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Abstract

In recent years, psychological fatigue based on the working environment and mental

strain has become an issue. Even short-term mental burdens can become long-term and

persistent stresses if such burdens are accumulated. To avoid such situations, rests are

important; By resting the body and mind, the mental load can be reduced. By detecting

mental stress in real time, we can urge people to take a rest. The living-body informa-

tion is useful to detect mental stress. The sympathetic nervous system becomes dominant

in a state of stress, which causes biological reactions. Such biological responses can be

estimated from living-body information obtained by using wearable sensors. A wearable

sensor can observe various types of living-body information such as body temperature,

skin electrical activity, and heart rate, which have a significant correlation with the state

of mental load. That is, such living-body information can be used to detect mental stress.

Especially, combining multiple information is one of the promising approaches for accurate

detection of mental stress. However, such living-body information measured by wearable

devices contains noise. In addition individual differences exist in such living-body infor-

mation. Therefore, the real-time stress detection should handle such noise and individual

differences.

In this thesis, we propose a real-time stress detection method that can handle noise

included in the monitored information and the individual differences. Our approach is

based on ”Yuragi learning” and multimodal integration. Yuragi learning is a method

to make real-time decisions from information including noise, based on a model of the

cognitive process of a human brain called the Bayesian Attractor Model (BAM). Yuragi
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learning makes decisions on which of predefined options matches the current state by

continuously updating the cognitive state every time new observations are obtained.

In our method, we configure multiple discriminators based on Yuragi learning. Each

discriminator makes decisions based on the corresponding information. Then by integrat-

ing the decisions of all discriminators, our method makes final decision in real time. In

this method, the information used to make final decisions should be carefully selected,

because the impact of stress on living-body information is different from person to person.

Therefore, our methods select the information for each person and exclude the informa-

tion that cannot distinguish the stress state. In addition, our method also exclude the

decisions of Yuragi learning whose outputted confidence is low to avoid the detection of

stress from inaccurate information. In this thesis, we demonstrate that our method de-

tect stress states accurately through experiments. In this experiments, we use the data

obtained by subject experiments where living-body information and reports on subjective

stress level are obtained. The results show that our method can detect stress accurately,

while the methods without selecting modalities and without avoiding using results with

low confidence cause false negatives and false positives.
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1 Introduction

In recent years, psychological fatigue based on the working environment and mental strain

has become an issue. Nowadays, there are many situations in which people feel stress

at work and in their daily lives. Stressors that cause stress can be classified into three

categories: 1) physical stressors such as heat, cold, noise, and congestion, 2) chemical

stressors such as pollutants, drugs, oxygen deficiency or excess, and carbon monoxide,

and 3) psychological and social stressors such as personal relationships, work problems,

and family problems [1]. These stressors affect psychological, physical, and behavioral

aspects. Even short-term mental burdens can become long-term and persistent stresses if

such burdens are accumulated.

Examples of physical impacts include heat stroke, cooling sickness, and autonomic

nervous system disorders. Methods to reduce the risk of heat stroke include using home

air conditioning, spending more time in air-conditioned areas, and living in dwellings with

ample shade from trees and shrubs have been advocated [2]. This suggests that in the

working and living environment, it is important to rest the body and mind and reduce the

mental load before it seriously affects health.

The sympathetic nervous system becomes dominant in a state of stress, which causes

biological reactions. Therefore, research focusing on the relationship between living-body

responses and stress has been conducted. Among them, research on stress estimation using

living-body information that can be obtained from wearable devices has been active. There

are various types of living-body information that can be obtained from wearable devices,

and research is being conducted on living-body information that is significant for stress.

Sets et al. demonstrated that stress detection with accuracy of 82.8% can be achieved

in the workplace by monitoring the biometric skin electrical activity (EDA) using a wear-

able device [3]. This results indicate that stress and skin electrical activity are signifi-

cantly correlated. Betti et al. proposed a method to detect stress based on each of the

three living-body information (EEG(Electrocardiogram), EDA(Electrodermal activity),

and EEG(Electroencephalogram)) [4]. They found high significant correlation with stress

in the 15 features extracted from the living-body information.

Combining multiple information is one of the promising approaches for accurate de-
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tection of mental stress. Schmidt et al. provided multimodal dataset for the researchers

on stress detection with the demonstration that the integration of multiple information

can improve the accuracy of the stress detection [5].

