developed a system for real-time detection and visualization of

heat traces using NIR and thermal images [4]. Figure 3 shows the system overview. When
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a person touches an object, a person and heat traces appear in the thermal image, but only

a person appears in the NIR images. Therefore, when the previously acquired background

image is subtracted from the images, the thermal image emphasizes the area of the person

and heat traces. In contrast, the NIR image emphasizes the area of the person. In this

way, among the areas highlighted in the thermal image, areas that overlap to a certain

extent with those highlighted in the NIR image can be considered human, and others can

be heat traces. The thermal traces detected in this way are projected onto the target

object using a projector to visualize and warn of contact in real-time, thereby avoiding

contact infection and helping to prevent the spread of COVID-19 disease. The system has

been extended to detect disinfected areas as well [5]. When disinfection is performed, the

disinfectant gradually evaporates on the surface of the disinfected object. The object’s

temperature decreases over ten to several tens of seconds due to the heat of vaporization.

This change in the thermal image during disinfection is called a cold trace. In the same

way as with thermal traces, the cold trace area can be identified by performing the same

image processing on the temperature decrease. This can facilitate more efficient cleaning

activities by recording the areas that have been disinfected.

As another example of research in touch detection using heat traces, a method for

detecting heat traces appearing in thermal video using U-Net [12] has been proposed [6]. U-

Net is an Encoder-Decoder model that identifies object types and backgrounds by labeling

each pixel in the input image. Each frame of the thermal video is input to U-Net and

segmented into heat traces, people, and background. Only the regions labeled as heat

trace are summed in the temporal direction to detect regions in the thermal video where

touch has occurred. However, since the model uses frame images as input and assumes

that a thermal trace is successfully detected if it is detected at least once during the video,

it does not take into account the disappearance or temporal features of heat traces.

In the field of human interface, it has been known that heat traces are generated by

touching objects, and many studies utilize this phenomenon. For example, by analyzing

the characteristics of heat traces, the authors are trying to develop a wall display that

can be operated by touching and projecting the control screen directly on the wall [13,

14]. From the security point of view, Abdelrahman et al. have suggested that Personal

Identification Number (PIN) codes and pattern locks, which are widely used as PINs for
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smartphones, can be identified from thermal traces by using a thermal camera to monitor

a smartphone after the PIN has been entered. They present an example of designing more

secure passwords that is difficult to identify even if the phone is monitored with a thermal

camera [15].

In this research, we target the identification of heat traces from the appearance to the

disappearance and confirm whether CNNs can identify heat traces and what features are

effective in identifying heat traces with high accuracy.

2.3 3DCNN

Recently, 3Dimentional CNN (3DCNN), a temporal extension of CNN for image recog-

nition, has been attracting attention in action recognition. Conventional CNNs used for

image recognition cannot learn temporal features because they learn images one by one

as if they were completely different images, even if they are consecutive frames. Con-

volution in the temporal dimension effectively improves the accuracy of tasks like action

recognition using videos. There are roughly two types of 3DCNN models: those that use a

two-dimensional velocity vector field (optical flow) generated by calculating pixel-by-pixel

movement vectors from neighboring video frames and those that convolve video inputs in

the spatio-temporal direction simultaneously. In this section, we introduce several models

that have contributed to the development of 3DCNNs. However, in this study, CNNs that

use single frames as input will be referred to as 2DCNNs.

In 2012, Ji et al. are the first to propose a 3DCNN model with multiple consecutive

images in the temporal direction as input [16]. The proposed model treats each frame as

a channel, like the RGB channel of a visible light image. The input data to the model is

generated from a grayscale image and 2-dimensional optical flows. The authors attempt

to extract temporal features for each generated data by convolving consecutive 3 scenes

with the same kernel.

As a 3DCNN using optical flow, Simonyan et al. proposed in 2014 a Two-Stream

ConvNet that exploits spatio-temporal information by training different CNNs with the

spatial and temporal information of input videos and integrating their output [17]. First,

one frame is selected, and horizontal and vertical optical flows between consecutive frames

are generated from the input video. By integrating these outputs, action recognition is
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performed by understanding the position and motion of objects in the video. However,

since spatial stream ConvNet takes each frame of the optical flow as a channel, the networks

that make up Two-Stream ConvNet are all 2DCNNs.

