
1

Hierarchical Bayesian Attractor Model for Dynamic
Task Allocation in Edge-Cloud Computing

Tatsuya Otoshi¶, Masayuki Murata†, Hideyuki Shimonishi†, Tetsuya Shimokawa†

Abstract—Edge computing responsive applications have been
gaining attention in recent years, especially in AI technology.
AI distillation techniques allow compact models to be placed
at the edge or terminal, where computational power is limited,
with lower latency than can be processed by AI in the cloud.
However, AI with smaller models is generally less accurate, so
the tradeoff between accuracy and latency, as well as power
consumption, must be taken into account when determining
processing assignments. Conventionally, such task allocation
problems have required heuristic release due to computational
difficulties. On the other hand, the heuristic release method
has a problem of deviation from the optimal solution when
the environment is quasi-static. Our research group takes the
approach of continuously searching for the optimal solution
in a quasi-static environment while immediately determining
the quasi-optimal solution for dynamic environmental changes
based on similarities with the past quasi-static environment. In
particular, the Bayesian attractor model (BAM), which models
brain decision making, is used to select a quasi-optimal solution
based on similarity. However, BAM has the problem that appro-
priate selection becomes difficult when the number of alternatives
increases. In this paper, we extend the BAM to a hierarchical
model, inspired by the fact that in human decision making,
related concepts and operations are grouped into chunks and
organized hierarchically. We show that this allows us to maintain
a high rate of correct responses even when the number of choices
increases. We also investigate the composition of appropriate
conceptual hierarchies and updating methods in the temporal
hierarchy.

Index Terms—Bayesian Attractor Model, Hierarchical Model,
Intention, Edge-Cloud Computing

I. INTRODUCTION

Edge computing, which executes information processing in
close to the terminal device has been attracting attention in
recent years, especially in AI technologies [1]. For latency-
critical applications such as teleoperation, the communication
latency to and from the cloud is large with conventional
information processing in the cloud [2].

However, it is difficult to run huge AI models as-is in
a match because it is difficult to place a large amount of
computational resources in the edge compared to the cloud.
Using the AI distilling technique [3], it is possible to convert a
huge AI model into a small AI model. This makes it possible
to run AI processing on computers with scarce computational
resources, such as Edge. In addition, application development
environments that support both server-side and client-side AI
processing, such as Tensorflow.js [4], is also in the works. On
the other hand, it is known that smaller models obtained by

¶ Graduate School of Economics, Osaka University
†Graduate School of Information Science and Technology, Osaka Univer-

sity

distillation are less accurate than the original larger models.
In addition, power consumption is also important in practical
applications, and appropriate placement is necessary to take
into account the different power consumption characteristics of
different computers. Therefore, it is important to appropriately
allocate processing to terminals, edges, and the cloud by
considering the trade-off between computational resources,
accuracy, and power consumption.

This is a kind of task allocation problem, where how much
processing should be allocated to the terminal, edge, and
cloud. However, since the processing accuracy and latency
requirements vary depending on the real-time status of the
application, the task allocation is dynamic, including realloca-
tion. In general, the task allocation problem is a combinatorial
optimization problem, which takes time to compute, so it
is often assumed to be a static task allocation where the
allocation can be computed in advance [5]. Methods such
as sequentially allocating arriving tasks or using heuristics
to find approximate solutions have been proposed, but they
naturally, lead to deviations from the optimal solution. In
particular, the problem with simply finding an approximate
the solution is that once the application-derived fluctuations
settle down and a quasi-static environment arises, the settings
that deviate from the optimal solution will continue to be used.
Thus, it is important to maintain near-optimal settings in quasi-
static situations while also responding to changes in dynamic
situations.

Our research group proposes an approach to solving such
dynamic assignments by combining short-term and long-term
decision making. That is, quick decisions for dynamic changes
in the situation are made by short-term decision making, while
optimal solutions for a quasi-static environment are computed
in the background by long-term decision making. These long-
term and short-term decisions work together to solve the
problem. The solution obtained by the long-term decision-
making is given as a candidate solution for the short-term
decision-making, and the short-term decision-making selects
a solution in the past quasi-static environment similar to the
current situation. For long-term decisions, conventional static
optimization can be used because time-consuming computa-
tion is acceptable.