However, while the use of wearable sensors enables real-time data acquisition of living-

body information that can be used to determine the stress state, the living-body infor-

mation acquired by wearable sensors contains noise. Therefore, in order to determine the

stress state in real time, a method that can handle such noise is neccessary.

In addition, individual differences exist in living-body information; the impact of stress

on living-body information is different from person to person. Therefore, the real-time

stress detection should also handle individual differences.

Our research group has proposed a method called Yuragi learning [6]. Yuragi learning

is a cognitive method based on the Bayesian Attractor Model (BAM) [7], which models the

cognitive processes of the brain to make decisions from observed information with noise.

In this method, the cognitive state of the brain is treated as a random variable. Then, the

decision-making state is updated by Bayesian estimation each time an externally observed

value is obtained. By repeating this updating process, this method can make decisions

even if the information obtained at each time contains noise.

In this thesis, we propose a method to detect stress by integrating multiple types of

living-body sensing information using Yuragi learning. In our method, we configure multi-

ple discriminators based on Yuragi learning. Each discriminator makes decisions based on

the corresponding information. Then by integrating the decisions of all discriminators, our

method makes final decision in real time. In this method, the information used to make

final decisions should be carefully selected, because the impact of stress on living-body

information is different from person to person. Therefore, our methods select the informa-

tion for each person and exclude the information that cannot distinguish the stress state.

In addition, our method also exclude the decisions of Yuragi learning whose outputted

confidence is low to avoid the detection of stress from inaccurate information.

The rest of this thesis is organized as follows. Section 2 explains the related work

including stress detection and the Yuragi learning. Section 3 proposes a real-time stress

detection method based on Yuragi learning and multi-modal integration. In Section 4, we

evaluate our method. Finally, Section 5 concludes this thesis.
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2 Related work

2.1 Recent research on stress detection

The sympathetic nervous system becomes dominant in a state of stress, which causes

biological reactions. Therefore, researches focusing on the relationship between living-body

responses and stress have been conducted. Among them, research on stress estimation

using living-body data that can be obtained from wearable devices has been active.

There are various types of wearable devices, such as wristband devices [8] and wearable

chest devices [9]. Smartphones are also important devices for stress detection; stress

detection systems that can work with smartphones have also been developed [10,11].

The information that can be obtained from such wearable devices includes a wide

variety of living-body information. Thus, researches on living-body information that has

significant correlation with stress have been conducted.

Sets et al. demonstrated that stress detection with accuracy of 82.8% can be achieved in

the workplace by monitoring the biometric skin electrical activity (EDA) using a wearable

device [3]. This results indicate that stress and skin electrical activity are significantly

correlated.

Jebilli et al. investigated the relationship between stress and EEG for workers on

construction sites [12]. They analyzed brain activity recorded by a wearable EEG device

and showed that EEG has the potential to quantitatively measure human stress.

Some studies have also investigated the relationship between stress and multiple living-

body measures. Betti et al. proposed a method to detect stress based on each of the

three living-body information (EEG(Electrocardiogram), EDA(Electrodermal activity),

and EEG(Electroencephalogram)) [4]. They found high significant correlation with stress

in the 15 features extracted from the living-body information.

Combining multiple information is one of the promising approaches for accurate de-

tection of mental stress. Schmidt et al. provided multimodal dataset for the researchers

on stress detection with the demonstration that the integration of multiple information

can improve the accuracy of the stress detection [5].

The above researches demonstrated the living-body information is useful for stress

detection. However, living-body information measured by wearable devices contains noise.
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In addition, individual differences exist in living-body information; the impact of stress on

living-body information is different from person to person. Therefore, the real-time stress

detection should handle noise included in the measured data and individual differences.

In this thesis, we propose a real-time stress detection method that handles noise in-

cluded in the measured data and individual differences by integrating multiple types of

living-body sensing information using Yuragi learning.

2.2 Yuragi learning

Yuragi learning [6] is a cognitive method based on the Bayesian Attractor Model (BAM) [7],

which models the cognitive processes of the brain to make decisions from observed infor-

mation with noise.

