
Evolutionary Algorithm with Phenotype Diversity
for Virtual Network Embedding

Tatsuya Otoshi¶, Masayuki Murata†
¶ Graduate School of Economics, Osaka University

1-7 Machikaneyama-Cho, Toyonaka, Osaka 565-0043, Japan
†Graduate School of Information Science and Technology, Osaka University

1-5 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract—With the diversification of applications using the
Internet, network virtualization technologies that flexibly allocate
network resources are attracting attention. In network virtual-
ization, virtual network embedding is important to properly map
the requirements of the virtual network to the physical network.
However, it takes time to calculate the solution by optimization,
and recalculation of the embedding becomes a problem when
the environment of the virtual and physical networks changes.
Therefore, a method of having multiple solution candidates in
advance and switching the solution depending on the situation is
considered, but the design and updating of the solution candidates
themselves remain an issue. Such a relationship between solution
candidates and solution selection is similar to the relationship
between genotype and phenotype in biological evolution, and it
is a shortcut to get hints from evolution. In biological evolution,
the phenotype searches for short-term practical solutions while
the genotype continues to search for optimal solutions. By
introducing this mechanism into the network, it is possible to
select a quasi-optimal solution in a fluctuating environment while
continuing the search for a better solution candidate itself. In
this paper, we propose a dynamic virtual network embedding
method in which the solution candidates themselves can be
dynamically updated based on the evolution of genotype and
phenotype. In this method, candidate solutions are encoded as
genotypes, and phenotypes are decoded by attractor selection
using noise-induced fluctuations. Through evaluation, we show
that the attractor selection by individuals leads to the discovery
of appropriate solutions faster than when using neural networks.

Index Terms—Novelty Search, Attractor Selection, Virtual Net-
work Embedding, Local Competition, Evolutionary Algorithm

I. INTRODUCTION

With the diversification of Internet-based applications, net-
work virtualization technologies that flexibly allocate network
resources are attracting attention [1]. By mapping a virtual
network, which reflects the different network resource de-
mands of different applications, onto the physical network,
various per-application requirements can be met on a single
network. This is called virtual network embedding [2] and
is formulated as an optimization problem, which generally
cannot be solved in a realistic time. For this reason, approaches
that seek approximate solutions by various heuristics are often
used [3].

Even after the virtual network has been embedded, changes
in application conditions or changes in the environment on the
physical network may result in the mismatch of embedding. In
recent years, the technology of dynamically constructing slices
in response to changes in functional requirements has been
attracting attention [4], [5], and the demand for dynamically
changing the virtual network embedding has been increasing
as background technology. Therefore, dynamic virtual network
embedding is necessary to continuously monitor the status of
the virtual network and the physical network to reconfigure
the virtual network [6]. In this case, the time allowed for re-
calculation of the virtual network embedding is short, making
time-consuming approaches such as optimization difficult. In
addition, the time required to switch between embeddings is
not negligible, and therefore, it is necessary to prepare for the
switchover in advance or to make continuous changes.

One way to reduce the time required for recalculation is
to have multiple candidate solutions in advance and switch
between them depending on the situation. For example, a
method of continuing service even in the event of a failure of
a physical resource by switching to a backup virtual network
prepared in advance on another physical resource is being
considered [7]. A method to dynamically embed a virtual
network by combining switching among prepared solution
candidates and searching with small noise has also been
proposed [8]. However, in these methods, it is difficult to know
what kind of solution candidates to keep. In particular, when
large environmental changes occur, any solution candidate may
no longer be appropriate, and updating the solution candidates
themselves becomes an issue.

The process of selecting among solution candidates and
updating the solution candidates themselves is similar to the
relationship between phenotype and genotype in biological
evolution. Biological systems are known to exhibit multiple
different phenotypes depending on the environment, even for
the same gene, and this property is called phenotypic plasticity.
Genotypic evolution causes changes in this phenotypic plastic-
ity [9], which in turn changes the phenotypic response to the
environment. There is also a known Baldwin effect in which
phenotypic plasticity causes evolution to promote learning in

individuals [10]. Biological evolution has successfully adapted
to environmental variation through the mutual influence of
genotype and phenotype. However, in conventional genetic
algorithms, genotype and phenotype are identical, and phe-
notypic plasticity has not been exploited [11]. Therefore,
we expect that mimicking this evolutionary mechanism will
be promising for selecting solutions from candidates while
updating the candidates of the virtual network.

