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Abstract—Recently, digital twins have been paid much atten-
tion as a major application towards Beyond 5G/6G network,
and real-time object recognition methods are key technology
to digitize the real world as a digital twin. However, it is
challenging to make a fast and accurate decision on what
the object is from real-time streaming information such as
video because accurate object recognition algorithms require
a huge computation. To satisfy delay requirement of digital
twin applications, such computations have to be moved from
cloud to edges or even small terminal devices, where computing
capacity is very limited. Thus, recognition mechanisms have to
be simplified for small devices but they would result in degraded
accuracy. In this paper, we focus on the multimodal information
processing mechanism of the brain, which makes decisions based
on multiple types of uncertain observed information, to improve
accuracy of simplified recognition mechanisms. We first propose
a unimodal object recognition mechanism based on the Bayesian
attractor model, which continuously recognizes objects from
noisy streaming media data. Then, we extend the mechanism
with Bayesian causal inference to fuse the results of unimodal
media recognition. Through computer simulations, we show that
our proposed method identifies an object accurately and quickly
from uncertain observed information.

Index Terms—Mobile AR, digital twin, multimodal recogni-
tion, Bayesian attractor model, Bayesian causal inference.

I. INTRODUCTION

Beyond 5G/6G network is expected to be a major social
infrastructure toward 2030, where humans and machines
cooperates to solve various social problems by using AR
applications or cyber physical systems (CPS). Digital twins
have been paid much attention as a key technology to bridge
real and digital worlds; humans and robots in real world are
digitized via various sensor devices and represented in virtual
world as a digital twin.

Beyond 5G/6G network would provide huge bandwidth
and low latency communication, however, it would be still
inefficient or unrealistic to send all the sensor data to a central
cloud because the amount of data could be tremendous to
digitalize whole world around us. Data processing should
be distributed from a cloud to edges or even small terminal
devices, where the computational capability is very limited,
and only recognition results should be gathered at the cloud.

To understand and control the real world using digital twins,
it is necessary to uniquely identify what kind of object exists
in front of us, locate its position, and represent it with a digital
twin. In recent years, technologies like convolutional neural
networks (CNNs) have made remarkable progress, but it is
still challenging to make a fast and accurate decision on what
an object is by analyzing real-time streaming information

at small devices because deep CNN models require a huge
amount of computation. Another difficulty for deep CNN
models used in real-time AR applications is their learning
cost. While AR applications require so-called single- or few-
shot learning when target objects are specified and learnt from
a single or few images that AR users initially encounter in the
field, deep CNN models need thousands of images to learn
an object before being deployed for AR activities in the field.

Uncertainty in image-based object recognition is another
challenge. Because the real world in front of a camera is
continuously changing, uncertainty in real-time observation of
the real world cannot be avoided owing to noise or instability
in real-time streaming information, as well as unavoidable
incompleteness of the observation itself. Moreover, when
multiple objects having a similar shape and color are located
in front of the camera, it is quite difficult to identify them
using only video information. Therefore, multimodal decision
making is expected to mitigate such incomplete information
and improve the accuracy of unimodal recognition [1], [2], but
the tradeoff between accuracy and computational complexity
of deep CNN models has not been fully solved for edge
devices performing real-time recognition of moving objects.

The information processing mechanism of a brain is a
familiar example of a system that makes decisions from such
uncertain observation. The brain uses uncertain information
obtained from the eyes, ears, skin, and semicircular canals
to infer the state of the surrounding environment and to
make final decisions. In recent years, mathematical modeling
of the brain’s information processing mechanisms has been
promoted, and such models include the Bayesian attractor
model (BAM) [3] and Bayesian causal inference (BCI) [4]–
[6]. As shown in [7], information processing of the brain can
be modeled hierarchically; feature, unimodal, and multimodal
levels. Our proposed model employs this model and for the
unimodal and multimodal levels, we use the BAM and BCI,
while basic media-specific data preprocessing is performed at
the feature level.

