
Optical Switching and Networking 50 (2023) 100753

A
1

Contents lists available at ScienceDirect

Optical Switching and Networking

journal homepage: www.elsevier.com/locate/osn

A zone-based optical intra-vehicle backbone network architecture with
dynamic slot scheduling
Onur Alparslan ∗, Shin’ichi Arakawa, Masayuki Murata
Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, 565-0871, Osaka, Japan

A R T I C L E I N F O

Keywords:
Intra-vehicle networks
Optical network
TSN ethernet

A B S T R A C T

As Ethernet has a large bandwidth capacity, it is commonly proposed as a backbone for future intra-vehicle
networks. However, satisfying the severe hardware reliability requirements of intra-vehicle networks while
providing high-bandwidth and low latency by Ethernet may be costly. As a solution, we propose a novel
optical intra-vehicle backbone network architecture that may have a lower cost and higher reliability in terms
of hardware when compared to Ethernet. However, unlike traditional optical Ethernet architectures, only a
single master node has transmitter laser diodes in the backbone of our architecture, so the gateway nodes
cannot generate and send packets to the backbone links directly. As the gateways cannot inform the master
node and request a slot when they have a new packet to send, a slot scheduling algorithm with polling is
necessary to detect and transfer the new packets in the gateways, which may cause higher transmission delays
compared to Ethernet. In this paper, we present our optical intra-vehicle backbone network architecture and
propose two slot scheduling algorithms. We show that using a dynamic slot scheduling algorithm decreases
packet delays when compared to fixed periodic slot scheduling in our architecture. We also evaluate the total
delays including traffic shaping and processing delays in an optical TSN Ethernet backbone architecture as
a reference. We show that the extra delays due to slot scheduling in our architecture may be negligibly low
when compared with traffic shaping and processing delays.
1. Introduction

The automotive industry is one of the world’s largest industries
by revenue. There is a fierce competition among many automotive
companies to increase their market share. The competition is driven
by innovation. Recently, the innovation in the automotive industry
is mostly based on providing new and better services and features
in vehicles. Vehicle manufacturers add new features to the vehicles
by mounting embedded systems called electronic control unit (ECU).
However, the complexity and requirements of vehicles increase by
adding new ECUs. For example, ECUs of some features like self-driving
systems and driver-assistance systems (ADAS) require carrying large
amount of data with low latency and strict Quality of service (QoS)
between multiple ECUs and sensors in intra-vehicle networks [1].
Moreover, adding new multimedia services and faster wireless Internet
services to the vehicles further increases the bandwidth requirements
in intra-vehicle networks [2,3].

There are several bus architectures (e.g., CAN, LIN, MOST, FlexRay)
that were specially designed for intra-vehicle networks. While most of
these bus architectures can provide low latency, they cannot satisfy
the high bandwidth requirements of recent applications like self-driving
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systems and multimedia services. Ethernet is commonly proposed as a
candidate for the next generation intra-vehicle backbone networks due
to its high data transfer rates. However, the traditional Ethernet cannot
satisfy the QoS requirements of some services like self-driving systems.
As a solution, a set of standards called Time-Sensitive Networking
(TSN), which is under development by the Time-Sensitive Networking
task group of the IEEE 802.1 working group [4], is commonly proposed
for intra-vehicle networks [5]. Another problem is that vehicles operate
in harsh environments. To satisfy the high bandwidth and reliability
requirements in harsh environments, an optical Ethernet standard for
vehicles, which is called OMEGA, is being standardized by an IEEE
task force [6]. However, satisfying the severe hardware reliability re-
quirements of intra-vehicle networks while providing high-bandwidth
and low latency by using an optical Ethernet may bring a high cost
due to the shorter lifetime of laser diodes (LD) at high temperatures
in vehicles [7]. The cost is a big concern in the automotive industry
because even a small change in the costs can cause a big change in
profits. Reducing the costs makes it possible to sell at a lower price,
which can bring a big advantage in the competition.
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Besides the bus architecture, the network topology is another impor-
tant factor in the performance and the cost of intra-vehicle networks.
Initially, a gateway-based architecture was commonly used in intra-
vehicle networks. In this architecture, there were a few number of
gateways that were used for only data switching between ECUs. Re-
cently, a domain-based topology, where related ECUs and sensors
are connected to the same domain controller, is being used. While a
domain-based architecture can decrease the ECU and sensor costs by
controlling the related ECUs and sensors by a domain controller, it
increases the wiring cost and weight when related ECUs are far away
from each other. Nowadays, the automotive industry is planning to
shift to a zonal-based architecture, where there are zone gateways at
different portions of the vehicle, and ECUs are connected to nearby
zonal gateways based on the spatial distance [8]. The zonal-based
architecture can greatly decrease the wiring cost and weight. Moreover,
it can further optimize the ECU and gateway hardware costs by cen-
tralizing the processing in the vehicle [9,10]. On the other hand, an
intra-vehicle architecture with a high bandwidth capacity, low latency,
and good QoS support is necessary for centralizing the processing in
the zone-based architecture.

In this paper, we propose a novel optical intra-vehicle backbone net-
work architecture that may have a lower hardware cost than OMEGA
optical Ethernet. We call it Si-based In-vehicle Photonic Network
(SiPhON). Its optical hardware was presented in [7,11]. Unlike tradi-
tional optical Ethernet architectures, where each gateway is equipped
with LDs to transmit data, our architecture uses LDs only in a single
master node, which can decrease the cost caused by the failure of fragile
LDs in harsh automotive environments. However, using LDs only in
the master node imposes an important limitation in our architecture.
The gateway nodes cannot generate a signal when they want to send
a packet to the backbone. The optical signal for the packet should be
generated in the master node and sent to the gateway in a slot. After
receiving the signal, the gateway injects the packet into the slot by
modulating the optical signal in the slot. Moreover, when there is a new
packet to send from a gateway to the master node, the gateway node
may not be able to inform the master node immediately to get a slot.
The gateway can send more slot requests by only writing the requests
to the header of another slot assigned to the same gateway. If there
is no slot scheduled for the gateway, the gateway cannot inform the
master node. Due to these limitations, the packet transmission delays
in our architecture may be higher than Ethernet. To minimize the
waiting times of packets for slots, our architecture requires a unique
slot scheduling algorithm. In [12], we used a fixed and periodic slot
schedule list to show the basic operation of our architecture. The slots
were assigned to the gateways in a manually set fixed and periodic
pattern, which required the traffic matrix to be known and fixed.
Moreover, the fixed and periodic scheduling can cause high packet
latencies with bursty traffic.