Therefore, this paper focuses on short-term decisions with
given solutions in a quasi-static environment. In order to judge
the similarity of situations in short-term decision making, it is
necessary to be resistant to the effects of noise, such as tempo-
rary fluctuations in observed values. Therefore, the Bayesian
attractor model (BAM) [6], which models the brain’s decision
making using noisy time series as input, is used to realize



2

decisions that can withstand noise in real environments.
Our research group has extended the Bayesian attractor

model to cope with unknown situations, but we have had
problems with appropriate cognition when the number of
attractors increases. On the other hand, people are always
making decisions from a huge number of alternatives. Human
decision making has a hierarchical structure, and it is said that
this hierarchical structure helps speed up decision making. In
other words, a series of related actions are grouped together
as a single chunk, and decisions are made on the chunks.

This paper introduces a hierarchical structure to the
Bayesian attractor model, and achieves hierarchical decision
making by switching attractor sets that summarize attractors.
By dividing the model into attractor sets, the number of
attractors per set can be kept small, thus eliminating the
problem of cognition when the number of attractors increases.
We also show that the time required for recognition can be
reduced by utilizing structure, such as by grouping similar
attractors together. Furthermore, we will compare the case
where multiple attractor sets are searched simultaneously and
the case where one attractor set is searched intensively, and
investigate the appropriate attractor set search method.

The rest of this paper is organized as follows: Section II
discusses related research on hierarchical decision models;
Section III details the HBAM proposed in this paper; Sec-
tion IV defines the problem of task assignment in edge cloud
computing as envisioned in this paper, and Section V presents
an evaluation of HBAM and task assignment using HBAM.
Finally, in Section VI we summarize and discuss future work.

II. RELATED WORK

Humans are known to make fast decisions by hierarchizing
their behavior. This is called chunking. Chunking shortcuts
thinking by putting together a single action that combines
multiple primitive actions. This higher-level abstract action
is often referred to as an intention. Intention is not only
a hierarchization of action space, but also a hierarchization
of time direction. Thus, even if actions are switched in a
certain continuous time, the intention itself remains the same.
Thus, temporal continuity and intention as a set of actions
are considered as one of the hierarchies in human decision
making.

There are several studies that model intentions in decision
making. One literature [7] models intention as an excitation-
inhibition relationship between nodes of a hierarchical neural
network. In this model, intentions are inhibitory to each other,
and when one intention is activated, the corresponding action
is activated. However, since the choice of which intention is
selected is given as an input to the model, it does not have an
automatic intention generation mechanism.

Previous literatures [8], [9] model hierarchical decision
making using a hierarchical Gaussian filter. In this model,
the upper layers correspond to the situation and differ slightly
from the intention of summarizing the behavior. The upper
layers in this model determine the variance for the states
that the lower layers estimate. When a change in situation
occurs, the upper layer estimates a larger variance, which in

turn makes it easier for the lower layer to change the current
state. Since these estimations are done automatically based on
the observed values, the behavior of the upper layer changes
spontaneously according to the situation.

Some model attention as an upper layer of decision mak-
ing [10]. In this model, the variance of the observation is small
for the target of attention and large for the target of non-
attention. When the variance of the observations is small, the
causes in Bayesian estimation are larger, and the state is more
likely to be updated under the influence of the observed values.
Therefore, the decision-making process changes depending on
the presence or absence of attention. Attention mechanisms
have recently been the focus of attention in deep learning, as
exemplified by the transformer [11]. The difference between
attention and intention is whether or not they are connected to
the chunking of actions. In the case of attention, it is linked to
a specific object of observation rather than a specific action,
and does not involve the chunking of cognitive states as in the
case of intention.

In addition, the free energy principle [12] has attracted
attention as a theoretical study, and the hierarchical structure
is said to have an important role there as well. Similar to the
predictive coding theory, the free energy principle assumes
that the upper layers of the brain predict future sensory stimuli
and dynamically changes the gain from the lower to the upper
layers according to the error from the prediction.