In 2015, Tran et al. proposed C3D, a 3DCNN model that simultaneously convolves in

spatio-temporal directions by extending all the layers of 2DCNN to three dimensions [18].

Like a simple 2DCNN, C3D performs feature extraction using eight 3D convolutional layers

and 3D pooling layers. However, since the number of frames in the temporal direction

is generally smaller than the spatial size of the input video, pooling in the temporal

direction is often not applicable. Because of the large number of parameters required for

3D convolution, the authors concluded that the network could not be very deep, and a

larger video dataset is necessary for network training.

To solve the problem of C3D, Carreira et al. proposed I3D [19], a 3DCNN model with

a much-reduced number of parameters compared to C3D by embedding the Inception

module used in GoogLeNet [20]. In addition, they have published a large dataset Kinetics

for action recognition tasks. They reported that Two-Stream I3D, which trains videos and

their optical flows in parallel to different I3Ds and integrates their outputs, is the most

accurate compared to conventional 3DCNN methods. Furthermore, Kinetics enabled more

complex training of 3DCNNmodels, which is a significant contribution to the field of action

recognition.

Feichtenhofer et al. proposed SlowFast Networks, a 3DCNN model focusing on the

mechanism of the human eye [21]. Two neural pathways transmit signals from the human

retina to the brain: the parvocellular pathway (parvo) and the magnocellular pathway

(magno) [22]. The former has high spatial resolution but low temporal resolution, while

the latter has low spatial resolution but high temporal resolution. Parvo is generally

involved in morphological processing, while magno is involved in motion processing.

The network structure of SlowFast Networks is based on these neural systems and

consists of two networks: The slow pathway that captures semantic information and the

Fast pathway that captures motion. In the slow pathway, the input video’s frames are

reduced, and the channel size is increased to extract semantic features. On the other

hand, the fast pathway uses more frames as input than the slow pathway to capture more

motion instead of reducing the channel size. The model achieved State-of-the-Art (SOTA)
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on an action classification task using the large video dataset Kinetics-400 in January 2019,

making it the current de facto standard for 3DCNN models.

Heat trace, the target of this study, appears through a series of actions: a person

appearing in the angle of view, touching an object, and then moving out of the angle

of the thermal camera. In addition, since heat traces diffuse or shrink after emerging

until disappearance, temporal information may be effective for identification of them. In

this study, we design a 3DCNN model based on C3D that simultaneously convolves the

temporal and spatial directions and investigate how the temporal features affect heat trace

identification.
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Figure 4: 3DCNN architecture using RGB and thermal videos

3 Proposed Method

This section describes our proposed 3DCNN model for heat trace detection using two band

images, thermal and RGB images. Figure 4 shows the network structure when RGB video

and thermal video are input simultaneously. Although several methods exist to combine

thermal and visible light images as input, we first chose to combine them by channel

concatenation. When RGB images are used as input to the CNN, each color R, G, and

B are considered 3 channels, each color having a different feature. Considering thermal

images as T, in the same way, the T channel can be used as the 4th channel for the input

to the network. On the network side, data with any channel size can be input by adjusting

the channel size of the input layer.

Since videos are input to each CNN model, designing a model that performs feature

extraction in the spatial and temporal directions is necessary. To compare which spatial

or temporal features are more effective in detecting heat traces, this study builds a model

based on C3D, which does not distinguish between the temporal and spatial dimensions

and performs convolution processing simultaneously. Taking a series of f frames as input,

convolution by 3×3×3 kernels in the spatio-temporal directions and the 1×2×2 maximum

pooling are repeated 3 times. The features obtained in this way are processed in all the 3

full connection layers, and finally, the output layer estimates whether the video has heat

traces. The model is trained using batches of batch size bs.

We constructed a 2DCNN with the same structure as this model to confirm effective-

ness using the temporal features. Since the 2DCNN does not require convolution and

pooling in the temporal dimension, we replaced the convolution and pooling layers for 2D

networks. We set the frame size to f = 1 so images can be input instead of videos.
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The goal of my research group is to develop a contact detection system using heat

traces. Therefore, we first identify issues in heat trace identification by conducting exper-

iments under simple conditions, then explore optimal network structures and data input

methods. We then apply this knowledge to data collected against various backgrounds to

extend the system to real-world sensing environments. To accomplish this, we divided the

experiment into the following phases.