This paper is an extended version of [12]. The extension in this
paper is that we present a new dynamic slot scheduling algorithm that
does not require traffic matrix information or manually setting a slot
scheduling pattern. By a computer-based simulation study, we show
that the dynamic slot scheduling algorithm gives lower end-to-end
packet latencies than the fixed and periodic slot scheduling.

The advantage of our SiPhON architecture is that it may have lower
hardware costs and higher reliability than Ethernet. We do not claim
the new architecture to have superiority over TSN Ethernet in terms
of packet delays. On the contrary, our architecture may have higher
packet delays than TSN Ethernet due to the lack of LDs in the gateway
nodes as explained above. However, our architecture may have a better
performance/cost ratio than Ethernet if it causes a small increase in
delays while having a much lower cost and higher reliability. To show
the scale of extra delays due to slot scheduling in our architecture, we
also simulated an optical TSN Ethernet architecture and measured the
overall delays including the traffic shaping and processing. We showed
2

that the extra packet delays due to slot scheduling in SiPhON may be
negligibly low when compared with the total delays including traffic
shaping and processing delays in TSN Ethernet.

As the devices in our architecture have not been fully implemented
yet, the processing delays in the architecture are currently unknown.
Moreover, there are many traffic shaping and admission control al-
gorithms in the literature so adapting them to our architecture and
evaluating their delays requires separate work. Therefore, the evalu-
ation of the processing, traffic shaping, and admission control delays
in our architecture are left as a future work.

The remainder of this paper is organized as follows. Section 2 intro-
duces related works in the literature. Section 3 presents our network ar-
chitecture. Section 4 introduces our new dynamic slot scheduling algo-
rithm and compares it with fixed and periodic slot scheduling. Section 5
describes the simulation scenario, settings and presents the simulation
results. Section 6 describes the conclusions and future works.

2. Related work

2.1. Intra-vehicle architectures

Due to the cost and bandwidth limitations of different bus archi-
tectures, hybrid combinations of different bus architectures started to
be used in vehicles. This brought the necessity of using multilevel
topologies with gateways to allow communication between ECUs on
different bus architectures. The intra-vehicle architectures with multi-
level topologies and multiple bus architectures can be grouped into
three generations. The first generation vehicles used a gateway-based
architecture, where ECUs were connected to each other and a central-
ized gateway by grouping based on the underlying bus architecture like
CAN, LIN, etc. There may be multiple buses with the same architecture
where each bus is dedicated to a group of ECUs with related features or
a group of ECUs with close spatial distance. The gateways are respon-
sible for only translation and switching of data between different buses
as shown in Fig. 1. While this gateway architecture is a simple solution
for using multiple bus architectures, it has important limitations. When
there are many buses connected to the same gateway by a star topology,
the gateway requires a fast switching fabric with many input/output
ports, which increases the cost. Moreover, when there are many ECUs
in the vehicle, it becomes difficult to configure and manage each of
them. Furthermore, many ECUs have overlapping functionalities and
sensors, which unnecessarily increases the cost. It would be better to
manage the ECUs and process the sensor data by centralized controllers
to prevent overlapping functionalities. However, the gateways do not
have a control over the ECUs. Moreover, when there are many ECUs,
connecting each bus to a single gateway may require long wiring, which
increases both the cost and the weight of the vehicle. The wires are
the third heaviest element of a typical vehicle after the engine and
chassis [13].

Recently, the vehicle manufacturers shifted to a second generation
architecture called domain-based architecture [14] as shown in Fig. 1.
In domain-based architecture, there are multiple domain controllers,
and each of them is dedicated to a specific feature. The ECUs are
grouped based on their functionalities and the related ECUs are con-
nected to the same domain controller. Unlike the gateway architecture,
where the gateways are only switching devices, the domain controllers
both switch the data and manage the related ECUs connected to them.
Moreover, they can carry out the processing of data instead of process-
ing in the ECUs. They can collect and fuse data from multiple ECUs
so that they can give better decisions than processing by individual
ECUs. Furthermore, it becomes no longer necessary to put a high-
speed processor to ECUs for processing. Overlapping functionalities
and sensors in ECUs can be avoided. As a result, the domain-based
architecture can greatly decrease the cost and complexity of vehicles
compared to the gateway architecture.

While the domain-based architecture decreases the cost of ECUs, it

still has the wiring cost problem, because the related ECUs may be far
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Fig. 1. The evolution of intra-vehicle architectures. Gateway architecture, domain architecture and zone architecture.
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way from each other. For example, sensors like LIDAR, video CAM,
tc. are usually far away from each other because they are placed
t the edges of the car to maximize the angle of view. Wiring to
ach edge from many domain controllers may end up requiring very
ong wires. To solve these problems, a third generation architecture
alled zone-based architecture is being proposed by the automotive
ndustry [14]. In the zone-based architecture, the vehicle is segmented
nto topological zones and a zone gateway is assigned to each zone. The
CUs are grouped and connected to the closest zone gateways based
n the distance instead of their features. An example zone architecture
ith four zones and four zone gateways is shown in Fig. 1. The ECUs
re connected to the closest zone gateway based on their distance, inde-
endent of their bus architecture or functionality. Therefore, the wiring
s greatly reduced when compared to a domain-based architecture.
n domain-based architecture, the domain controllers can do the data
rocessing of the ECUs directly connected to the domain controller. In
one-based architecture, few number of centralized processors in the
ehicle carry out the data processing of ECUs that are at different zones
f the vehicle. The processors do not have to be in the same zone as
he ECUs. The zone gateways can collect the data from many ECUs and
orward them to centralized processors over the intra-vehicle backbone.
herefore, the zone-based architecture may require less number of
rocessors than domain-based architecture, which can further decrease
he costs. On the other hand, the zone-based architecture requires
n intra-vehicle architecture with a high bandwidth capacity and low
atency for centralizing the processing. As our intra-vehicle architecture
an satisfy these requirements, we used a zone-based architecture to
enefit from its advantages.