As described in the following section, the BAM represents
the behavior of a person’s decision-making process based on
observed information by using Bayesian estimation, and thus,
it is expected to identify objects with high accuracy from
uncertain time-varying information. BCI is a mathematical
model of the process by which humans recognize perceptual
objects using multiple modalities (e.g., vision and audition). In
this cognitive model, humans infer whether two input stimuli
originate from the same stimulus source, and then integrate



each input stimulus to make a final cognitive decision.
In this research, we propose a multimodal object recog-

nition method using video and location sensors for edge
devices. We use the BAM for unimodal object recognition and
integrate the output obtained from each modality with BCI.
We have promptly reported an early result [8], and in this
paper, we provide more detailed explanation of the proposed
method, concise investigation of the behavior of BAM and
BCI modules, and results from various test data to show
effectiveness of the proposed method. The image features of
the reference image data are associated with attractors defined
in the BAM. The reference image can be prepared beforehand,
but in typical AR applications, the images are acquired in the
field. The BAM is given a series of input data for each frame
and determines which reference data correspond to the input
data based on which attractor the internal state of the brain
falls into. To deal with uncertainty in object identification
with the video modality, we also introduce another modality,
namely the location modality, of the object, which is inferred
from the position of the camera and its direction. This also
helps to distinguish between objects having similar shape and
color within the camera view. In our method, another BAM is
used to infer the object using noisy location input data from
sensors.

The results of the recognition in each modality are inte-
grated by BCI to make the final decision, thereby improving
the accuracy. The BCI model infers the certainty indicating
whether these two modalities are measuring the same object
or different ones, and then integrates two decisions weighted
by the certainty, where the highly integrated results are given a
higher certainty, and rather separated results are given a lower
certainty. This avoids incorrect integration when multiple
objects are in the field of view and mismatched measurements
are given to different modalities.

The remainder of this paper is organized as follows. In
Section II, we describe the mathematical basis of the BAM
and BCI. In Section III, we describe a method for applying the
results of extracting the features of each modality from video
and inputting them into the BAM and then the BCI model.
In Section IV, we evaluate the proposed method. Section V
gives the conclusion of this paper.

II. RELATED WORK

A. Bayesian Attractor Model

The BAM estimates which of the pre-stored options
matches the observation target. The BAM has an internal
decision state zt, and it updates this state when receiving
external observations xt. By updating the state based on
Bayesian inference, zt is not treated as a single point, but
is represented as a probability distribution P (zt) that reflects
the uncertainty of the observation and brain state.

We prepare as many stable points (attractors) ϕ1, . . . , ϕn in
the state space where z exists as the number of choices (n),
and make the decision to take the i-th choice when z is suffi-
ciently close to ϕ. Because zt is represented as a probability
distribution, we derive a probability density (hereafter called
the confidence level) where zt = ϕi and make a decision
using this confidence level. The details of state updating and
decision making are described below.

1) State Update: The state update is performed by finding
the posterior distribution P (zt|xt) of the decision state zt by
Bayesian estimation when the observed value xt is obtained.
The following generative model is assumed for xt and zt:

zt − zt−∆t = ∆tf(zt−∆t) +
√
∆twt, (1)

xt = Mσ(zt) + vt, (2)

where f(z) represents the dynamics of a Hopfield network,
one of the attractor models, and the dynamics has multiple
attractors. When n is the number of options to be stored in
the Bayesian attractor model, we design it so that f has n
attractors ϕ1, . . . , ϕn. In the above equations, M is a feature
matrix for each option, with M = [µ1, . . . , µn] where µi is
a feature vector of the i-th option; σ is a multidimensional
sigmoid function with a value range of 0 to 1; and wt and
vt are random numbers following normal distributions wt ∼
N (0, q2

∆tI) and vt ∼ N (0, r2I), respectively. N denotes a
normal distribution. I is a unit matrix, and when ∆t is 1, the
respective standard deviations are q and r. These deviations
determine the noise level of the dynamics and observation in
the generative model, so q is called the dynamics uncertainty
and r is called the sensory uncertainty.

2) Decision Making: Which attractor the internal state of
the brain is close to can be determined based on the magnitude
of the confidence level and therefore, decision making is done
when the confidence level for one of the options exceeds
the threshold value. The posterior probability distribution
of zt, P (zt|xt), is obtained by the state update. Here, ap-
proximate calculations are performed using the unscented
Kalman filter (UKF) to account for the non-linearity of the
generative model, as given in [3]. Finally, the confidence level
is obtained for each pre-stored option, c = {c1, . . . , cn}, and
ci = P (zt = ϕi|xt). Note that since the Kalman filter is
used, estimated P (zt|xt) is probability density function of a
multivariate normal distribution.