These are not studies that implemented a mechanism to
automatically determine intentions based on observations and
make dynamic, hierarchical decisions based on intentions. In
this paper, we extend the Bayesian attractor model, which is
a dynamic decision-making model, to a model that includes
hierarchical intentions.

III. HIERARCHICAL BAYESIAN ATTRACTOR MODEL
(HBAM)

This chapter introduces the Hierarchical Bayesian Attractor
Model (HBAM) proposed in this paper, which incorporates the
hierarchy of intentions chunking attractors in the traditional
Bayesian Attractor Model (BAM) to make decisions based
on dynamic time series inputs. This document first provides
an overview of the conventional BAM and then presents the
problems that arise when the number of attractors in the
BAM increases. As a solution to this problem, we introduce
a hierarchical structure to BAM and propose a new extended
model, HBAM. In addition, the inference method of HBAM
and the design method of the hierarchical space will be
discussed.

A. Bayesian Attractor Model

BAM is a model of brain decision making [13]. The model
consists of an observed value xt, an internal state zt and an
attractor ϕi. The attractor holds several different alternatives
tied to a representative value of the observed value µi and is
embedded in the space of internal states. Decisions are made
by updating the internal state based on observed values and its
internal identity to a particular attractor. State updating is done
by Bayesian estimation, where the posterior distribution of the



3

internal state is updated according to the observed values and
the generative model.

The generative model gives the likelihood of the observed
values based on the dynamics of the internal state and the
association between the attractor and the representative value.
The dynamics of the internal state is given by the Hopfield
dynamics f , which embeds the dynamical system with the
attractor as a fixed point in the internal state space. This is
given by

zt = f(zt−1) + qwt (1)

where wt is the noise generated in the internal state at each
time, and q represents its magnitude and is called dynamic un-
certainty. The association between the attractor and the repre-
sentative value is represented by a matrix M = (µ1, · · · ,µK)
where each column is the representative value, and the current
observed value is predicted from the internal state as follows.

xt = Mσ(zt) + svt (2)

where σ(x) is a sigmoid function and maps to a one-hot
vector representing index i when zt = ϕi. The vt is the
noise in the prediction of the observed values at each time
point, and s represents its magnitude and is called the sensory
uncertainty. Since the model includes noise, the internal state
and predictions can be sequentially revised and estimated even
when observation errors occur.

However, there is a problem that estimation becomes dif-
ficult when the number of attractors increases. Even when
the number of attractors increases, the estimation accuracy
can be improved by tuning parameters of the model such
as the sigmoid slope and s, q, but the tuning itself becomes
more severe with the number of attractors. Fig. 1 shows the
number of searches when the number of attractors is increased
and the parameters are tuned by random search such that the
correctness rate of inference exceeds 95%. From the figure,
it can be seen that the number of searches for appropriate
parameters increases as the number of posterior attractors
increases.

These problems are thought to be due to the flat embedding
process, which inherently ignores hierarchical structures such
as similarity between attractors. Therefore, in this paper, we
extend the model to a hierarchical model in which similar
attractors are grouped together to form chunks.

B. Hierarchical Extension of BAM

Inspired by the fact that people chunk actions as inten-
tions, we propose a model that makes decisions by switching
attractor sets that aggregate attractors. While having a huge
number of attractors as a whole, at a certain point in time, the
search efficiency is improved by exploring a small number of
attractors tied to a specific attractor set. Then, if there is no
suitable attractor in the attractor set, it spontaneously switches
to another attractor set.

An attractor set is defined as a subset of all K attractors. The
set of attractors A is divided into k subsets A1, · · · , Ak, where
each AI represents one attractor set. Here, it is assumed that

0

200

400

600

0 10 20 30 40 50

number of attractors

ti
m

e

Fig. 1. Number of Attractors and Parameter Tuning Difficulties

the attractor sets do not have overlapping common attractors.
That is, the attractor set AI satisfies the following.