.2. TSN and AVB Ethernet

In the early days of vehicle electronics, the first ECUs were used for
imple functions such as fuel injection. The ECUs were connected to
ensors by direct wires and there was no connection between the ECUs.
s the number of ECUs increased, communication between the ECUs
ecame necessary for providing more advanced features and decreasing
he wiring cost. The first car with a communication bus called D-Bus
as introduced by BMW in 1987. The communication bus was used for
ngine control. In 1992, Daimler introduced the first car with CAN bus,
hich was developed by Bosch in 80 s. Today, CAN is the most common
us architecture in vehicles [15]. After CAN, new bus architectures
merged in a short time. As the cost of implementing CAN in each
ensor and ECU was high, Local Interconnect Network (LIN) bus, which
s a cheaper and slower bus architecture than CAN, was developed in
he 90 s. Moreover, the bandwidth limitations of CAN made it necessary
o develop faster bus topologies like Media Oriented Systems Transport
3

MOST) and FlexRay.
Recent automotive features like self-driving systems require col-
ecting large amounts of data with low latency. Moreover, in the
ext generation zone-based architecture the data may be processed by
entralized processors instead of the ECUs, so the bandwidth capacity,
atency and QoS support become even more crucial. While traditional
ntra-vehicle bus architectures have good QoS capabilities, their link
peeds are no longer enough. As Ethernet has already reached very
igh link speeds, Ethernet is commonly proposed as a strong candidate
or the backbone of automotive networks. While the original Ether-
et was a best-effort datagram service, Ethernet was been extended
ith IEEE 802.1p and later 802.1Q [16] to provide some basic QoS

apabilities. However, the QoS capabilities in initial 802.1Q standards
ere far away from satisfying the strict QoS requirements of critical

ervices like safety and driver assist functions in automotive networks.
n the 2000s, several new standards were introduced for further ex-
ending the QoS capabilities of Ethernet. Audio Video Bridging Task
roup was established to prepare the specifications that will allow

ime-synchronized low latency audio/video streaming services over
thernet. The task group published a set of technical standards called
udio Video Bridging (AVB) Ethernet [17]. The AVB standards define

wo Stream Reservation (SR) classes called A and B for audio/video
treams. Class A streams have higher priority than Class B streams. The
lass A streams have maximum latency of 2 ms with a transmission
eriod of 125 μs, while Class B streams have maximum latency of
0 ms with a transmission period of 250 μs over a maximum of 7 hops.

Moreover, AVB defines six best-effort classes with priority scheduling
among them. The AVB applies a Credit Based Shaper (CBS) using leaky
buckets to control the traffic rate and the burstiness of streams while
satisfying the QoS requirements. The best-effort traffic is sent without
CBS.

AVB was a big step for providing QoS on Ethernet architecture.
While it was enough for satisfying the QoS requirements of most
audio/video traffic, it was not enough for the critical data flows that
have stricter QoS requirements than audio/video streams. Therefore,
the scope of the AVB task group was extended to cover time-sensitive
transmission of data over deterministic Ethernet networks and it was
renamed to Time-Sensitive Networking Task Group in 2012. TSN in-
cluded the CBS shaper of AVB and extended them by adding Time-
Aware Shaper (TAS), which is a time-division multiple access (TDMA)
shaper to isolate the flows based on flow priority. TSN introduced
a Control Data Traffic (CDT) class for the control traffic with high
QoS requirements. TAS guarantees timely transmission of CDT [18].
TSN included the AVB and BE traffic classes defined in AVB Ethernet.
The flows are classified into 802.1Q priorities. Each priority level is
assigned to one or more time slots by TAS using a predefined scheduling
table called Gate Control List (GCL). The slot assignments are stored in
a TAS scheduling table that shows which queues can transmit in a time

slot. As TSN can transfer the high priority CDT packets in dedicated
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Fig. 2. The TSN and AVB Ethernet scheduling.

ime slots, the CDTs are completely protected from any jitter or delay
hat may be caused by AVB and BE traffic.

As an example, a basic time slot configuration of TSN is shown in
ig. 2.

1. In the first time slot (CDT slot), only CDT gates are open, so only
CDT traffic can be sent to the link.

2. In the second time slot (AVB slot), all gates except the CDT gates
are open, so all queues except the CDT queues can send packets
to the link. AVB queues, which are controlled by CBS, can send
traffic if they have enough credit. BE queue can send traffic when
the link is idle.

3. In the third slot (guard-band slot), all gates are closed to prevent
contention of control and other packets in the CDT slot.

There are only three time slots in the example above, but it is
ossible to set many time slots with different gate configurations in
he same cycle. There may be multiple CDT slots in a cycle. Moreover,
ach link may have a different slot setting. The slot settings have a big
mpact on the performance of the TSN network. If the CDT slot is too
hort, control packets may get blocked and delayed by TAS. If the AVB
lot is too short, the channel capacity may not be enough to carry data
lows, which may cause congestion and packet drops. Calculating the
ptimum number of CDT and AVB slots and their lengths is an NP-hard
roblem, so there are works in the literature on their optimization by
sing Integer Linear Programming (ILP) and heuristics [19–23]. Config-
ring the GCLs in on each link may be difficult on a large scale network,
o Cyclic Queuing and Forwarding (CQF) shaper was added to TSN
tandards to simplify the configuration [24]. Moreover, network-wide
ime synchronization may be difficult in some cases, so another shaper
alled Asynchronous Traffic Shaper (ATS) was added to TSN stan-
ards [25]. There are also proposals in the literature that use Software
efined Networking (SDN) for fast online TSN traffic scheduling using
global view of the network. For example, [26] proposes scheduling

nd routing time-triggered (periodic) flows with a pre-assumption of
dmission using around 50 slots in a TSN cycle. [27] jointly optimizes
dmission control, routing, and scheduling using around 70 slots in a
ycle. While these TSN proposals in the literature show good results and
an be applied to an optical packet switching architecture, it is difficult
o apply them in SiPhON architecture, because a gateway cannot send
ata unless a slot is assigned to the gateway by the master node due to
ack of LDs in the gateways and a gateway can send a slot request to
he master node only by writing the request to another slot assigned to
4

he gateway.
Fig. 3. The optical intra-vehicle backbone architecture.