Step 1: Investigate whether heat traces can be detected under the simplest conditions and

what features are used in the detection

Step 2: Confirm whether the findings obtained in Step 1 are effective for sensing in real

environments

Step 3: Extend from heat trace identification to detection and develop a real-time contact

detection system

In this study, we focus on Step 1. First, we took videos under the simplest condi-

tions, and training and test datasets were created through several preprocessing steps.

We evaluate heat trace identification with some scores by training and inference with each

model and discuss the results regarding bands used, temporal features, and spatial fea-

tures. Furthermore, we also experimented with some channel size patterns to optimize the

networks.

17



Figure 5: The thermal (left) and RGB (right) cameras

4 Experimental Outlines

This section describes the experimental steps, from capturing the video to detecting heat

traces. This study requires RGB and thermal videos captured from the same angle, but

now there are no open datasets supporting multi-band image processing. In this study,

We generated training and test datasets by capturing videos of people touching a target

and heat traces appearing at the touched surface, and we annotated and preprocessed the

videos.

4.1 Data Collection

As shown in Figure 5, using the thermal and RGB cameras on the heat trace visualization

system [4], we have taken videos to create datasets [4]. As a first step in the experiment,

the ability of the CNN to discriminate heat traces was confirmed by comparing only the

bands and spatial and temporal features. However, it is difficult to make rigorous compar-

isons because of noises from backgrounds if videos are shot against various backgrounds.

Therefore, we chose the background of a white wall for the touch target.

The specifications of the cameras are shown in Figure 1. Since these cameras have

different frame rates, the frame rate of the thermal camera was standardized by decimating

some frames of thermal videos to match that of the visible light camera, which has a lower

frame rate. Figure 6 shows examples of RGB and thermal images in our dataset.

We have captured 1 and 3 contact in a 1 movie. A series of actions generate heat

18



Camera Band Image size Frame rate

[pixels] [fps]

FLIR Boson 640 NWIR 512× 640 60

Gazo MCM-320 Visible 480× 640 30

Table 1: RGB and thermal cameras’ specifications

(a) RGB image (b) Thermal image

Figure 6: Example images in our dataset

traces: a person entering the camera’s angle of view, touching the target, and moving out

of the imaging area. On the other hand, a person may behave in a non-touching manner,

such as crossing between the cameras and the target or stopping in front of the target

for several seconds. Therefore, assuming that people behave in various ways in a real

environment, we also captured videos with a mixture of touching and fake information,

such as a person passing in front of the camera or staying in front of the camera without

touching it. Finally, we took 14 videos of about 10 minutes each, one of which was used

for the inference dataset and the others for the training dataset.

4.2 Annotation

We manually annotated heat traces by enclosing each of them in a bounding box, as shown

in Figure 7. It is difficult to define disappearance visually, so we defined disappearance as

the time when the temperature difference between the maximum and the minimum values
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Figure 7: A screenshot of the annotation tool

in the bounding box is less than 0.1 degree Celsius. Because the bounding box contains

both heat traces and background, the maximum value can be approximated as the tem-

perature of the heat traces and the minimum value as the temperature of the background.

The temperature change of heat traces over time and the time of disappearance are shown

in Figure 8. Each maximum pixel intensity (maxpi) and minimum pixel intensity (minpi)

refers to the maximum and minimum temperature, respectively, and mean pixel intensity

(meanpi) is the average pixel intensity of the image.
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Figure 8: Attenuation performance and disappearance threshold of heat traces

4.3 Preprocessing

This section describes the preprocessing steps involved in creating a dataset.

4.3.1 Calibration

Two types of cameras are used in this study, and the difference in the angle of view and

the installation position of the cameras causes the misalignment. In Figure 6, 6a has a

narrower angle of view and a smaller person area than 6b. Therefore, before creating

the dataset, we used perspective transformation to align the images as a preprocessing

step. Affine transformation is a method of aligning image A with image B by setting three

or more corresponding points on A and B, calculating a perspective matrix representing

linear transformations (scaling, shearing, rotation) and translations, and multiplying it

by A. The image obtained by perspective transformation is shown in Figure 9. In this

study, the RGB images were transformed to match the thermal images. The regions of

the person are well synchronized, which reduces noise due to misalignment that may occur

when training the CNN.