A =
∪
I

AI (3)

AI ⊂ A (4)
AI ∩AJ = ϕ, (I ̸= J) (5)

Here, the division of AI is assumed to be given, and the
specific division method for a given set of attractors A will
be discussed later.

The HBAM consists of spontaneous switching of attractor
sets and a BAM based on each attractor set. Here, the attractor
sets are assumed to switch spontaneously with probability p,
and the attractor sets after switching follow a multinomial
distribution. Thus, the generative model of the HBAM is as
follows

It =

{
It−1 with probability 1− p

I ∼ Mult(α) with probability p
(6)

zIt
t = f(zIt

t−1) + qwt (7)

xt = M Iσ(zI
t ) + svt (8)

where It represents the index of the active attractor set at time
t and Mult represents the Multinomial trial. Although α is
a parameter of the distribution and represents the bias of the
attractor set chosen, we use α, which is uniform in this paper.
zI
t ,M

I denotes the internal state zt and the representative
value matrix M in the Ith attractor set.

C. Inference with HBAM

Once HBAM obtains the observed values at each time, it
updates the posterior distribution of the internal state zIt

t and
the attractor set index It using the generative model described
above. In this paper, Particle Filter [14] is used as the algorithm
for updating the posterior distribution.



4

Particle Filter is a sampling-based algorithm that represents
the distribution by a large number of sample points (particles).
At each time point, it updates the particles according to a
generative model using a prior distribution of particles that
holds the previous results, and resamples the particles based on
the likelihood of the particles under the observed values. The
trade-off between accuracy of distribution approximation and
computational load can be adjusted depending on the number
of particles, and the number of particles used in this paper is
1000.

In this paper, we consider the following two methods for
updating the posterior distribution.

• Parallel Update: distribution update without constraints
• Serial Update: distribution update with constraint where

P (It) is one hot
Parallel Update represents ordinary Bayesian estimation,

where It is also estimated as a probability distribution. In this
case, the model is a mixture of BAMs with different sets of
attractors, so the BAMs behave as if they operate in parallel.

Serial Update updates the posterior distribution with the
constraint that the probability of a particular It is 1. In this
case, at each time point, one set of attractors is always active
and the state is updated.

For Parallel Update and Serial Update, we evaluate their
properties in Section V.

IV. TASK ALLOCATION IN EDGE-CLOUD COMPUTING

This paper describes the task assignment problem in edge
cloud computing assumed in this paper and its solution by
HBAM.

A. Task and AI Model Allocation

In this paper, it is assumed that AI processing, such as image
processing, is performed on data such as camera images sensed
by the terminal. The user is free to perform AI processing
anywhere, but the system can impose restrictions on the end-
to-end delay required for processing and the accuracy of
the raw AI processing. On the other hand, the system is
supposed to satisfy the user’s requirements while optimizing
the system’s objective function, such as power consumption.

The AI that performs the processing shall use models with
different sizes depending on the distillation technique. In
general, the smaller the model size, the lower the accuracy
of the processing, and there is a trade-off between model size
and accuracy. The AI uses different computational resources
depending on the model size, and the decision variable is
where to place the AI in the terminal, edge, or cloud with
different resource sizes.

Users using the system are managed on a session-by-session
basis, and the decision variable is also where to assign each
session to a terminal, an edge, or the cloud.

The above control is an AI and session allocation problem
that optimizes the objective function of the system with
user requirements as constraints. This involves combinatorial
optimization, which requires high computational cost. On the
other hand, it requires responsiveness because it involves

dynamic changes in the environment, such as changes in user
requirements.

Task assignment in such dynamic environment variation
is generally done using heuristics, but deviations from the
optimal solution are inevitable [15]–[17]. In particular, devi-
ations from the optimal solution become problematic when
the environment is quasi-static, such as when each user makes
similar requests as a result of using the same application. In
a quasi-static environment, there is a risk of sticking to the
approximate solution by heuristic, even though the optimal
solution can be computed at inherently high computational
cost.