2.3. Optical backbone network

The fiber-optic links have many advantages over copper wires.
The fiber-optic links are more resilient against environmental fac-
tors like electromagnetic waves and mechanical/chemical stress com-
pared to copper wires. Moreover, fiber links do not radiate electro-
magnetic waves that may cause noise to other devices. Furthermore,
fiber links weigh less while supporting higher-bandwidth than copper
wires. Therefore, fiber-optic links have been used in intra-vehicle net-
works and avionics successfully for a long time [28]. For example,
FlexRay supports both copper and fiber-optic links. MOST architecture
uses only fiber-optic links. However, MOST supports maximum 150
Mbps and FlexRay supports maximum 10 Mbps bandwidth. While
Ethernet supports high bandwidth over fiber-optic links, the current
Ethernet hardware standards are not suitable to operate reliably in
harsh working environments of vehicles. To cope with the high band-
width requirements of recent applications like self-driving systems
and to satisfy reliability requirements in harsh environments, Multi-
Gigabit Automotive Optical PHYs (OMEGA) Study Group has been
established [6]. OMEGA has been working on standardizing high speed
optical Ethernet networks in intra-vehicle networks. OMEGA aims to
achieve 50 Gbps per lane bandwidth communication with at least 15
meters of fibers in automotive temperature range (−40 to 125 ◦C). To
the best of our knowledge, there are no works on OMEGA published in
the literature so far. An intra-vehicle network needs to be environmen-
tally resistant against low and high temperatures, but the life of vertical
surface emitting laser (VCSEL) diodes used in the transceiver module
of OMEGA are dramatically shortened when operated at a temperature
of more than +100 ◦C even with improvements such as a quantum
dot active layer [7]. In OMEGA optical Ethernet backbone network, all
backbone links of all gateways require LDs to generate optical packets.
The failure probability increases with increasing number of LDs, which
may bring a high cost and reliability problems in the long-term.

3. SiPhON intra-vehicle architecture

Satisfying the severe hardware reliability requirements of intra-
vehicle networks while providing high-bandwidth and low latency
by Ethernet may be costly. As a possible solution, we propose an
optical cut-through intra-vehicle backbone architecture called Si-based
In-vehicle Photonic Network (SiPhON), which may have a lower cost
than an optical Ethernet backbone architecture in a vehicle. In the
SiPhON architecture, there is a single master node that controls the
gateway nodes and there are multiple gateway nodes that switch data
between the ECUs and the backbone network. The backbone nodes

in SiPhON are connected by unidirectional optical links that form a
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Fig. 4. An example of incoming and outgoing control packets and data slots in gateway 1.
ring topology as shown in Fig. 3. There is a single control channel for
exchanging control packets and a data channel to carry data packets
between the master node and gateway nodes. The control and data
channels use cut-through switching to minimize the latency. It is a slot
switching architecture where slots carry packets between the master
node and gateway nodes in the data channel as shown in Fig. 4. The
gateways in SiPhON do TDMA switching with a granularity of a slot,
where each slot is used for transmission between the master node and
a single gateway, so the meaning of slot in SiPhON is different from
TSN Ethernet where a slot means a period of time dedicated to a given
list of priority classes. The slots in SiPhON are assigned to the gateway
nodes by the master node according to a slot scheduling algorithm. An
assigned gateway can use the slot for sending or receiving data packets.
When a slot is assigned to a gateway node, the master node informs
the gateway node by sending a control packet before the data slot.
The assigned gateway processes the control packet and configures its
hardware to receive or send data using the upcoming slot in the data
channel. As the processing and configuration in the assigned gateway
takes some time, there is a guard-band time between the data-slots
and also between the control packets and the associated data slots.
When a gateway receives a control packet, it processes the information
in the control packet and configures its hardware accordingly during
this guard-band time for the upcoming data slot. Also, after the data
slot ends, the gateway reconfigures its hardware during the guard-band
time until the next slot arrives.

In SiPhON architecture, laser diodes (LD) are carried only in the
master node. The master node generates the optical control packets and
data slots for data packets by LDs and sends them to the gateways. Data
channel LDs work in parallel to generate a slot. Each data channel LD
generates a part of the slot. The gateway nodes do not have LDs, so they
cannot generate optical signal to send data packets. The master node
generates the light in the slots. The gateways inject their data packets
into the slots by modulating the light in the slots by using optical mod-
ulation and detection (MD) circuits. The silicon photonics hardware
architecture of the MD circuit, which is a Mach–Zehnder Interferometer
(MZI) switch integrated with a photo diode (PD), was presented and
demonstrated in [7]. To receive the control information on the control
channel the gateway nodes use an optical coupler (OC) to sample and
read the control packets. The gateway nodes do not generate control
packets, so they do not need LDs on the control channel, either. Only
the master node uses LDs for generating control packets. As fewer LDs
used are in a SiPhON network, the LD failure probability and the long-
term cost can be decreased compared to Ethernet-based architectures
like OMEGA, which require LDs in each gateway to generate optical
packets.

While using fewer LDs can decrease the cost and failure probability,
the gateways cannot send packets to the optical backbone directly when
they want because they lack LDs. The master node assigns slots to the
gateways and informs the gateways by sending control packets right
before the data slots in the control channel. The types of actions defined
5

in control packets are as follows:
• Listen: The gateway node selected by the master node will receive
data from the master node in the associated data slot.

• Talk: The gateway node selected by the master node may send
data to the master node in the associated data slot.

• Idle: The associated data slot is not used.