In this paper, we propose a dynamic virtual network embed-
ding method in which the solution candidates themselves can
be dynamically updated based on the evolution of genotype
and phenotype. The method is based on novelty search [12],
which is often used in the field of robot control. In novelty
search, individuals achieve phenotypic plasticity using a neural
network, and the structure of the neural network is often
used as the genotype. In this case, the phenotypic plasticity
is solely determined by the genotype, so there is no search
for a new solution in the generation. However, in virtual
network embedding, the environment changes dynamically
according to the communication situation, so short-term search
using noise [8] is effective. In addition, it is difficult to
set backups in advance because the solution candidates are
non-explicit in neural networks. Therefore, in our method,
the candidate solutions are encoded as genotypes, and the
phenotypes are decoded by attractor selection using noise-
induced fluctuations. Through the evaluation, we showed that
the individual’s attractor selection leads to the discovery of
an appropriate solution faster than when using a conventional
neural network.

The remainder of this paper is organized as follows: Sec-
tion II introduces the dynamic virtual network embedding
assumed in this paper. Section III describes the proposed
method, which combines the evolution of genotypes by novelty
search with the selection and exploration of phenotypes by
attractor selection; Section IV evaluates the virtual network
embedding by simulation. In Section V, we summarize this
paper and discuss future work.

II. DYNAMIC VIRTUAL NETWORK EMBEDDING

First, we explain the dynamic virtual network embedding
envisioned by the proposed method. In conventional virtual
network embedding, it is assumed that after the virtual network
embedding is configured upon arrival of a request, the same
configuration is basically continued to be used. However, in
reality, as the environment changes, resource requests also
change dynamically, and the virtual network needs to be
reconfigured to keep up with the changes in requests [8].
Reconfiguration of virtual networks requires changing the
configuration of network devices and waiting for the changes
to be reflected in the overall network, which can cause delays
in response and lead to network instability due to frequent
changes. Therefore, multiple virtual networks are built in
advance, and the virtual network to be used can be changed

dynamically according to the situation, thereby solving the
problem of lag in configuration changes [7]. However, it is
necessary to cover the solution space with a constant number
of virtual networks because the solution space for virtual
network embedding is huge, whereas the virtual networks that
are generally prepared in advance are constant. Even if the
switching of virtual networks can be made fast, changing
an existing virtual network requires reconfiguration of the
network as in the past, so it is necessary to limit the number of
changes to a few at a time for the virtual network being pre-
pared. Therefore, by constructing candidate virtual networks
to be prepared in an evolutionary manner, we aim to ensure
diversity with a constant number of candidates while keeping
up with environmental changes through gradual changes due
to mutations.

In addition, computation time is a particular issue for
dynamic virtual network embedding. In general, the objective
of virtual network embedding is to embed as many virtual
networks as possible on limited physical resources, consid-
ering resource arbitration among multiple virtual networks.
However, such mediation among multiple virtual networks is
impractical for dynamic virtual network embedding because
the computation time increases as the number of virtual
networks increases. Therefore, in this paper, embedding is
performed for each single virtual network.

In this case, if there is no combination of physical resources
available for embedding at the time the request for embedding
arrives, the request is rejected. Therefore, it is necessary to
perform embedding at the stage of accepting each request,
leaving surplus resources for future requests. Thus, in this pa-
per, the resource mediation among virtual networks is tackled
by maximizing the surplus physical resources at each single
virtual network embedding.

III. NOVELTY SEARCH WITH ATTRACTOR SELECTION FOR

VIRTUAL NETWORK EMBEDDING

In a dynamic environment, the embedding is recalculated
according to changes in resource demand and physical re-
sources, but at this time, the conditions of the acceptable
solution do not change significantly, and there are parts of the
solution that can be reused. In such a case, it is desirable to
have a list of candidate acceptable solutions and dynamically
select the appropriate solution for the fluctuating environment.
However, it is also necessary to update the candidate solutions
themselves to cope with large fluctuations. A familiar example
that implements such a complex operation of selecting solution
candidates, selecting solutions according to the situation, and
updating the solution candidates themselves is the mechanism
of biological evolution. In biological evolution, the genotype
defines the phenotypic response to the environment, and
changes in the genotype through evolution allow the organism
to respond to large environmental changes.