4.3.2 Trimming and Resizing in Spatial Dimension

To confirm the influence of spatial features on heat trace identification, in this study, we

cropped images with the 60 × 60 (narrow) and the 200 × 200 (wide) squares to include

the heat traces within the region. The image cropping can exclude regions with no values

generated by the affine transformation. The images obtained by cropping with the narrow
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Figure 9: RGB and thermal images aligned by affine transformation

and wide box are shown in Figure 10.

4.3.3 Data Division in Temporal Dimension

Several time-related parameters must be specified to create a video to be input to 3DCNN.

In this study, captured videos are divided using the frame size f , the slide size s, and the

frame interval i as parameters. For example, consider the case where f = 3, s = 5, and

i = 2. Figure 11 shows how the video is divided according to these parameters. The frame

rate of collected videos is 30fps because the frame rate of the thermal camera is aligned

according to the RGB camera, but since the image is resampled by i = 2, that is, every 3

frames, the real frame rate of 1 video generated by the division is 15fps. Finally, the video

dataset is created with frame size f = 3, 0.2 seconds in duration, and slide size s = 5,

0.33 seconds. Finally, a video dataset is generated by splitting the image with frame size

f = 3 and slide size s = 5, i.e., with 0.2 seconds width being shifted every 0.33 seconds.
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(a) RGB image (narrow) (b) Thermal image (narrow)

(c) RGB image (wide) (d) Thermal image (wide)

Figure 10: Examples of RGB and thermal images in dataset

4.3.4 Training and Inference

The datasets used have extremely different numbers of data per label. Therefore, when

training the network, we implemented a batch sampler that randomly selects the same

number of videos of heat trace labels as those of other labels so that the training is less

affected by the difference in the number of data per label. An example of the contents of

the image and video datasets used for training and inference is shown in Table 2. In this

study, we use NVIDIA RTX 3090 as the GPU for training and inference with the datasets.
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Figure 11: Example of video division

(in case of f = 3, s = 5, i = 2)

Train Test

CNN f bs size T F T F

2D 1 256 narrow 22733 10371 1542 1438

wide 19331 13173 1542 1438

3D 10 256 narrow 22630 10424 1529 1448

wide 19822 13232 1529 1448

T: heat trace, F: others

Table 2: Dataset overview
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5 Evaluation

In this section, we evaluate the ability to identify heat traces using four scores: accuracy,

precision, recall rate, and f1 score, calculated from the confusion matrix obtained from

the experiments in section 4, to compare three perspectives: the band types, time length,

and space size. In this study, we will mainly discuss the accuracy and f1 score to see if we

can detect the emergence and disappearance of heat traces. Here, we call image names as

below:

• T: using only thermal images

• V: using only RGB images

• TV: using fused images with thermal and RGB images

In addition, we call frame size f = 1 as ”2D”, f = 10 as ”3D”, and image size 60× 60 as

”narrow,” 200× 200 as ”wide.” We set the channel sizes 32, 64, and 128 for 2DCNN and

64, 128, and 256 for 3DCNN in order from the lower convolutional layer.

5.1 Difference in Band types

Figure 12 shows the scores obtained for fixed spatial and frame sizes, allowing comparison

by bands of input data with the model in section 3 and collected data in section 4. First,

accuracy was as low as 50 % in all experiments using V. The recall rate was very low for

narrow images because most of the inputs were predicted not to be heat traces, while for

wide images, the recall rate was very high because heat traces were predicted to exist.

These show that the RGB images do not identify heat traces well because they do not

contain any information about the heat traces.

Second, comparing T and TV, T is much more accurate than TV when using narrow

images, whereas TV is more accurate than T when using wide images. In other words, V

was ineffective in identifying heat traces when the location of their appearance was known

in advance. In contrast, if the location of the appearance was not known in advance, V

could be used to recognize the imaging environment and help detect heat traces.

Figure 13 and Figure 14 show the inference results using T and TV for the narrow-3D

dataset for validation. For the vertical axis, 1 means that the correct label has heat traces,
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Figure 12: Scores in difference from used band

0 means others, and the horizontal axis indicates the index in chronological order. For each

input, a blue dot indicates a correct prediction and a red one a failure. In both cases, the

inferences for the data before and after the appearance of heat traces are generally correct,

and this trend is also true for the results using other inputs. On the other hand, most errors

occur before and after the disappearance of the heat traces. Because heat traces diffuse

or shrink continuously over time, there is no precise timing of disappearance, making it

difficult to recognize the time when heat traces disappear according to the label attached.

