Quantum Decision Making with Small Sample for Network Monitoring and Control

Tatsuya Otoshi, Masayuki Murata Osaka University

Network Monitoring

- With the development and diversification of applications on the Internet, applications that require high responsiveness, such as video streaming, are becoming mainstream.
- Application responsiveness is not only a matter of communication delay but also a matter of time required to grasp changes in network conditions.
- The tradeoff between accuracy and measurement time is a challenge in network control.

Decision Making with Small Sample

- When making decisions, people are known to make appropriate choices based on relatively small samples.
- Although there have been various studies on models of human decision-making, a model that integrates various cognitive biases, called "quantum decision making," has recently attracted much attention.
- However, the modeling of small samples has not been examined much so far.
- In this paper, we extend the model of quantum decision making to model decision making with small sample.

Decision Problem Setting

- Choosing option i out of k options yields a reward x>0 with probability p_i and a reward y=0 with probability $1-p_i$ where $\sum_i p_i=1.$
 - \circ It also does not lose generality as $p_1 > p_2 > \cdots > p_k$.
 - $\circ\,$ The correct answer is selecting the choice i=1.
- The decision-maker selects the choice with the highest probability estimated with the samples.

Quantum Decision Making with Samples

- Cognitive State
 - $egin{array}{c} & |x
 angle:k ext{-dimensional state} \end{array}$
 - $\circ x$: One-hot vector
- Update State with Sample(Amplitude Amplification)

$$\circ \ket{x_{t+1}} = U_{D(heta)} U_{\omega} \ket{x_t}$$

- $U_{D(heta)} = 2 \ket{D(heta)} ra{D(heta)} I$
- $U_{\omega}=I-2\ket{\omega}ig\langle\omega
 angle$
- $ullet \left| D(heta)
 ight
 angle = \sin heta \left| \omega
 ight
 angle + \cos heta \left| \omega^{\perp}
 ight
 angle$
- ω : target choice

Analytical Number of Samples

• Set of cases that the decision-maker chooses the best choice

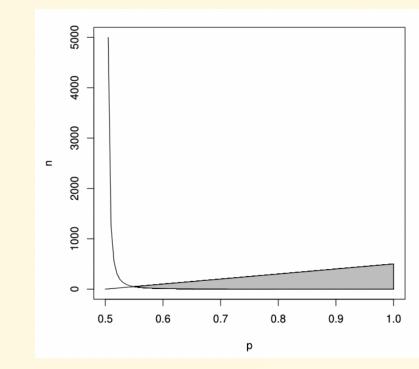
$$\circ \ S=\{n_1>n_i|i=2,\cdots,k\}$$

 $\circ n_i$: number of rewards with choice i

• Lower bound of $n = \sum_i n_i$ where $P(S) \geq heta$ is estimated as follows.

$$\circ \ n \geq rac{C_V(p_2)}{C_E(p_2)} rac{1}{ heta^{rac{1}{1-k}}-1}$$

$$^{\circ} \ \ C_E(p) = p_1 - p, C_V(p_i) = p_1(1-p_1) + p_i(1-p_i) + 2p_1p_i$$



Numerical Simulation

- Choosing option i out of k options yields a reward x>0 with probability p_i and a reward y=0 with probability $1-p_i$.
- The decision-maker selects the choice with the highest probability estimated with the samples.
- Repeating the decision process N times, the required number of samples to satisfy $P(S) \geq \theta$ is calculated as follows.

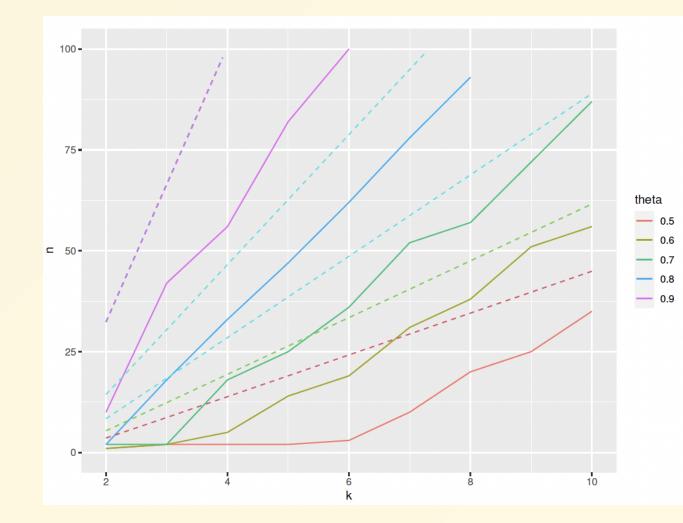
$$\circ \ n^* = min\left\{n|P(ar{S}) = N_s(k,n)/N > heta
ight\},$$

• $N_s(n,k)$: the number of trials with the best choice

•
$$P(ar{S}) = N_s(k,n)/N$$

Result

- The analytical result of the number of samples (dashed line) is larger than the actual number of samples required (solid line).
- Although there is a difference in the values, there is a similar trend.



Summary and Future Work

• Summary

- We model small sample-based decision-making by quantum decision-making for network control with a small sample
- The state is updated by a process of quantum amplification of probability amplitudes for the choices associated with the sampled values

• Future Work

 We will work on the application of the proposed model for decision making with a small number of samples in actual network control