B. Bayesian Causal Inference
BCI is a mathematical model of human cognition based

on multimodal perceptual stimuli. For example, when we see
something on the left side of our field of vision and hear a
sound from the same direction, we may judge the direction of
arrival by integrating our visual and auditory senses, assuming
that these stimuli originate from the same source, or we
may judge the direction of arrival separately, assuming that
they come from different directions. In [5], a mathematical
formulation for the following process is given. When an object
is presented, both modalities (visual and auditory) perceive the
location of the object and probabilistically infer whether both
modalities observe the same object (causal inference), which
is used to integrate the observations from each modality to
recognize the object’s location (the model average). The result
is a weighted sum of the integrated recognition result and
segregated recognition results. If the causal inference obtains
a higher confidence that both modalities observe the same
object, the model average results place a higher weight on the
integrated result; otherwise, the model average results place
a higher weight on the segregated results.

III. METHOD

Figure 1 shows our system mode. Small edge devices
equipped with multiple sensors, such as video camera, depth
camera, LiDAR, motion sensor, etc. are distributed over a
network. As described earlier, object recognition tasks are
not performed at a cloud but distributed to edge devices,
which read sensor data and recognition tasks described below,
and send recognition results to the cloud. At the cloud,
recognition results from various devices are integrated and
maintained as a digital twin. At each edge device, by using the
BAM to estimate objects individually from the features of the
video modality and the location modality obtained from the
sensor devices, and then integrating them with BCI to make
decisions, as shown in Fig. reffig:model. In the following
sections, we describe a method to apply the decision model
of the BAM to object estimation, and a method of integrating
the confidence level of the BAM results with BCI.



Fig. 1. System model

Fig. 2. Proposed method

A. Application of the BAM to Object Estimation

To apply the BAM to object estimation, it is necessary to
determine a) the features to be observed by the BAM in each
modality, b) the reference data to be stored in the attractors,
and c) the values of the uncertainty parameters q and r. For c),
the observation noise can be determined by transforming the
features so that the variance of the features is set to a certain
value. We discuss each of the features, transformations, and
attractors below.

a) Features:
Video modality: The features are extracted using a Siamese
region proposal network (RPN) [9]. The Siamese RPN takes
a template image and a detection image as input, detects
similarities between these images, and outputs the location
as a bounding box. The Siamese RPN consists of a Siamese
neural network and an RPN. The former extracts the features
of the image, and the latter uses the extracted features to
calculate the similarities to the template image from the
detected image. In the literature [9], existing CNNs such as
AlexNet [10] are used as the Siamese network, but in the
proposed method, a simple CNN consisting of four layers
is used to greatly reduce the computational cost. Because the
recognition decision is made by the BAM, the role of the CNN
is just to extract feature values, and an encoder like a shallow
CNN is suitable for this purpose. The feature values are 128-
dimensional data from the output of the Siamese network
(image features) corresponding to the bounding box output
by the RPN.

Location modality: The feature values of the location
modality are the 3D world coordinate system data calculated
from the camera direction vector and the depth information
integrated from multiple frames. Thus, the feature values to
be fed to the BAM are 3D data, such as the x-y-z location in
a world coordinate system.

b) Transformation:
The observed values obtained from sensor devices do not have
a fixed value range, and the magnitude of noise is unknown.
In addition, in consideration of the case where the scale of
the numerical value is different for each dimension of the
feature value, which is a multidimensional variable, r must
be adjusted for each dimension of the feature value. Therefore,
instead of using the feature data as is, we perform a conversion
process to make the data easier for the BAM to process. The
function S to transform each element of the feature vector
x(t) = [x1(t), x2(t), · · · , xn(t)] to be observed at time t is
defined as follows:

S[xi(t)] =
xi(t)− µi(X)

si(X)
, (3)

where X is a set of vectors of the same size as x(t),
µi(X), si(X) returns the mean and variance of the i-th ele-
ment of each vector in X, and X is the set of feature vectors
obtained in advance for each identification target. By choosing
X well, we can calculate Eq. (3) and obtain the mean of
S[xi(t)] as 0 with a variance of 1. By setting the mean to 0, the
value range includes both positive and negative values. There
are two reasons for this process. One is that the estimation
accuracy of the BAM is better when the value range of the
observed value includes both positive and negative values.
This is illustrated using an example of identifying a 1D
observable when all the values are positive. Now, two values
are assumed to be stored in the BAM. When the decision state
is near a certain attractor and the observed value increases,
BAM calculates zt by back-calculating Eq. (2), but because
xt is increasing, zt is also increasing. Because this change in
zt is in the direction away from all attractors, the confidence
level will only decrease and zt will not approach another
attractor. On the contrary, when the observed value decreases,
it could approach another attractor. This means that if the sign
of the observed value is only positive (or negative), when zt
is in the vicinity of an attractor, the increase (or decrease) of
the observed value cannot be taken as a movement of z to
another attractor in the space of z. In this case, the values
stored in the attractor cannot be identified accurately. When
the value range of the observed value contains both positive
and negative values, the same thing happens if the two values
stored in the attractor are both of the same sign, but if the
values stored in the attractor have different signs, the above
problem does not occur. Of course, the same problem can
occur when storing three of more one-dimensional values.