5.2 Difference in Temporal Features

Figure 15, recapitulating Figure 12 with frame sizes, shows the scores obtained by fixing

the spatial size and band types (only T and TV) so that they can be compared concerning

the frame size. From now on, we will compare the scores for T and TV, excluding V. The

score for 3D was higher than that for 2D when narrow images were used, while it was

lower than the score for 2D when wide images were used. The heat traces appeared very
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Figure 13: Inference result using T

Figure 14: Inference result using TV

small in the wide images, which may have made it difficult to detect heat traces based on

time information. On the other hand, if the locations where heat traces appeared were

known in advance, the time information would be effective in identifying heat traces.

5.3 Difference in Spatial Features

In Figure 16, recapitulating Figure 12 with frame sizes, each score obtained by fixing the

number of frames and the band types (only T and TV) is displayed so that it can be

compared according to the spatial sizes. The wide images’ scores were higher than those

of narrow images although those of 3D-T are almost equal. In particular, the difference

in scores between using narrow and wide images was large for TV, indicating that the

value of spatial information became higher by combining V. Although the low resolution

of thermal images makes it difficult to recognize the background, the supplementary use

of high-resolution RGB images helped CNN understand the background.
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Figure 15: Scores in difference from frame sizes

Figure 16: Scores in difference from spatial sizes
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Figure 17: New network processing temporal and spatial information separately

6 Discussion

The results in section 5 indicate that information from RGB images is effective when a

large area is captured because it is not known where heat traces will appear in advance.

In contrast, using temporal information improves detection accuracy when the locations

where heat traces appear are restricted.

Our study uses a model that simultaneously processes all channel, spatial, and temporal

information. However, we expect that a model that makes more efficient use of each type

of information can be constructed by dividing the processing into two stages as described

below:

Stage 1: Identify the appearance area of heat traces by 2DCNN using the thermal and RGB

images capturing a large space, including the object or the background to be touched

as input (detection task).

Stage 2: Classify whether it is a heat trace or not by 3DCNN using the thermal video gener-

ated by trimming output images in the predicted area and combining them in fixed

frames from Stage 1 (identification task).

Figure 17 shows the newly proposed network architecture constructed by these two

stages. We would like to confirm whether it is possible to simultaneously detect the

location and time of appearance and disappearance of heat traces with high accuracy by

using a network that processes temporal and spatial information separately. In the second

stage, the optical flow of the input T videos can be also effective for temporal feature

extraction because it means attenuation characteristics of the heat trace, human motion,

and so on. In addition, because we used a very designed dataset with a white wall as the
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touch target, the identification accuracy was higher even when only T was used. If the

spatial information becomes more complex by setting various objects as touched targets,

the effect of combining V is likely to be more significant. Therefore, we are planning to

investigate whether this study’s findings effectively detect heat traces by using a more

realistic dataset with various backgrounds and objects.
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7 Conclusion

This paper proposed a method for detecting heat traces appearing on touched points

by fusing thermal and RGB videos. We compared the results using several evaluation

metrics calculated from the confusion matrix of the test dataset regarding used band

types, temporal information, and spatial size. The results show that when the spatial size

is strongly limited, accuracy is improved by using temporal information. On the other

hand, when input images can be imaged in a wide area, the combination of both types

of images results in higher detection accuracy. As a result example, the accuracy was

improved from 91.0 % when using only the thermal images to 93.3 % when both were

used. This suggests that heat traces may be detected more accurately by processing the

band combination, temporal information, and spatial information separately rather than

simultaneously.

Considering this, we discussed a new model composed of two modules. The first module

detects the locations where heat traces appear using spatial information with thermal and

RGB images that capture a large space. The second module uses temporal information

to classify whether the input is a heat trace with thermal videos generated by collecting

a fixed number of thermal images trimmed in the specific area in the first module.

The proposed method can be helpful for the heat trace detection system to avoid

contact infection from COVID-19 or other viruses. Furthermore, obtaining information

about image processing by the fusion of images captured in different wavelength areas also

be effective for the development of image recognition by multi-band image processing.

In our future work, we would like to investigate the effectiveness of the proposed

method and the newly proposed model for datasets with various backgrounds and objects

since the dataset used in this study was designed under simple conditions. In addition,

the number of parameters and training time for 3DCNN are very large due to hardware

resource limitations. We would like to construct a network that enables faster learning

and inference by adopting effective resource-saving techniques proposed so far.
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