In the BAM, a cognitive process of a human brain to make decisions on which of prede-

fined options called attractors matches the current state is modeled as follows. The brain

obtains observations and abstract them. Hereafter, we denote the abstracted observation

at time t by xt. The cognitive state of the brain is treated as a random variable. We

denote the cognitive state at time t by zt. zt is updated each time xt is obtained by using

the following generative model.

zt − zt−∆t = ∆tf(zt−∆t)
√
∆twt (1)

xt = Mσ(zt) + vt (2)

where f(z) represents the Hopfield dynamics. wt and vt are Gaussian noise variables.

M = [µ1, ..., µs] and µi is the observation value corresponding to the state ϕi. σ is a

multidimensional sigmoid function.

The above generative model is nonlinear. Bitzer et al. used the Unscented Kalman

filter (UKF) to update the cognitive state.

By the above steps, the brain obtains the cognitive state P (zt = ϕi | x0:t) at time

t where x0:t = x1, ..., xt. We call P (zt = ϕi | x0:t) the confidence. In the BAM, if the

confidence on an option exceeds the threshold λ, the brain make a decision.
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Yuragi learning is a method for a computer to recognize a situation based on the

BAM. In Yuragi learning, first, S attractors and µi observed values corresponding to each

attractor are defined. Then, each time new observations are obtained, we calculate the

abstracted observation xt and update the cognitive state by using xt. If P (zt = ϕi | x0:t)

exceeds the threshold λ, the current situation is recognized as i.
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3 Real time stress detection by Yuragi learning and multi-

modal integration

In this thesis, we propose a method for real-time detection of stress state using multiple

living-body information. This method should handle the following problems; (1) Noise:

information obtained by wearable sensors includes noise, (2) Individual difference: the

impact of stress on living-body information is different from person to person, and (3)

Situation: the living-body information that is useful for making decisions depends on the

situation. In this section, we propose a method to handle all of the above problems.

3.1 Overview

Figure 1 shows the overview of our real-time stress detection method. In this method, we

use k modalities. For each modality, we extract the features from the observed information.

We denote the observation of ith modality by o
(i)
t and features extracted from o

(i)
t by x

(i)
t .

The extracted features are used as inputs of corresponding discriminator based on Yuragi

learning. Each discriminator updates its cognitive state by using the inputted features.

That is, the cognitive state of discriminator of ith modality z
(i)
t is updated by using x

(i)
t .

The output of discriminator is Fi = P (z
(i)
t | x(i)0:t). By integrating Fi for all modalities, our

method makes final decision.

In this method, we handle the noise included in observations by using Yuragi learn-

ing. The discriminator based on Yuragi learning continuously update its cognitive state

each time new observations are obtained. By repeating updating the cognitive state, the

discriminator can make decisions even if the observation includes noise.

We handle individual differences by configuring the discriminators for each person.

The discriminator based on Yuragi learning can be trained just by setting the features

corresponding to the state. So, we can easily train the discriminator for each person even

if we have only a limited amount of observations for each person. In addition, the useful

modalities are also different from person to person. Therefore, we also select the useful

modalities for each person by using the observations for each person.

In this method, the results of discriminators used for final decision are also selected

for the situation, because the living-body information that is useful for making decisions
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depends on the situation. In this method, we integrate only the results with high confidence

to make final decision. By doing so, we can avoid using the results based on the modalities

that cannot distinguish the stress state in the current situation.

Figure 1: Stress detection model of the proposed method

3.2 Training

3.2.1 Feature selection

In our method, features used by the discriminator of each modality are selected for each

person. If no suitable features are selected, the modality is not used in our method. The

rest of this subsection explains how to select features.

In our method, features are selected from candidates of the features. We can use the

well-known features and the features extracted by using machine learning models as the

candidate of features.

The feature selection is performed after obtaining some observations. The candidate

features are calculated from the observations. We also denote the set of time slots T train

whose data can be used for training. By using the observations obtained in T train, we

select features by the following steps.

1. Normalize the candidate features by

12



xt,j =
xcandt,j − µj

σj
(3)

where xcandt,j is the jth candidate of features obtained at time t, µj and σj is the mean

and the standard deviation of the jth candidate of features in the case without stress.

2. Calculate the average of xt,j in the case of stress

x̄j =

∑
{t:t∈T train,L(t)=stress} xt,j

| {t : t ∈ T train, L(t) = stress} |
(4)

where L(t) is the label at time t.