Second, it provides a guideline for setting an appropriate r
value: if X contains information on all of the target objects
that the BAM may observe, the variance of the observed
values will be close to 1. Therefore, the variance when
continuously observing a particular object will be smaller than
1, and r will be chosen in the range of 0 < r < 1.

c) Attractors:
The attractor stores the feature values of a reference im-
age/location of the objects to be estimated. This is equivalent
to assigning the feature values of each object to each of
vectors µ1, . . . , µn, which are elements of the feature matrix
M . For the video modality, to enable one-shot learning, that
is, to use just one representative image and eliminate pre-
training, only the first image of an object in the video where
each object is first seen is used to calculate the feature values.
For the location modality, the initial object location stored in
memory is used as a feature value. We assume that objects are
stationary during scene acquisition, and tracking for a moving
object is for future study.

As X in Eq. (3), we give µ1st
1 , . . . , µ1st

n , which are the fea-
ture vectors calculated from the first frame of the video where



Fig. 3. Extending the BAM with BCI

each of the n objects was first seen, or the initial location of an
object in memory. For the feature vector, which is an element
of M , we give the value of µ1st

1 , . . . , µ1st
n transformed by the

function S, i.e., M = [S(µ1st
1 ), . . . , S(µ1st

n )].

B. Extension of the BAM with BCI

After the BAM performs object estimation in each modal-
ity, the BCI model performs causal inference as shown in
Figure 3. Here, the confidence level of the BAM, c, is input
to the BCI model as the observed value, causal inference
is performed to infer whether the same object is observed
in the video modality and the location modality, and the
result is used for multimodal integration by the model av-
erage algorithm to output the final object. However, while
the conventional BCI model targets continuous values (for
location estimation), this method targets discrete values (for
object identification), so it needs to be extended slightly. We
explain how this extension is performed below.

1) Causal Inference: The BCI model in [5] performs
causal inference according to Bayes’ theorem, as shown in
the following equation:

p(C|u1, u2) =
p(u1, u2|C)p(C)

p(u1, u2)
=

p(u1, u2|C)p(C)

p(u1, u2|C = 1)p(C = 1) + p(u1, u2|C = 0)p(C = 0)
,

(4)

where p(C) is the probability of observing the same object
in both modalities; C takes two values, 0 (observing separate
objects) or 1 (observing the same object); and u1 and u2
are the observed values of each modality, respectively, in this
case the confidence value of each BAM. Reference [5] defines
p(u1, u2|C) in a continuous manner, and we redefine it in a
discrete manner as follows:

p(u1, u2|C = 1) =

∫
p(u1, u2|s)p(s)ds =

K∑
k=1

p(u1, u2|Ok)p(Ok), (5)

p(u1, u2|C = 0) =

∫
p(u1|s)p(s)ds

∫
p(u2|s)p(s)ds =

K∑
k=1

p(u1|Ok)p(Ok)

K∑
k=1

p(u2|Ok)p(Ok), (6)

where s is the position of the object, p(s) is its distribution,
and p(u|s) is the probability that the position of an object is
observed as u in a certain modality when it is at s.

2) Model Average: Based on the results of causal infer-
ence, multimodal integration is performed to output the final
object estimation results. Here, a cost function weighted by
the results of causal inference is calculated as in the equation
below, and the objects O′

m that minimize it are used as the
final object estimation results for modality m (1≤m≤2).
Here, if C = 1, O′

1 and O′
2 output the same object, and

if C = 0, the estimation result of each modality is output as
it is.

Costm(Om) = p(C = 1)

K∑
k=1

|Om −Ok|2p(Ok|u1, u2)+

p(C = 0)

K∑
k=1

|Om −Ok|2p(Ok|um), (7)

where |Om − Ok| is 0 if Om = Ok, and otherwise it is
1. Although the distance error of the estimated position of
the object are used in the literature [5], because the distance
cannot be defined when performing object estimation, it is
assumed that the calculation is based only on whether the
modalities agree or disagree.