B. Selecting Quasi-Static Solution by HBAM

The paper approaches the problem of responsiveness in
a fluctuating environment and deviation from the optimal
solution in a quasi-static environment by combining short-term
and long-term decision making. In a quasi-static environment,
the optimal solution is computed by performing optimiza-
tion in the long term, and in a fluctuating environment, a
similar quasi-static environment is identified by HBAM, and
the corresponding optimal solution is fed into the system.
This allows the system to continuously search for optimal
solutions in quasi-static environments while maintaining high
responsiveness.

When performing optimization in a quasi-static environ-
ment, the amount of available computing resources and user
requirements are stored as representative values µi, and the
optimal solution obtained is stored as ϕi. This is used as an
attractor in HBAM, and attractors with similar representative
values are grouped together by clustering to form an attractor
set.

In a fluctuating environment, HBAM acquires each available
amount of computing resources and user requirements as
observed values xi and updates the internal state It, z

It
t . Then,

the attractor selected according to the internal state is put into
the system to achieve high responsiveness.

V. EVALUATION

Due to page constraints, the paper only evaluates the effect
of introducing a hierarchical structure for HBAM.

Numerical simulations are used to evaluate the basic prop-
erties of the HBAM. We also show that HBAM maintains high
cognitive accuracy by introducing a hierarchical structure even
when the number of tracts as a whole increases compared
to the original BAM. Furthermore, we will investigate how
the computation time and day time change depending on the
granularity at which the attractor set is divided and how the
state is updated.

1) Simulation Setting: In this evaluation, the representative
values of artificially generated attractors are used to evaluate
the behavior of HBAM. Here, the representative value of
attractor i is assumed to be µi = (i, i+1, i+2). The number
of total attractors should be changed according to the purpose
of the simulation. Depending on the number of attractors and
the number of attractor sets determined, the attractor sets are
divided into attractor sets that group together representative



5

values that are closer by clustering. The parameters of the
HBAM were set to p = 0.2, q = 1, s = 3.

The observed values were given 150 time slots and changed
every 50 time slots to evaluate whether they could keep up
with the changing situation. Because we are interested in
switching attractor sets, we give the observed values so that the
correct attractor set switches every 50 time slots. Specifically,
the first 50 time slots and the last 50 time slots are given
observation values corresponding to attractors in the same
attractor set. And the middle 50 time slots give the observed
values corresponding to attractors in a different attractor set.
The percentage of time slots in which the decision state and
the correct attractor coincide out of the 150 time slots is the
correct response rate.

A comparison with the original BAM is also made, but this
time the BAM is assumed to have the same attractors as the
HBAM and one attractor set with a flattened hierarchy.

2) Decision State Time Series: As a basic behavior of
HBAM, an example of the state update result is shown in
Fig. 2. Here, six attractors are split into two sets with three
attractors. The two figures are the result of parallel and serial
updates, respectively. Each color in the figures indicates the
value of the decision state of a different attractor. Here, the
attractor corresponding to the correct answer is given an
observation value that is black in the first 50 time slots, light
blue in the next maintenance time slot, and green in the last
50 time slots.

It can be seen that both series and serial updates are able to
change the decision-making state according to the change in
observed values every 50 time slots. The speed of the change
tends to be slightly faster in the parallel update. This is because
in parallel updating, all attractor sets are updated with some
degree of activity. This is thought to make the response to
changes every 50 time slots that require attractor set switching
faster than in series updating.

In the case of parallel updates, black and light blue are
higher in the 50 to 100 time slots, and both light blue and
green are higher after 100 time slots. This is because these are
attractors in different attractor sets and continue past states for
inactive attractors. In practice, this is not a problem because
the attractors uniquely selected are determined by the active
attractor set. In the 100 time-slap, the attractor set is switched
to one that includes black and green, but in this case, the
previously high black attractor is suppressed and the green
attractor is selected.

3) Comparison with BAM: Evaluate the percentage of
correct responses when the number of attractors is increased
in the original BAM and HBAM to see the effect of hierarchy.
Here, the number of attractors in the attractor set is fixed at 3,
and the overall number of attractors is increased by increasing
the number of attractor sets. Here, HBAM performed state
update by Parallel Update.