To illustrate how SiPhON works, the processing of the control
packet and data slots in gateway 1 is shown in Fig. 4 as an example.
After the data slots and control packets are generated in the master
node, they are sent to the first gateway node called gateway 1 in the
ring topology. The left side of gateway 1 shows the packets and slots
before entering the gateway, while the right side of gateway 1 shows
the same packets and slots after leaving gateway 1. The slots carrying
the data packets to/from gateway 1 are shown in blue, while the slots
carrying data packets to/from other gateways are shown in green. The
slots without a data packet are shown in white. The first control packet
entering gateway 1 contains the information M→G#3, which means
that this is a Listen packet for gateway 3. This information shows that
the upcoming associated data slot, which will arrive after a guard-band
time difference, is for another gateway, so gateway 1 does not read
the data in the data slot and the data slot leaves gateway 1 as it is.
The second control packet contains the information G#1→M, which
means that this is a Talk control packet for gateway 1. Gateway 1
can use the upcoming associated data slot to forward a data packet
from the connected ECUs to the master node. In case there is a packet
in its buffer to send, gateway 1 reconfigures its switching fabric and
encapsulates the packet in a frame, and injects into the upcoming
associated data slot by using the MD circuit. Gateway 1 can also
write feedback information like its buffer stats to the frame header in
the slot so that the master node can learn the current status of the
gateway. Master node may send Talk control packets to gateways to
periodically sample the current status of the gateways to give a better
decision when scheduling the slots. The third control packet contains
the information M→G#1, which means that this is a Listen packet
for gateway 1. There will be a data packet to this gateway from the
master node in the upcoming data slot, so the gateway node updates
its switching fabric during the guard-band time. Then, it forwards the
upcoming data slot to its MD circuit and extracts the frame in the slot
by converting the optical signal to the electronic domain by the MD
circuit. It decapsulates and forwards the data packet to the destination
ECU.

If a source node connected to a gateway wants to send a packet
to a destination node connected to another gateway, first the gateway
sends the packet to the master node in a Talk slot. Then the master node
sends the packet to the destination gateway in a Listen slot. Finally, the
gateway forwards the packet to the destination node.

The gateways and master node should be synchronized for the
slotted architecture. The Precision Time Protocol (PTP) may be used
for the time synchronization among the nodes [29]. Moreover, the

control packets and data channel slots should be synchronized. The
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synchronization in SiPhON is under development, so its hardware and
processing requirements are currently unknown.

In this paper, we used a fixed slot size and assumed that a single
packet is carried in a slot for simplicity, but it may cause bandwidth
inefficiency when there are many small packets. Possible solutions like
carrying multiple packets in a slot will be explored in future works.
Moreover, using a single master node or a single path between back-
bone nodes may cause a single point of failure, but hardware failure
scenarios are out of the scope of this paper. Increasing the resilience of
the architecture against failures by adding backup hardware and links
is left as a future work.

4. Slot scheduling in SiPhON

To decrease the probability of LD failures in the backbone, the gate-
ways in SiPhON architecture do not carry LDs. Therefore, the gateways
cannot generate light to send packets to the backbone directly, which
limits the communication from the gateways to the master node. To
send a packet from the gateway to the master node, the master node
should generate an optical signal by its LDs and send it to the gateway
in a slot so that the gateway can inject its packet into the slot by
modulating the optical signal in the slot. Moreover, when a gateway
wants to send packets to the backbone, the only way that the gateway
can inform the master node and ask for slots is to write the request to
the header of a previous Talk slot assigned to the gateway. If there is
no Talk slot scheduled to the gateway, the gateway cannot inform the
master node that it has a packet to send. The only way for a master node
to check if there is a new packet in the gateway is to poll the gateway
node by sending an empty Talk slot to the gateway. However, if there
is no packet to be sent to the master node in the gateway, the slot used
for polling the gateway becomes unused, which decreases bandwidth
efficiency.

In our initial work, to show the basic operation of the architecture,
we used a manually assigned fixed and periodic pattern of slot schedule
list based on the average amount of traffic sent to the backbone by
the gateways [12]. The advantage of fixed and periodic slot schedule
list is that the master node does not need feedback from the gateways
like slot requests or polling. It works as long as the gateways and the
master node do not use bandwidth more than the bandwidth assigned
by the slot schedule. For example, the periodic and fixed slot schedule
{Listen, Talk GW1, Talk GW2, Talk GW3, Talk GW4, Talk GW5, Talk
GW3} in [12] assigns around 28.6 Gbps to GW3 and 14.3 Gbps to the
rest of the gateways and the master node out of 100 Gbps bandwidth
capacity. However, using a fixed and periodic slot schedule list has the
following shortcomings:

• A periodic and fixed slot schedule assignment may cause unnec-
essarily high delays when the traffic is bursty. As an example,
assume that the periodic and fixed slot schedule {Listen, Talk
GW1, Talk GW2, Talk GW3, Talk GW4, Talk GW5, Talk GW3}
in [12] is used. In this case, the master node and the gateways
except gateway 3 can send a packet only once in a period of
7 slots. Even if all the ECUs connected to a gateway or master
node generate completely smooth and periodic traffic, the overall
traffic to be sent to the backbone by the gateway or master node
may not be smooth and periodic. Packet contentions may occur
at the gateway, causing a bursty traffic. In case the master node
or a gateway except gateway 3 has three packets in its output
buffer to the backbone, the first packet can be carried by the first
slot assigned to the gateway in the first period. Then, the second
packet in the queue would be carried by the slot assigned to this
gateway in the next period after waiting 7 slots time. Moreover,
the third packet in the queue would be carried by the slot assigned
to this gateway in the period after the next period after waiting
14 slots time. The delays would increase at a fast pace with the
increasing burstiness of the traffic.
6

• High priority packets in a gateway may end up waiting for the
transfer of the low priority packets or idle slots of other gateways
until the gateway’s turn comes in the slot schedule list.

• The fixed and periodic slot scheduling is not adaptive to the
changes in the traffic matrix. Some ECUs may generate variable
traffic like Infotainment, Internet, and application updates, which
may change the traffic matrix and cause bandwidth inefficiency
and higher packet delays.

• A fixed and periodic slot schedule does not take the traffic pat-
terns of flows like packet generation periodicity into account.

In this paper, we extend [12] with a dynamic slot scheduling
algorithm that can decrease the end-to-end packet latency of flows in
SiPhON architecture by solving the shortcomings of fixed and periodic
slot scheduling. We called the algorithm dynamic because, unlike fixed
and periodic slot scheduling, it dynamically assigns the slots to the
backbone nodes based on the reservation requests and buffer occupancy
feedbacks without requiring traffic matrix information. The key ideas
of the new dynamic slot scheduling algorithm are as follows:

• Decreasing the slot waiting times of packets of high priority flows
that generate packets with a known (fixed or variable) interval by
calculating their arrival times to gateways.

• Decreasing the slot waiting times of bursty low priority flows by
sampling the buffer occupancy of gateways.

• Adaptively changing the slot assignment ratio and thus the band-
width ratio of the nodes based on the reservation requests and the
buffer occupancy of gateways.