3) Object Identification Method: To use an extended ver-
sion of BCI for object estimation, in the above equation, the
probability that the object Ok is observed is p(Ok). In our pro-
posal, the initial value of p(Ok) is 1/Nobs, where Nobs is the
number of objects and p(Ok) is updated by Bayesian inference
after every observation. For object identification, we substitute
c for u. The probability that the BAM confidence value is c
when the object Ok is observed is defined as p(c|Ok). Then,
finally, we obtain the object label that minimizes Eq. (7). Note
that because the confidence level may take very small values,
all values below the threshold are taken as the same value
as the threshold as input to the causal inference model (the
threshold in this case is 10−50).

IV. RESULTS

To confirm the effectiveness of the object estimation
method applying the BAM and BCI, as described above, we
conducted a simulation-based evaluation.

A. Simulation Environment
For the video dataset, we used a real measurement public

dataset of various objects (Yale-CMU-Berkeley Object and
Model set) [11]. Figure 4 shows the video data used for input.
The video was shot while moving an object, and the number of
frames was 1,111. For each frame and each of four objects in
the video data, we extracted the features of the video modality
and location modality using the method in Section III-A a). As
for the two parameters of the BAM, (q, r), we set (0.3, 2.5) for
the video modality and (1.5, 0.04) for the location modality.
In the following evaluation, for each object, we determined
whether the object was correctly identified when the video
modality and location modality features were observed. For
this purpose, the BAM stored the feature values of each of the
video and location modalities for the four objects. In addition,
we concatenated the time series data of feature values for
1,111 frames for each object and used a total of 4,444 frames
as input to the proposed object recognition method.

For the video modality in this evaluation, we assumed one-
shot learning for AR applications, and thus only the first image
of the object in the video was used as training data. As a
result, we cannot directly compare our results and existing
CNN-based object classification methods. We can, however,
compare our BAM output of the video modality and the
output from the classification branch of the Siamese RPN.
In the latter case, recognition results are given for each video



frame independently without considering other frames in the
sequence, so this approach would suffer from recognizing an
object from motion video data in comparison with our method
using the BAM. Therefore, in this evaluation, we compared
our method with Oracle value.

Since the confidence of the BAM is defined as the proba-
bility density of n-dimensional normal distribution, when zt
is consistent with the correct attractor (ϕc), it is expressed
as P (zt = ϕc|xt) = 1/((0.5nπ)2

√
|Σ|), where |Σ| is the

determinant of the variance-covariance matrix of z. We define
the confidence level at this time as the Oracle. Since P (z|x) is
the distribution obtained as a result of the Bayesian estimation,
|Σ| is also obtained after the estimation. Therefore, we assume
that the variance-covariance matrix of z is consistent with that
of the generative model, and then |Σ| = q2. Thus the values
of Oracle are 0.0169 for location modality and 0.0844 for
video modality.

Fig. 4. Video data

B. Evaluation Results
1) Unimodal Object Estimation: Figure 5 shows the confi-

dence outputs of the BAM. When the object with the highest
confidence level is used as the identification result, the correct
response rate of the BAM with the video modality only was
79.41%, and that with the location modality only was 81.66%,
where the correct response rate is defined as the percentage
of identification results output per input for 4,444 inputs that
match the observed object. In Fig. 5, the vertical axis is the
confidence level expressed as a normal logarithm, which is
the result of a decision about which object is currently being
observed, and the horizontal axis is the time step. In the first 1
to 1,111 time steps, the features of the first object (Obj. 1) are
input to the BAM; in the next 1,112 to 2,222 time steps, the
features of the second object (Obj. 2) are input; and so on up
to 4,444 time steps. By the 4,444th time step, the features
of four objects are input to the BAM. Figure 5(a) shows
the results for the video modality. The confidence level is
seen to drop in the middle of recognizing the second object,
making it unrecognizable, but the observed object is correctly
recognized in almost all other frames. Figure 5(b) shows the
results in the location modality. The confidence level shows
that the third object is not recognized from around 2,500
time steps, but the other objects are correctly recognized as
observed. The failure of object recognition in each modality is
due to the fact that the video is acquired while the camera is
moving, and the extracted object features change significantly
over time. In such a case, it is difficult to perform accurate
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Fig. 5. Confidence level results for the BAM

TABLE I
CORRECT RESPONSE RATE (%)

Modality Obj. 1 Obj. 2 Obj. 3 Obj. 4 Total
Unimodal video 100.0 25.2 97.8 94.6 79.4
Unimodal location 99.6 97.7 29.6 99.7 81.7
Multimodal video 99.6 82.1 98.5 98.5 93.8
Multimodal location 99.6 97.7 36.6 99.7 83.4

object estimation with a unimodal approach, no matter what
video analysis method is used.