In this section, we introduce a method for solving dynamic
virtual network embedding by evolving genotypes through
novelty search and exploring phenotypes through attractor
selection.

A. Overview of the Proposed Method

As an individual behavior, we consider the selection of a
phenotype from multiple phenotypes by attractor selection,
using feedback from the environment. In other words, the
attractor structure (attractor set) is used as the genotype, and
the solution suitable for the environment is selected from the
attractor set by attractor selection. Figure 1 shows the overview
of our method.

The following procedure generates an individual with an
attractor set that is more adaptable to the environment and
searches for a solution that is suitable for the environment.

1) Initialize the random genotype (attractor structure) of
each individual (green part in the figure).

2) Each individual selects a solution suitable for the envi-
ronment from a set of attractors by attractor selection
with activity in simulation of virtual network embed-
ding(blue part in the figure).

3) Evaluate novelty and fitness for each individual choice,
then select surviving individuals (yellow part in the
figure).

4) Move to the next generation and repeat the procedure
from Step 2.

population
genotype

individual
phenotype

physical NW

virtual NW

embedding candidates

attractor structure

apply to NW

attractor selection
noise

activity
(fitness)

selected embedding

behavior space
high novelty

&
high fitness

survived
genotype

novelty search

novel

Fig. 1. overview of novelty search with attractor selection

B. Genotype and Phenotype with Attractor Selection

First, we define the genotype encoding and phenotype
decoding with attractor selection.

a) Genotype: In attractor selection, the structure of the
attractor is specified by the structure of the Hopfield network
(green line in Fig. 1), which influences the selection. In novelty
search, the coupling structure of a neural network is often used
as the genotype of an individual, and it seems natural to use
the coupling structure of the Hopfield network as the genotype
of an individual here as well.

In other words, the weight of the coupling between nodes
i,j of the Hopfield network is wij (where wij = wji and
wii = 0), and the series w = w01, w02, · · · , wn−1,n as the
genotype.

Mutation of the genotype is equivalent to adding a normal
random number to wij .

b) Phenotype: Once the structure of the Hopfield net-
work is determined by the genotype, attractor selection updates
the state xt (blue circle in Fig. 1) at each time according to
the following equation.

dxt

dt
= αtFw(xt) + ηt (1)

where αt is the activity representing the goodness of the state,
Fw is the Hopfield network, and ηt is the noise term.

The state xt determines the output of the individual at
each time and incorporates feedback from the environment
as activity α. Here, the time series of behavior x1,x2, · · ·
becomes the phenotype. In the case of virtual network em-
bedding, whether or not to embed virtual node i in phys-
ical node j is represented by xnode

ij , and whether or not
to embed virtual link l in physical path p is represented
by xlink

lp as values of 0 and 1. xt is a vector of them:
xt = (xnode

00 , xnode
01 , · · · , xlink

00 , xlink
01 , · · ·).

In the case of a neural network as an individual, the selection
is critically determined by the weights from the genotype
and the input from the environment. In the case of attractor
selection, however, different phenotypes may be obtained even
for the same genotype and environment due to the noise term.

Reinforcement learning [13] is also a typical example of
feedback-based action decision making, but reinforcement
learning assumes that the choices themselves are fixed. In
reinforcement learning, the reward is estimated by accumu-
lating feedback for each situation and each choice, but if the
choice itself changes, it is necessary to accumulate feedback
anew. Attractor selection, on the other hand, does not require
the accumulation of feedback, since activity is calculated only
based on the goodness of current choice.

C. Population update with Novelty Search

Unlike conventional genetic algorithms, novelty search eval-
uates not only fitness but also novelty in terms of individual
survival. In the following, genetic selection using fitness and
novelty will be explained.

a) Fitness: In attractor selection, the selection is done in
such a way that the goodness of the state is used for updating
the state so that it moves to a better state. In novelty search,

the goodness of the solution also can be used to update the
generation, considering not only a novelty but also fitness as
in conventional genetic algorithms.

In the case of virtual network embedding, the goodness of
the state corresponds to the objective function of the virtual
network embedding, for example, maximization of surplus
resources to accommodate future request under penalizing
resource excess at each node and link as follows.