Fig. 3 shows the relationship between the number of at-
tractors and the correct response rate. The horizontal axis is
the number of attractors and the vertical axis is the correctness
rate. The red line represents the results of HBAM and the blue
line represents the results of BAM.

Time

e
s
ti
m

a
te

d
 s

ta
te

0 50 100 150

−
3

−
2

−
1

0
1

(a) Parallel Update

Time

e
s
ti
m

a
te

d
 s

ta
te

0 50 100 150

−
4

−
3

−
2

−
1

0
1

(b) Serial Update

Fig. 2. Time Series of Decision State in Numerical Simulation

From the figure, the original BAM shows a sharp decline in
the correctness rate when the number of attractors increases,
while HBAM shows a slower decline in growth rate as the
number of attractors increases. as shown in Fig. 1, BAM is
optimal as the number of attractors increases. Since HBAM
can increase the overall number of attractors while keeping the
number of attractors constant, BAM-derived parameters can be
used even when the number of attractors increases. This makes
HBAM a more scalable model for increasing the number of
attractors.

4) Effect of Number of Attractor Set: Given the overall
number of attractors, we evaluated the decision-making results
while changing the size of the split in order to examine the
impact of the number of attractor sets to be split on the
decision. Here, a total of 48 attractors were split into 1, 2, 3,
4, 6, 8, 12, 16, 24, and 48 attractor sets. For each partitioning
method, we measured the time to convergence of the decision
state when the observed values changed and the computation
time required for each time slot.



6

0.25

0.50

0.75

1
0

1
5

number of attractors

c
o

rr
e

c
tn

e
s
s

type

bam

hbam

Fig. 3. Comparison between HBAM and BAM with increasing total number
of attractors

Fig. 4 shows the number of timeslots required for decision
making and the computation time per timeslot. The horizontal
axis is the number of attractor sets, and the vertical axis shows
the timeslots and real time (in seconds), respectively. The
red line indicates the parallel update case, and the blue line
indicates the serial update case.

The figure shows that too few or too many attractor sets
increase the time slot required to reach a decision. Appropriate
attractor aggressiveness differs between the parallel and serial
update cases. In the case of parallel updates, 24 sets are the
fastest, and in the case of series updates, 2 sets are the fastest
to make a decision.

The computation time per time slot becomes shorter as the
number of attractor sets increases. This is because increasing
the number of attractor sets reduces the number of attractors
per set, and in BAM, the computation time decreases as
the number of attractors decreases because the amount of
computation depends on the number of attractors. Overall, the
computation time for series update is shorter than that for
parallel update. This is because only one set of attractors is
active and computed in series update, so the computation load
is smaller than in parallel update, where the entire attractor set
is called on. However, the difference is small, and the effect
of the number of attractors in the set on the computation time
is clearly larger.

If the number of attractor sets with the shortest decision
time is set for each update method, the parallel update is
faster than the serial update in terms of both decision speed
and computation time per time slot. Based on the above, it is
considered that hierarchical updating is suitable while using
parallel updating.

VI. CONCLUSION

In this paper, we propose HBAM to quickly determine
the solution to a task assignment problem in an edge-cloud
computing environment, which is a mixture of genuine and
fluctuating environments, in order to quickly determine the

50

100

0 10 20 30 40 50

nset

d
e

c
is

io
n

_
ti
m

e
_

s
lo

t

type

parallel

serial

(a) Required Time Slots to Decide

0.04

0.05

0.06

0.07

0 10 20 30 40 50

nset

e
la

p
s
e

d
_

p
e

r_
ti
m

e
_

s
lo

t

type

parallel

serial

(b) Calculation Time per Timeslot

Fig. 4. Calculation Time with Parallel/Serial Update and Number of Attractor
Sets

solution in a similar genuine environment in the past. HBAM
introduces a hierarchical structure into BAM, which is a model
of decision making, and selects similar attractors based on
observed values from a small number of attractors in the set
while switching multiple attractor sets. This enables the system
to maintain a high accuracy rate even when the total number of
attractors increases. We also evaluated the state update method
and attractor set size associated with the hierarchical structure,
and showed that it is better to update attractor sets in parallel
and use an intermediate size.