2) Multimodal Object Estimation: The confidence levels in
the video and location modalities, obtained in Section IV-B1,
were given to the BCI model to evaluate the results of integrat-
ing causal inference and discrimination results. Table I shows
the percentage of correct answers for recognition in each
modality, and Fig. 6 shows the simulation results. In Table
I, each “Unimodal” modality shows the results of decision
making based only on the confidence output of each BAM,
and each “Multimodal” modality shows the percentage of
correct responses resulting from calculating the model average
for each modality . In the model average algorithm, results are
output from Eq. (7), and the output is based on one modality
while the other modality complements the recognition result.
We do not discuss in this paper which modality should be
treated as primary in the multimodal approach, and consider
it as a future issue, but all of the results in this study show
an improvement in the correct answer rate when all objects
are estimated compared to the unimodal results.

Figure 6(a) shows the results of causal inference. Basically,
causal inference indicates that different modalities can observe
the same object if two of the modalities agree, even though
one of them has lower confidence, and indicates that they
observe different objects if they disagree. For time steps 1 to
2,222, the causal inference result successfully shows that these
modalities observed the same object. For the location modality



(a) Causal inference with the confidence level in Fig. 5 as
input

(b) Outputs after multimodal integration

Fig. 6. Integration results of the BAM and BCI.

during time steps 2,223 to 3,333, the confidence level for
observing Obj. 3 is high at the beginning, but after time step
2,520, the confidence level for other objects is higher, and thus
causal inference indicates that the two modalities observed
different objects. This is due to incorrect recognition in the
location modality, and the causal inference prevents this error
from affecting recognition in the video modality by inferring
that these modalities are observing different objects.

Figure 6(b) is the final object identification result after
integrating the two modalities based on the video modality. At
around time step 2,200, identification by the video modality is
incorrect and identification by the location modality is correct,
but because both confidence values are high, causal inference
determines that they are observing different objects, and the
result of the integration is an incorrect decision. In other time
steps, the object estimation results are correct, and the total
correct answer rate was improved to 93.83%.

Table II and Table III show the results of the same experi-
ment using the 3- and 6-objects data sets. The accuracy was
improved by fusing the estimation results of many objects. It
can also be confirmed that if one modality is too inaccurate,
the accuracy will not improve much.

C. Calculation Time
As for the computational time of the proposed method,

the most computationally intensive operation is when 128-
dimensional video features are input to the BAM, zt is
estimated, and the confidence level is output. The actual
computation time on a desktop computer (CPU: Core-i7 8700,
RAM: 16.0 GB) for this operation was 1.18 ms per frame
input, which can be applied to 30-fps and 60-fps videos in
this evaluation environment.

TABLE II
3 OBJECTS CORRECT RESPONSE RATE (%)

Modality Obj. 1 Obj. 2 Obj. 3 Total
Unimodal video 99.7 85.0 68.3 84.3
Unimodal location 99.6 98.5 39.2 79.1
Multimodal video 99.6 93.4 94.7 95.9
Multimodal location 99.6 97.8 39.2 78.9

TABLE III
6 OBJECTS CORRECT RESPONSE RATE (%)

Modality Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5 Obj. 6 Total
Unimodal video 85.3 99.4 95.9 91.7 96.9 73.7 90.5
Unimodal location 39.8 92.6 67.8 92.0 74.6 66.6 72.2
Multimodal video 75.2 99.4 96.5 94.8 96.9 83.0 91.0
Multimodal location 39.8 92.7 67.9 92.2 74.8 66.6 72.3

V. CONCLUSION

In this paper, we proposed a method for object estimation
from noisy observed information based on multiple types of
uncertain observation information. The proposed method uses
the BAM, which is a mathematical model for the brain’s
processing of information obtained by observation, and BCI,
which is a mathematical model for processing multimodal
recognition. By this combination, we introduce a mechanism
for making appropriate decisions by processing and com-
bining incomplete observation information in each modality.
Through computer simulations, we showed that the proposed
method can combine the parts that are recognized with high
confidence in each modality and can make decisions with
higher accuracy than that of a unimodal method. Future work
includes investigating how to learn a new attractor when an
object is recognized that has not been learned beforehand
and how to estimate multiple objects by observing them
simultaneously.
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