3. Check if the absolute value of each element of x̄j exceeds the threshold λ. If the

absolute value of x̄j is larger than the threshold, select the jth feature. Othewise,

the jth feature is excluded

4. If all elements of x̄j are smaller than the threshold, the modality itself is excluded.

The above procedure is performed for each modality for each person. By the above steps,

we can select features that can distinguish the stress state.

3.2.2 Setting of attractor

The discriminators based on Yuragi learning can be trained just by setting the typical

features corresponding to each label. In this thesis, we set the typical features in the

case without stress to 0, and those in the case with stress to x̄ which is constructed of x̄j

calculated in the above steps.

3.3 Stress detection

3.3.1 Process for each modality

We use the Yuragi learning to make decisions based on each modality. Each discriminator

based on Yuragi learning works as follows. First, normalized features xt extracted from the

observation information ot are obtained by Eq. (3). Then, the cognitive state is updated

by Bayesian estimation based on the generative model represented by Eqs. (1) and (2)

and the confidence P (zt|x0:t) obtained. By repeating the above steps, the discriminator

make decisions on the stress state in real time.
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3.3.2 Multimodal integration

After the result of each discriminator is obtained, we integrate them to make final decisions

by the following steps.

Creation of confidence vectors We construct the vector indicating the confidence for

each discriminator. The confidence vector for kth discrminator is obtained by

Fk = P (zkt | xk0:t). (5)

Exclusion of cognitive results with low confidence Some discriminators may not

be able to distinguish the stress state. In such cases, the confidence of the discriminator

becomes low. We avoid using the results of such discriminators. In this thesis, we exclude

the results of discriminators whose confidences are less than a threshold.

Integration of confidence by weighted sums We integrate the confidence vectors

of the selected discriminators. In this thesis, we use a simple method that calculates a

weighted sum of confidence vectors.

F =
∑
i∈M

wiF̄i∑
iwi

(6)

where M is the set of selected modalities, F is the final confidence result after integration,

and wi is the weight for the ith modality. F̄i is the normalized confidence vector obtained

by

F̄k =
Fk

∥Fk∥1
. (7)

Note that the weights wi is required to be defined in advance. In this thesis, we assume

that the common wi can be set for all people, and we use wi trained by using the data of

the other subjects so as to maximize the accuracy of the final decisions F in our evaluation.
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4 Evaluation

We evaluate our method by using the data obtained by a subject experiment. In this

section, we explain the settings in our experiments and results.

4.1 Settings

4.1.1 Dataset

We use the data obtained in a subject experiment [13]. In this experiment, each subject

stayed in a room where we changed the temperature and humidity. Each subject was

asked his/her subjective well-being (SWB) levels every 30 seconds. SWB was reported

as a number from 1 (uncomfortable) to 10 (comfortable). At the same time, living-body

information of the subjects was recorded. We use the data recorded by using Empatica E4

wristband. Table 1 shows the living-body information recorded by Empatica E4. Though

three-axis acceleration (ACC) was included the recorded information, we do not use the

ACC because the ACC does not have correlation with stress.

In addition to the raw EDA observations recorded by Empatica E4, we extract an

isotonic level called skin conductance level (SCL) and a phasic response called skin con-

ductance response (SCR) from the recorded EDA by using cvxEDA [14]. We also extracted

the same features for pituitary nerve activity (SNMA), which is considered to have the

potential to estimate autonomic nervous system activity with superior performance com-

pared to raw SCR.

Table 1: List of modalities of the acquired dataset

Sensor devices Modality names Details Frequency

Empatica E4 (wrist) ACC 3-axis acceleration 32

EDA ElectroDermal Activity 4

TEMP Temperature 4

BVP Blood Volume Pulse 64

IBI Inter-Beat Interval -

HR Heart Rate 1
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The subject experiment included 31 subjects. But the living-body information of 2

subjects was not successfully recorded. That is, we use the data for 29 subjects.Hereafter

we define Sub− i as the i− th subject.

4.1.2 Label settings

We set the label (baseline or stress) based on the recorded SWB values. The recorded

SWB values depend on subjects. For example, a subject may report 1 if he/her is un-

comfortable while another subject may report 3 when he/her feels similarly. Considering

such individual difference, we set the label based on the minimum value reported by each

subject as showin in Table 2.