F (xt) = R(xt)− λP (xt) (2)

R(xt) =
∑
j

(rnodej − ynodej) +
∑
l

(rlinkl − ylinkl) (3)

P (xt) =
∑
j

[pnodej − ynodej]+ +
∑
l

[plinkl − ylinkl]+(4)

ynodej =
∑
i

xnode
ij dnodei (5)

ylinkl =
∑
p∋l

xlink
lp dlinkp (6)

(7)

Here, R(x) represents the total amount of surplus resources,
P (x) represents the penalty term for exceeding resources,
ynodej , ylinkl are the allocated demands of physical link and
node, dnodei , dlinkp are the demands of virtual link and node,
and rnodej , rlinkl are the resources of physical link and node.
The λ represents the weight of the penalty term and should
be set to a sufficiently large value. In our simulation, we
set λ = 500, which is large enough to activate the penalty
compared with the surplus resources.

We also use F as the activity in the attractor selection.
Although activity and fitness both represent the goodness of a
state or solution, they are used at different times. Activity is
used to select the behavior of individuals within a generation,
while fitness is used to select the surviving individuals across
generations.

b) Fitness with Novelty: When fitness is taken into
account in intergenerational renewal, one individual with high
fitness will affect the entire population, resulting in the extir-
pation of other individuals and a decrease in diversity. In the
literature [12], a method is proposed to limit the competition
by a fitness to a local range (local competition) to avoid the
influence of the fitness of some individuals spreading to the
whole population.

By using the distance space of behavior as the distance
space for local competition as well as the distance space for
novelty calculation, the distance calculation used for novelty
calculation can be used for local competition. Let Oi, the
neighborhood of individual i, be the top k individual with the
closest distance from i. The relative competitiveness of the
neighborhood of individual i is determined by the following
formula.

Fi(x
i
t) =

F (xi
t)−minj∈Oi F (xj

t)

maxj∈Oi F (xj
t)−minj∈Oi F (xj

t)
(8)

Let xi
t denote the solution at time t for individual i. If k is

the total number of individuals, it is equal to the usual fitness.
Each individual is evaluated for survival by the weighted

sum of its competitiveness in this neighborhood and its nov-
elty. However, since Fi(x

i
t) is normalized to 0-1, while novelty

is not, it is not appropriate to take the weighted sum as is.
Therefore, following the literature [14], we normalize the
novelty to the maximum and minimum values and then take
the weighted sum.

E(xi
t) = (1− w)ρ̄(xi

t) + wF i(xi
t) (9)

Let ρ̄ denote the standardized individual novelty and w denote
the fitness weight. When w is 1, a pure novelty search is
performed, and when w is 0, only the competitiveness in
the neighborhood is used to select the surviving solution.
When 0 < w < 1, simultaneous optimization of novelty
and competitiveness in the neighborhood is performed. In the
literature [14], w was varied from 0 to 1 in increments of 0.1,
and individuals with high fitness were obtained in the range
of 0.2 to 0.6 (especially for w = 0.5, 0.2).

c) Behavior: In novelty search, the phenotype of individ-
uals is represented as behavior, and the distance of behavior
between individuals is represented as a novelty, and the search
for a variety of individuals is carried out by maximizing this
distance over generations [15].

The behavior can be a summary of a series of outputs, such
as the final output of each individual, or it can be the series
itself.

In the case of attractor selection, individuals search for a
solution within a generation, and when an appropriate solution
is found, they converge to a specific attractor, so it is natural
to use the state at the time of convergence as behavior.

In other words, using the state xi
f at the time of convergence

of individual i, we can obtain behavior bi is determined as
follows.

bi = xi
f (10)

Then, the distance (novelty) between individual behaviors is
defined as follows.

ρ(bi) =
∑
j

dist(bi, bj) (11)

Euclidean distance is used as the distance function.

D. Characteristics of attractor selection in novelty search

In attractor selection, behavior can be naturally defined
as the final output. The evaluation of an individual when
it moves from one generation to the next is determined by
considering what kind of behavior the individual takes. In a
neural network, the convergence of behavior does not occur
unless the neural network learns it as a rule in itself, but
attractor selection converges if it finds a good attractor, using
activity as feedback. Therefore, when an individual makes an

attractor selection, it has the advantage that the converged
attractor can be used to evaluate the individual naturally.