Many traffic sources like sensors in a vehicle generate packets with a
known interval. For example, an engine sensor checks the status of the
engine periodically and sends time-sensitive sensor data in fixed peri-
odic control packets. As the control packets are generated periodically,
the traffic source can calculate the departure time of the future packets.
Also, there is growing interest in variable (adaptive) rate sampling in
the literature. Changing the sampling and packet generation intervals
based on the state of the vehicle can decrease storage costs when
the generated data is logged in a storage, decrease transmission costs
when the generated data is shared with the environment over a mobile
connection, and ease processing and energy consumption [30]. For
example, [31] proposes changing the GPS sampling rate based on the
movement (free flow, acceleration, stop, etc.) of the vehicle to decrease
the transmission and storage costs. Another example is given by [32]
where the sampling rate of sensors changes with the aggressiveness of
drivers (intensity of breaking and acceleration) and the current speed.
Even when the sampling and packet generation rate is variable, a
traffic source can calculate the departure time of the next packet if
the next sampling time is decided when the last sample was taken.
For example, if a GPS sensor is changing the sampling rate based on
the vehicle speed in the last sample, the next sampling and the packet
generation time become clear in the last sampling. Our dynamic slot
scheduling algorithm decreases the slot waiting times of packets of
high priority time-sensitive flows that generate packets with a known
(fixed or variable) interval by reserving slots to the upcoming packets
by calculating the optimum time to send slots based on the interval
information sent by flow sources to the master node.

Low priority flows like best effort Internet traffic may be bursty
and have variable traffic rates, which may cause buffer buildups in the
gateways and high delays. To decrease the slot waiting times of bursty
low priority flows, the dynamic slot scheduling algorithm samples the
buffer occupancies in gateways. It assigns the unreserved idle slots
to the gateways with high buffer occupancy. Therefore, the bursty
traffic arrivals get a high portion of the idle slots, which allows to
serve them faster. Moreover, idle slot assignment based on the buffer
occupancy effectively provides a dynamic bandwidth allocation to the
gateways without requiring traffic matrix information, unlike the fixed
and periodic slot assignment.
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When a traffic source node (ECU or sensor) sends a packet of a
flow that generates packets with a known (fixed or variable) interval, it
adds a SiPhON packet header to the packet. It writes the flow identifier
and the next interval time, which is the time difference between the
departure time of the current packet and the expected departure time
of the next packet. If the interval is fixed, it may be enough to write it
only to the first packet of the flow and save the interval information in
the master node. If the source is connected to a gateway, the gateway
reads this header and stores it until the packet is sent to the backbone.
When a packet in the gateway buffer is injected into a slot, the gateway
first writes its buffer occupancy information to the slot header. If the
injected packet has a SiPhON packet header, the gateway also copies
the SiPhON packet header to the slot header and writes the time
difference between the arrival and departure time of the packet to the
slot header. When the packet arrives at the master node, the master
node reads the slot header. If there is an interval time information, the
master node calculates the optimum time to send a slot to carry the next
packet of this flow in the backbone so that the slot can arrive at that
gateway right after the next packet of this flow arrives at the gateway.
After checking the previous reservations in the reservation list and the
flow priority levels of the packets, the master node reserves the first
slot that can send the packet after the calculated time.

In case the flow source node is connected to a gateway, and it wants
to send a packet of a flow with a known interval time to the master
node, the slot reservation for the next packet of the flow by the master
node is done as follows:

1. The flow source writes its flow id and the latest interval time
denoted by 𝐷𝑛𝑒𝑥𝑡, which is the time difference between the
departure time of the current packet and the expected departure
time of the next packet, to the SiPhON header of the current
packet.

2. When the packet arrives at the gateway, the gateway stores the
arrival time of the packet.

3. When a data slot for carrying this packet on the backbone
arrives at the gateway, the gateway writes the flow id and the
time difference between the arrival and departure time of the
packet, which is denoted by 𝐺𝑤𝑎𝑖𝑡, to the slot header. This time
difference shows how long the packet waited in the gateway due
to buffering, processing, etc. Moreover, the gateway writes the
buffer occupancy of its priority queues to the slot header.

4. The packet is encapsulated in a frame and sent to the master
node over the backbone by injecting it into a data slot by the
MD circuit in the gateway.

5. The data slot circulates the backbone ring network and returns
to the master node.

6. The master node decapsulates the frame in the slot and reads
𝐷𝑛𝑒𝑥𝑡 and 𝐺𝑤𝑎𝑖𝑡 information in the headers.

7. The master node keeps a record of the departure times of the
slots. Let us denote the departure time of this returning data
slot that carried the packet to the master node as 𝑆𝑝𝑟𝑒𝑣. The
master node calculates the optimum time to send a data slot for
the next packet of this flow, which is denoted by 𝑆𝑛𝑒𝑥𝑡, by the
formula

𝑆𝑛𝑒𝑥𝑡 = 𝑆𝑝𝑟𝑒𝑣 +𝐷𝑛𝑒𝑥𝑡 − 𝐺𝑤𝑎𝑖𝑡. (1)

The departure time difference between a control packet in the
control channel and the associated data slot in the data channel
in SiPhON is fixed. It equals the sum of the guard-band duration,
which is denoted by 𝑑𝑔𝑢𝑎𝑟𝑑 , and the control packet duration,
which is denoted by 𝑑𝑐𝑜𝑛𝑡𝑟𝑜𝑙. The optimum departure time of the
control packet in the control channel for this data slot, which is
denoted by 𝐶𝑛𝑒𝑥𝑡 can be calculated by.

𝐶 = 𝑆 +𝐷 − 𝐺 − 𝑑 − 𝑑 . (2)
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𝑛𝑒𝑥𝑡 𝑝𝑟𝑒𝑣 𝑛𝑒𝑥𝑡 𝑤𝑎𝑖𝑡 𝑔𝑢𝑎𝑟𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙
8. After checking the previous reservations in the reservation list
and the flow priority levels of the packets, the master node
reserves the first suitable slot that it can send for the packet after
the calculated time.

When the master node sends a reserved slot to a gateway, it writes
the flow id of the flow source, which did the reservation, to the control
packet of the slot. The gateway injects the packet of that flow into the
slot by MD circuit.