Table 2: Relationship between SWB and label

SWB minimum value, second lowest value other values

label 1 2

state stress state　 　 baseline state

4.1.3 Parameters

Candidate features We obtain candidate features from the observed values shown

in Table 1. To extract features, we first extract the observations within a window by

using the sliding window method with a window size of 60 seconds and a window shift

of 0.25 seconds. Then, we extract the mean (mean), standard deviation (std), minimum

value (min), maximum value (max), range of values (range), and slope (slope) for the

observations within each window.

Parameter We set the threshold λ for feature selection to 1.1. We also set the threshold

value for the confidence obtained by Yuragi learning to 0.001. We set the parameters of

Yuragi learning method as shown in Table 3.
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Table 3: Parameter list of BAM

Parameter name variable value

sensor uncertainty s 0.4

dynamic uncertainty q 0.5

4.2 Example of results of real-time stress detection

In our method, features used to detect stress are selected for each person. Table 5 and

Table 4 shows the selected modalities and features for Sub-12 and Sub-06. As shown in

this table, the selected modalities and features depends on subjects.

Table 4: Modalities and their features used for stress detection of Sub-06

modality select feature

EDA mean、std、min、max、range、slope

phasicEDA std

Table 5: Modalities and their features used for stress detection of Sub-12

modality select feature

TEMP mean、min、max

EDA mean、std、min、max、range

HR mean、min、slope

IBI max

Figure 2 and Figure 3 show the results of real-time stress detection by our method. In

these figures, we plot the normalized confidence by each discriminator and the integrated

result. TEMP, EDA, HR, and IBI are selected as useful modality for Sub-12 by our

method, while EDA and phasicEDA are selected for Sub-06. As shown in these figures,

even when each discriminator cannot accurately detect stress, we can detect the stress

accurately. For example, the discriminators based on HR and IBI mistakenly classify the

state of baseline as the state with stress in some time slots. But by integrating the results

17



of all discriminators, we can accurately classify the state in such time slots. In another

example shown in Figure 3, the discriminator based on EDA cannot recognize the state

with stress for Sub-06 in some time slot. But phasicEDA can identify the state in such

time slot. By integrating these results, we can make accurate decisions.

18



(a) Confidence in TEMP (b) Confidence in EDA

(c) Confidence in HR (d) Confidence in IBI

(e) Integration result (f) Correct label

Figure 2: Sub-12 Results of the proposed method
19



(a) Confidence in EDA (b) Confidence in phasicEDA

(c) Integration result (d) Correct label

Figure 3: Sub-06 Results of the proposed method

4.3 Effectiveness of feature selection for each user

In this subsection, we investigate the effectiveness of feature selection for each user. To

investigate the effectiveness, we compare the results of our method with that of the method

that uses all modalities.

In this comparison, we use three metrics, false negative rate, false positive rate, and

unavailable rate defined by

False negative rate =
FN

TP + FN +X
, (8)
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False positive rate =
FP

TP + FP
, (9)

and

Unavailable rate =
X

TP + FN +X
(10)

where FN , FP , TP , TN , X, and Y are the numbers of results categorized as shown in

Table 6.

Table 6: valuation index

Predicted value

True value

Stress Baseline Confidence = 0

Stress TP FN X

Baseline FP TN Y

Note that all modalities are excluded for 7 subjects and only one modalities are selected

for 8 subjects. In this subsection, we compare the results for remaining 22 subjects.

Figure 4 shows the results of integration by our method and the method using all

modalities (TEMP, EDA, phasicEDA, SNMAphasicEDA, tonicEDA, BVP, HR, IBI) and

all features (mean, std, min, max, range, slope) for Sub-00.
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(a) Proposed method (b) Method without feature selection

(c) Correct label

Figure 4: Sub-00 Results of proposed and comparison methods

This figure shows that our method accurately detect stress while the method using all

features mistakenly detect state of baseline as stress in some time slots. This is caused by

the modalities that are not suitable to the subject.

Figure 5 compares the results of our method and the methods using all modalities and

features. In this figure, the vertical axis is the cumulative distribution, and the horizontal

axis is false negative rate, false positive rate, or unavailable rate calculated for each subject.