In attractor selection, the goodness of the solution can
be evaluated within a generation. In the existing literature,
fitness is considered at each generation as well as novelty, so
when crossing generations, it is necessary to introduce their
weighted sums, etc. A method that combines reinforcement
learning and novelty search, [16], has also been considered, but
again, the reward is considered as fitness for each generation,
and the weighted sum with novelty is used to update the
policy for behavioral decisions across generations. In attractor
selection, activity gives the goodness of state as well as
fitness, and selection is made to increase fitness even within a
single generation. This makes it possible to search from both
directions by clarifying the roles of the search, such as the
search emphasizing diversity in genotypic changes between
generations and the search emphasizing adaptation to the
environment in phenotypic changes within a generation.

On the other hand, since attractor selection operates non-
deterministically rather than deterministically to the input like
a neural network, it may require a larger population to capture
the statistical effect.

IV. EVALUATION

A. Simulation Setting

To check the operation in a fluctuating environment, we
randomly change the resource requirements of the virtual
network every 40 generations. Initially, each individual is
assumed to have a randomly generated hop field weight.
The number of individuals is 100, and an individual embeds
a 5-node virtual network into a 30-node physical network
by attractor selection. In each generation, state updates are
performed for 20 time slots, and the fitness and behavior of
each individual are calculated by the attractor finally selected.
The size of the population that defines the neighborhood of
an individual is set to k = 15, and the weights of fitness and
novelty are set to w = 0.5.

To confirm the effect of attractor selection by individuals,
we compared the case where the neural network determines
the phenotype from the information of the environment (neural
network case), the case where the individual randomly selects
one of the multiple solutions as the genotype and uses it as
the phenotype(random selection case), and the case where the
solution is directly encoded into the genotype(gene case). The
inputs to the neural network are the resource requirements of
the virtual network and the residual resources of the physical
network, which provide more information than the attractor
selection activity as input. At this time, the weights of the
neural network correspond to the genotypes.

As described in Section II, the proposed method is assumed
to operate independently for each virtual network to reduce the
computation time even when multiple virtual networks operate

on the physical network. In that case, resource arbitration
among virtual networks is performed by maximizing each
virtual network’s surplus resources on the physical network,
thereby leaving resources for other virtual networks. There-
fore, whether proper embedding is achieved is evaluated by the
value of fitness, which reflects the size of the surplus resources.
Because we are interested in performance under normal condi-
tions, the evaluation will always generate embedding requests
where embedding exists that satisfies the resource constraints.

1) Metrics of Divergence: Since the diversity of solutions
is thought to play a role in the ease of searching for solutions,
in addition to evaluating the solutions found, we evaluate the
diversity of solutions that the population has.

In the literature [17], the Jensen-Shannon divergence be-
tween the distribution of solutions and the uniform distribution
is used as the diversity of solutions.

The Jensen-Shannon divergence is a measure of the mod-
ified symmetry of the Kalbach-Liebler divergence for two
distributions P,Q, and is calculated as follows

DJS(P,Q) =
DKL(P,M) +DKJ (Q,M)

2
(12)

Here, DKL is the Kullback-Leibler divergence and M = P+Q
2

is the mixture distribution of the two distributions under
consideration. This is symmetric in DJS(P,Q) = DJS(Q,P).

In the literature [17], P is the distribution of the solution,
Q is the uniform distribution, and DJS(P,Q) is used to
measure how far the solution is from the uniform distribution.
In practice, P divides the solution space into n subspaces and
represents the distribution in each subspace. In other words,
it is defined by the following equation using the number of
solutions ci contained in each subspace.

P =
(ci
C
, · · · , cn

C

)
(13)

Here, C =
∑

i ci is the number of whole solutions.
The Kullback-Leibler divergence with uniform distribution

is equivalent to the sign reversal of entropy as follows.

DKL(P,Q) = −
∑
x

P (x) log
1

n
+

∑
x

P (x) logP (x)

= − log
1

n
−H (14)

where the second term H = −
∑

x P (x) logP (x) is the
entropy, and The first term is a constant. Therefore, there
is no essential difference from using entropy to calculate the
diversity. Therefore, we use entropy as a measure of diversity.