In future research, we will evaluate the performance of
HBAM in a simulation environment that mimics an actual edge
cloud computing environment. In addition, we will examine
what kind of clustering is best for constructing the attractor
set.

ACKNOWLEDGMENT

This work was supported by MIC under a grant entitled
”R&D of ICT Priority Technology (JPMI00316)”.



7

REFERENCES

[1] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[2] S. K. Sharma, I. Woungang, A. Anpalagan, and S. Chatzinotas, “Toward
tactile internet in beyond 5g era: recent advances, current issues, and
future directions,” Ieee Access, vol. 8, pp. 56 948–56 991, 2020.

[3] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[4] D. Smilkov, N. Thorat, Y. Assogba, C. Nicholson, N. Kreeger, P. Yu,
S. Cai, E. Nielsen, D. Soegel, S. Bileschi et al., “Tensorflow. js: Machine
learning for the web and beyond,” Proceedings of Machine Learning and
Systems, vol. 1, pp. 309–321, 2019.

[5] M. Asim, Y. Wang, K. Wang, and P.-Q. Huang, “A review on com-
putational intelligence techniques in cloud and edge computing,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 4,
no. 6, pp. 742–763, 2020.

[6] S. Bitzer, J. Bruineberg, and S. J. Kiebel, “A bayesian attractor model
for perceptual decision making,” PLoS computational biology, vol. 11,
no. 8, p. e1004442, 2015.

[7] A. Löffler, A. Sylaidi, Z. Fountas, and P. Haggard, “A hierarchical at-
tractor network model of perceptual versus intentional decision updates,”
Nature communications, vol. 12, no. 1, pp. 1–17, 2021.

[8] L. Deserno, R. Boehme, C. Mathys, T. Katthagen, J. Kaminski, K. E.
Stephan, A. Heinz, and F. Schlagenhauf, “Volatility estimates increase
choice switching and relate to prefrontal activity in schizophrenia,” Bi-
ological Psychiatry: Cognitive Neuroscience and Neuroimaging, vol. 5,
no. 2, pp. 173–183, 2020.

[9] C. D. Mathys, E. I. Lomakina, J. Daunizeau, S. Iglesias, K. H. Broder-
sen, K. J. Friston, and K. E. Stephan, “Uncertainty in perception and the
hierarchical gaussian filter,” Frontiers in human neuroscience, vol. 8, p.
825, 2014.

[10] A. I. Jang, R. Sharma, and J. Drugowitsch, “Optimal policy for attention-
modulated decisions explains human fixation behavior,” Elife, vol. 10,
p. e63436, 2021.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[12] T. Parr, G. Pezzulo, and K. J. Friston, Active inference: the free energy
principle in mind, brain, and behavior. MIT Press, 2022.

[13] S. Bitzer, J. Bruineberg, and S. J. Kiebel, “A Bayesian attractor model
for perceptual decision making,” PLOS Computational Biology, vol. 11,
no. 8, p. e1004442, Aug. 2015.

[14] J. Carpenter, P. Clifford, and P. Fearnhead, “Improved particle filter for
nonlinear problems,” IEE Proceedings-Radar, Sonar and Navigation,
vol. 146, no. 1, pp. 2–7, 1999.

[15] Y. Chen, Y. Sun, C. Wang, and T. Taleb, “Dynamic task allocation and
service migration in edge-cloud iot system based on deep reinforcement
learning,” IEEE Internet of Things Journal, 2022.

[16] J. Lee, H. Ko, J. Kim, and S. Pack, “Data: Dependency-aware task
allocation scheme in distributed edge clouds,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 12, pp. 7782–7790, 2020.

[17] Q. Xu, Z. Su, M. Dai, and S. Yu, “Apis: Privacy-preserving incentive
for sensing task allocation in cloud and edge-cooperation mobile internet
of things with sdn,” IEEE Internet of Things Journal, vol. 7, no. 7, pp.
5892–5905, 2019.