When a flow source node is connected to the master node, and it
wants to send a packet to a destination node connected to a gateway
node, first, the source node sends the packet to the master node. The
master node checks if there is a slot reservation for this packet. If there
is a reservation, the master node delays the packet until the reserved
slot is generated. Then the master node sends the packet in the reserved
slot to the gateway. If there is no reservation for this packet, after
checking the reservations in the reservation list and the flow priority
levels of the packets, the master node reserves the earliest slot that can
send the packet.

In case the flow source node is connected to the master node and
it wants to send a packet of a flow with a known interval time to a
gateway, the slot reservation for the next packet of the flow by the
master node is done as follows:

1. The flow source writes its flow id and the time difference be-
tween the departure time of the current packet and the expected
departure time of the next packet, which is denoted by 𝐷𝑛𝑒𝑥𝑡, to
the SiPhON packet header and sends the packet to the master
node.

2. When the packet arrives at the master node, the master node
reads the SiPhON packet header.

3. The master node calculates when the next packet of this flow will
arrive at the master node, which is denoted by 𝑃𝑛𝑒𝑥𝑡, by adding
𝐷𝑛𝑒𝑥𝑡 to the arrival time of the last packet of the flow, which is
denoted by 𝑃𝑝𝑟𝑒𝑣, by the formula

𝑃𝑛𝑒𝑥𝑡 = 𝑃𝑝𝑟𝑒𝑣 +𝐷𝑛𝑒𝑥𝑡. (3)

The optimum departure time of the control packet in the control
channel for this data slot can be calculated by.

𝐶𝑛𝑒𝑥𝑡 = 𝑃𝑝𝑟𝑒𝑣 +𝐷𝑛𝑒𝑥𝑡 − 𝑑𝑔𝑢𝑎𝑟𝑑 − 𝑑𝑐𝑜𝑛𝑡𝑟𝑜𝑙 . (4)

4. After checking the previous reservations in the reservation list
and the flow priority levels of the packets, the master node
reserves the first slot that it can send for the packet after the
calculated time.

The packets arrive at the gateways continuously without synchro-
nization, but the data slots in the gateway have a fixed length and they
are sent in a TDMA fashion, so it is usually not possible to send a control
packet for this gateway exactly at the calculated optimum time 𝐶𝑛𝑒𝑥𝑡.
Therefore, the master node reserves the first suitable slot after 𝐶𝑛𝑒𝑥𝑡.
Moreover, 𝐺𝑤𝑎𝑖𝑡 may be higher than 𝐷𝑛𝑒𝑥𝑡, which may happen when
the packet containing the latest feedback was delayed in the gateway
due to queuing, processing, etc. more than interval time 𝐷𝑛𝑒𝑥𝑡. In that
case, the master node reserves the first suitable slot in the reservation
list by checking the reservations and the flow priorities.

In this paper, when a new packet arrives with a reservation request
for the next packet of the flow, the optimum slot for the new reservation
and also the next slots may have been reserved for other packets. In
that case, the reservation for the new packet is scheduled at the first
slot that is idle or that has a reservation to a packet of a lower priority
flow. The contending reservations for the flows with a lower priority
level are delayed in the slot reservation list. Fig. 5 presents an example
slot reservation by the master node when the master node receives a
new packet from a source connected to the master node or receives
a returning slot that has interval time information. The slots show the
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Fig. 5. An example of slot reservation.

reservations after time 𝑡. The numbers inside the slots show the priority
level of the flows that reserved the slots where lower values denote
lower priority. There is an empty reservation at time 𝑡+5. Assume that
the master node wants to reserve a slot for a packet of flow with priority
level 3 after time 𝑡 in the reservation list. As the slots at 𝑡 and 𝑡+ 1 are
assigned to flows with higher priority, the reservation is done to slot at
𝑡+2. The reservations at 𝑡+2 and 𝑡+3 are delayed accordingly without
ffecting the reservations of higher priority flows.

When the master node sends a new slot, it assigns the slot to
gateway or the master node by a slot assignment algorithm. The

seudocode code of the dynamic slot assignment algorithm that is
sed in this paper is shown in Fig. 6. The algorithm can be modified
ased on the prioritization requirements of the network. In the pseu-
ocode, 𝑛 denotes the number of gateways in the backbone. The array
𝑎𝑠𝑡_𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑡𝑖𝑚𝑒[𝑘] stores the last time a Talk slot was assigned to each
ode. Using the local buffer information in the master node and the
atest buffer statistics sent by the gateway nodes in the slot headers, the
aster node finds the node that has the highest number of packets in

he highest priority non-empty queue and stores in ℎ𝑖𝑔ℎ𝑒𝑠𝑡_𝑞𝑢𝑒𝑢𝑒_𝑛𝑜𝑑𝑒.
By the loop on line 4, the master node first checks the last time a
slot was assigned to each node and finds the gateway that has the
oldest reservation time, and saves its id in 𝑜𝑙𝑑𝑒𝑠𝑡_𝑛𝑜𝑑𝑒. The master node
also saves the last time that a Talk slot was assigned to this node in
𝑜𝑙𝑑𝑒𝑠𝑡_𝑡𝑖𝑚𝑒. If no slots have been assigned to this gateway for a duration
longer than a threshold, a Talk slot is assigned to this gateway to check
if this gateway has a packet to send and to receive the latest buffer
occupancy information of this gateway. If there is a reservation to
another node in the reservation list, it is delayed to the next slot. If
none of the gateways has passed the threshold, the algorithm checks
if there is a reservation to a node in the reservation list. If there is
a reservation, the slot is assigned to that node. If not, the algorithm
assigns the slot to the node that has the highest number of packets
in the highest priority level queue. If none of the nodes has a packet
in their buffers, the algorithm assigns the slot to the gateway that the
longest time has elapsed since its last slot assignment, which was found
by the loop on line 4.

In this paper, we used strict priority queuing and scheduling based
on flow priorities. Traffic shapers like TAS and CBS in TSN Ethernet can
provide better prioritization and harness the traffic burstiness inside
a network. The scope of this paper is minimizing the slot scheduling
delays in SiPhON, so the design of traffic shapers for SiPhON is left as
a future work.