2) Alternative Individual Types: To confirm the effect of
attractor selection, we compared the case where the neural
network determines the phenotype from the information of the
environment, the case where the individual randomly selects
one of the multiple solutions it has as the genotype, the case
the neural network determines the phenotype, and the case
where the solution is directly encoded into the genotype. The
inputs to the neural network are the resource requirements of

the virtual network and the residual resources of the physical
network, which provide more information than the attractor
selection activity as input.

B. Result

Figure 2 shows the maximum fitness obtained by each
generation after environmental changes and the entropy of
the phenotype for each generation.”gene” refers to the case
where the solution is directly encoded in the genotype of
the individual, ”attractor selection” refers to the case where
the individual performs attractor selection, ”random selection”
refers to the case where the individual randomly selects one
of the multiple solutions, and ”neural network” represents the
case where the phenotype is determined by a neural network
using environmental information as input [14].

From the figure, it can be seen that the solution with
higher fitness is found in the earlier generation when the
individual uses attractor selection. This can be attributed to
the fact that attractor selection allows individuals to search for
solutions without changing generations. Except for ”genes”,
one genotype contains multiple phenotypes, so some people
may think that fitness is improved by the adaptation of one
of the phenotypes, but as it turns out, this is not the case.
However, this is not the case. It is not simply a matter of
having a variety of phenotypes, but also how you change your
phenotype in response to the environment that affects your
fitness.

In addition, in ”attractor selection” and ”random selection”,
there is a possibility that multiple phenotypes may appear
from a single genotype, which is expected to increase the
diversity of solutions. The ”attractor selection” and ”random
selection” methods have higher entropy and produce more
diverse solutions than the direct encoding of solutions into
genotypes. However, ”random selection” does not improve
fitness much because the solution itself is diverse but not
necessarily selected according to the environment. For this
reason, it is important to select a solution based on the
situation, as in the case of attractor selection, to find an
appropriate solution quickly.

In a neural network, the phenotype is also calculated accord-
ing to the environmental situation, but the appearance of the
phenotype is determined by the weights of the neural network,
i.e. the genotype. For this reason, the search for a new solution
is not performed within a generation, which does not lead
to a speed-up in the search for a solution. In addition, even
if the weights of the neural network are partially changed,
the results may not change significantly, resulting in low
entropy of the phenotype and low diversity of the population.
Therefore, intra-generational search such as attractor selection
is important for speeding up the search for solutions, and
having multiple candidate solutions and switching between
them is important for improving the diversity.

epochs

m
a

x
 f

it
n

e
s
s

0 5 10 15 20 25 30

1
1

9
8

.5
1

1
9

9
.0

1
1

9
9

.5
1

2
0

0
.0

1
2

0
0

.5
1

2
0

1
.0

gene

attractor selection

random selection

neural network

(a) Timeseries of maximum fitness

epochs

e
n

tr
o

p
y
 o

f
b

e
h

a
v
io

r

0 50 100 150 200

0
5

1
0

1
5

gene

attractor selection

random selection

neural network

(b) Timeseries of entropy of phenotype

Fig. 2. Evolution with different types of individual

1) Effect of Population Size: To investigate the evolutionary
transition when the number of individuals is increased, we
examined the transition of the maximum fitness in the pop-
ulation for each generation when the number of individuals
is set to 100, 500, and 1000. Figure 3 shows the evolution
of the maximum fitness obtained up to generation 0 when
the environmental change occurred. A single population was
subjected to 20 environmental changes, and the figure shows
the average maximum fitness for all environments.

From the figure, it can be seen that as the number of
individuals increases, there is a tendency to find a better
solution in fewer generations. This can be attributed to the
fact that as the number of individuals increases, the variety
of solutions that the population can include increases, and the
diversity of the population increases.

On the other hand, when we compare the case where the
number of individuals increases from 100 to 500 and the case
where the number of individuals increases from 500 to 1000,
the increase in maximum fitness is larger for the case from 100
to 500. This may be because the novelty search maintains the
solution distance, allowing individuals of about 500 to cover
a wide range of the solution space.

epochs

m
a

x
 f

it
n

e
s
s

5 10 15 20

1
3

6
9

.0
1

3
6

9
.5

1
3

7
0

.0
1

3
7

0
.5

1
3

7
1

.0

100

500

1000

Fig. 3. Timeseries of maximum fitness with different Population sizes

V. CONCLUSION

In this paper, we proposed a dynamic virtual network
embedding method that can rapidly adapt to environmental
changes by searching in both genotype and phenotype spaces.
In this method, candidate solutions are encoded as geno-
types, and individuals stochastically decode their phenotypes
according to their environment through attractor selection. In
such phenotypic plasticity, the genotype is evolved by novelty
search to ensure diversity, thereby promoting adaptation to the
environment in both phenotype and genotype. The results of
simulation evaluation showed that individuals can find better
solutions faster than the conventional novelty search by using
attractor selection.