This figure shows that our method achieves smaller false negative rate and smaller false

positive rate. This is caused by selection of useful modalities for each subject. In the
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method without selecting modalities, some modalities that are unsuitable to the subject

cause wrong decisions.

The unavailable rate of our method is slightly larger than the method without selecting

modalities. This is caused by the difference in the number of used modalities. In the

method using all modalities, the probability that at least one discriminator detects stress

is higher than our method that uses a limited number of modalities. However, such

discriminators are inaccurate. On the other hand, our method uses only the modalities

suitable for each subject, and waits for the discriminators based on selected modalities to

make decisions. As a result, our method detects stress accurately though the unavailable

rate becomes large.
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(a) False negative rate (b) False positive rate

(c) Unavailable rate

Figure 5: Comparison of the proposed method with method without feature selection

4.4 Effectiveness of exclusion of cognitive results with low confidence

Our method exclude the results of discriminator whose confidence is low. In this subsec-

tion, we investigate the effectiveness of exclusion of such results.

Figure 6 shows the results of the method excluding the results with confidence and
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the method using all results. The modality used for stress detection in Sub-02 was only

TEMP. As shown in this figure, if the results with low confidence are integrated, many

false positives occurs. This is caused by the results with low confidence.

(a) Cognitive results of TEMP (b) Correct label

(c) Proposed method (d) Method without exclusions

Figure 6: Sub-02 Results of proposed and comparison methods

Figure 7 compares the results of our method and the methods without excluding results

of discriminators with low confidence. In this figures, the vertical axis is the cumulative

distribution, and the horizontal axis is false negative rate, false positive rate, or unavailable

rate.

25



(a) False negative rate (b) False positive rate

(c) Unavailable rate

Figure 7: Comparison of the proposed method with method without low confidence ex-

clusion

Figure 7 shows that the unavailable rate increases by excluding the results with low

confidence. This is because our method waits for discriminators to detect attacks with

high confidence. But by waiting for discriminators to detect attacks with high confidence,
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our method achieves accurate detection as discussed above.

4.5 Future work

Our method detects stress accurately for most of subjects. However, it cannot detect stress

state of some subjects, and false positive rates and false negative rates become large.

One of the reasons is the difference between subjective stress and living body response.

If the living-body response is affected by the stress but the person does not feel the stress,

the results of stress detection based on living-body information become different from the

subjective stress.

Another reason is lack of the differences of the living-body information. If the features

used in this experiment cannot distinguish the stress state, our method cannot detect

stress accurately. One approach to solving this problem is to use more features so that we

can select features suitable for any person. In addition, by updating the feature selection

and typical values of the features, we can improve the accuracy of the detection.
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5 Conclusion

In this thesis, we proposed a method to detect stress by integrating multiple types of

living-body sensing information using Yuragi learning. In our method, we configure mul-

tiple discriminators based on Yuragi learning. Each discriminator makes decisions based

on the corresponding information. Then by integrating the decisions of all discriminators,

our method makes final decision in real time. In this method, the information used to make

final decisions should be carefully selected, because the impact of stress on living-body

information is different from person to person. Therefore, our methods select the informa-

tion for each person and exclude the information that cannot distinguish the stress state.

In addition, our method also exclude the decisions of Yuragi learning whose outputted

confidence is low to avoid the detection of stress from inaccurate information.

In this thesis, we demonstrated that our method detect stress states accurately through

experiments. In this experiments, we used the data obtained by subject experiments where

living-body information and reports on subjective stress level were obtained. The results

show that our method can detect stress accurately, while the methods without selecting

modalities and without avoiding using results with low confidence cause false negatives

and false positives.

However, our method could not find modalities suitable for some subjects or could

not detect stress for some subjects accurately. One approach to solving this problem is

to use more features so that we can select features suitable for any person. In addition,

by updating the feature selection and typical values of the features, we can improve the

accuracy of the detection. The improvement of the accuracy of our method is one of our

future research topics. In this thesis, we set the parameters of the Yuragi learning to

static values. But their suitable settings may be difference from person to person. The

parameters should also be set by using the feedback from the users, which is also one of

our future research topics.

Also, we demonstrated that our stress detection method can detect stress caused by

room environment. However, there are other types of stress. The demonstration using the

dataset of other types of stress is also one of our future research topics.
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