Future work includes discussing the adaptive limits of the
proposed method when the way the environment changes is
altered.

ACKNOWLEDGMENT

This work was supported by MIC under a grant entitled
”R&D of ICT Priority Technology (JPMI00316)”.

REFERENCES

[1] I. Alam, K. Sharif, F. Li, Z. Latif, M. M. Karim, S. Biswas, B. Nour, and
Y. Wang, “A survey of network virtualization techniques for internet of
things using SDN and NFV,” ACM Computing Surveys (CSUR), vol. 53,
no. 2, pp. 1–40, 2020.

[2] H. Cao, S. Wu, Y. Hu, Y. Liu, and L. Yang, “A survey of embedding
algorithm for virtual network embedding,” China Communications,
vol. 16, no. 12, pp. 1–33, 2019.

[3] H. Cao, H. Hu, Z. Qu, and L. Yang, “Heuristic solutions of virtual
network embedding: A survey,” China Communications, vol. 15, no. 3,
pp. 186–219, 2018.

[4] N. Kumar and A. Ahmad, “Machine learning-based qos and traffic-aware
prediction-assisted dynamic network slicing,” International Journal of
Communication Networks and Distributed Systems, vol. 28, no. 1, pp.
27–42, 2022.

[5] S. Jošilo and G. Dán, “Joint wireless and edge computing resource
management with dynamic network slice selection,” arXiv preprint
arXiv:2001.07964, 2020.

[6] C. K. Dehury and P. K. Sahoo, “DYVINE: Fitness-based dynamic virtual
network embedding in cloud computing,” IEEE Journal on Selected
Areas in Communications, vol. 37, no. 5, pp. 1029–1045, 2019.

[7] S. Li, M. Y. Saidi, and K. Chen, “Survivable services oriented protection
level-aware virtual network embedding,” Computer Communications,
vol. 152, pp. 34–45, 2020.

[8] K. Inoue, S. Arakawa, S. Imai, T. Katagiri, and M. Murata, “Noise-
induced vne method for software-defined infrastructure with uncertain
delay behaviors,” Computer Networks, vol. 145, pp. 118–127, 2018.

[9] N. A. Levis and D. W. Pfennig, “Plasticity-led evolution: A survey of
developmental mechanisms and empirical tests,” Evolution & Develop-
ment, vol. 22, no. 1-2, pp. 71–87, 2020.

[10] G. G. Simpson, “The baldwin effect,” Evolution, vol. 7, no. 2, pp. 110–
117, 1953.

[11] P. Zhang, H. Yao, M. Li, and Y. Liu, “Virtual network embedding
based on modified genetic algorithm,” Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 481–492, 2019.

[12] J. Lehman and K. O. Stanley, “Evolving a diversity of virtual creatures
through novelty search and local competition,” in Proceedings of the
13th annual conference on Genetic and evolutionary computation, 2011,
pp. 211–218.

[13] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph convo-
lutional networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1040–1057, 2020.

[14] G. Cuccu and F. Gomez, “When novelty is not enough,” in European
Conference on the Applications of Evolutionary Computation. Springer,
2011, pp. 234–243.

[15] S. Risi, S. D. Vanderbleek, C. E. Hughes, and K. O. Stanley, “How
novelty search escapes the deceptive trap of learning to learn,” in
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation, 2009, pp. 153–160.

[16] R. Ramamurthy, R. Sifa, M. Lübbering, and C. Bauckhage, “Novelty-
guided reinforcement learning via encoded behaviors,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 2020, pp.
1–8.

[17] S. Doncieux, G. Paolo, A. Laflaquière, and A. Coninx, “Novelty search
makes evolvability inevitable,” in Proceedings of the 2020 Genetic and
Evolutionary Computation Conference, 2020, pp. 85–93.