The dynamic slot scheduling requires the expected departure time
of the next packet, flow id, the buffer waiting time, and the buffer
occupancy information in the gateway as feedback. This extra informa-
tion is sent in the slot headers by the gateways. The specifications are
not decided yet, but we can expect this header size to be around 10–
30Bytes. In the case of a slot size of 1600 Bytes, the bandwidth required
for headers of dynamic slot scheduling may use around 1%–2%, which
8

may be negligible.
Sending the expected departure time of the next packets from the
application layer to the hardware layer in a source node may increase
the cost and the processing delays. Their impact will be evaluated when
a prototype of the SiPhON is implemented. If the cost or processing
delays due to dynamic slot assignment are too high, the network can
use fixed and periodic slot scheduling, which does not require the
expected departure time of the next packets and buffer occupancy
information of the nodes.

5. Simulation

We simulated the intra-vehicle network shown in Fig. 7 with a
traffic matrix inspired from [33]. In the simulation scenario, the traffic
matrix had 12 flows (7 video flows, 1 best-effort flow, and 4 control
flows). The packets of video flows were paced at the source. The traffic
sources were as follows:

1. Six video cameras (CAM) send uncompressed 4K30p smooth
video traffic (6 Gbps) to Dashcam. These video flows send 1448
Bytes data every around 2 μs.

2. The Dashcam sends uncompressed 4K30p smooth video traffic
(6 Gbps) to Head Unit. This video flow sends 1448 Bytes data
every around 2 μs.

3. The Infotainment unit sends 6 Gbps best-effort traffic to the Head
Unit. This data flow sends 1448 Bytes data with an exponential
distribution of 2 μs.

4. The Control unit sends control packets to the Dashcam. This
control flow sends 46 Bytes control messages with a variable
interval of 30 μs during an emergency and 120 μs otherwise.

5. The Dashcam unit sends warnings to the Control Unit. This
control flow sends 46 Bytes control messages every 0.5 ms.

6. The Head Unit sends 46 Bytes control messages to the Control
Unit every 0.5 ms.

7. The Control Unit sends 46 Bytes control messages to the monitor
of Head Unit every 0.5 ms.

There are three types of traffic sources in the simulations. They are

1. The control unit sends control packets to the Dashcam with a
variable but known interval. Normally the interval was 120 μs,
but it was decreased to 30 μs in between 1 ms and 2 ms in
simulation time. For the dynamic slot scheduling algorithm, the
flow source sends the interval time of the next packet to the
master node each time it sends a packet.

2. The Infotainment unit sends best-effort bursty traffic to the Head
Unit without any interval information.

3. The rest of the flow sources send packets with a fixed and known
interval. For the dynamic slot scheduling algorithm, the flow
sources send the interval time of the next packet to the master
node each time they send a packet.

We simulated the TSN Ethernet architecture by using computer-
based CoRE4INET simulator [34]. The parameters of TSN Ethernet
simulation were as follows. The nodes were connected by a ring topol-
ogy with 100 Gbps bidirectional optical links. The shortest path routing
was applied. CoRE4INET simulator [34] does not support cut-through
switching, so store-and-forward switching was used. The gateway node
denoted by master in Fig. 7 was an ordinary TSN Ethernet gateway like
the other gateways. The MTU was 1500 Bytes. The total UDP and Ether-
net header size was 52 Bytes. Even when cut-through switching is used,
Ethernet switches impose port-to-port forwarding delays to the packets
while processing and routing the packets inside the switch. CoRE4INET
simulator [34] has a default value of 8 μs per hop for the forwarding
latency of TSN Ethernet switches. In [12], we used the default value
of CoRE4INET simulator in our simulations. However, recent Ethernet
switches with fast link speeds have lower processing times. We saw
that there are some 100 Gbps Ethernet switches with sub 0.2 μs latency
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Fig. 6. The pseudocode of dynamic slot assignment algorithm.
Fig. 7. Simulated intra-vehicle network topology.

in the market, but they are not TSN capable and they are extremely
expensive. We saw that some of the low-latency TSN switches state that
they have sub-microsecond latency without giving an exact number.
The lowest latency TSN switch with a delay specification that we could
find was from Cast Inc., which has 0.92 μs latency [35]. Therefore, we
set the forwarding latency of TSN switches to 0.92 μs in the simulations.
There were three slots in one TSN cycle in all links using the same
TSN configuration as explained in 2.2. In [12], the length of the CDT
time slot in the gateways was set to 35 μs because the maximum packet
transmission, propagation and Ethernet forwarding latency was around
33 μs in the network. In this paper, the length of the CDT time slot in
the gateways was set to 5 μs because the maximum packet transmission,
propagation, and Ethernet forwarding latency was decreased to around
4.1 μs due to lower Ethernet forwarding latency. The duration of the
guard band after CDT was set to around 0.12 μs, which equals the
transmission time of an Ethernet frame with 1500Bytes payload over
100 Gbps links. At every 30 μs, a CDT slot was scheduled. The time
between CDT slots was assigned to AVB and best-effort flows. The video
flows were assigned to AVB A priority. AVB traffic uses at most 75% of
the link bandwidth.

We simulated our SiPhON architecture by a computer-based simu-
lator that we implemented on OMNeT++ framework. The simulation
parameters of our architecture were as follows. The optical backbone
links carried a 100 Gbps data channel and a 1.25 Gbps control channel.
The links in the backbone were unidirectional and the transfer in the
ring topology was in the clockwise direction. As the TSN simulations
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used bidirectional links with shortest path routing, TSN simulations
had advantages in terms of bandwidth and link utilization over SiPhON
simulations. In TSN simulations, the traffic from GW4, GW5, and the
master node routed the packets in THE clockwise direction, while
the rest of the gateways routed in the counterclockwise direction.
Therefore, in TSN Ethernet simulations, the highest link utilization was
around 30%, which was on the 100 Gbps link from GW1 to master
with around 30 Gbps traffic rate. On the other hand, in the SiPhON
architecture, the highest link utilization was around 48%, which was
on the 100 Gbps link from GW5 to master with around 48 Gbps
traffic rate. The backbone network applied cut-through switching and
the edge links applied store-and-forward switching. The gateway node
denoted by master in Fig. 7 was the master node that assigns the
slots. In [12], the guard band between the slots was 100 ns, which
was a bit conservative. In this paper, we set the guard band to 50 ns.
The maximum transmission unit (MTU) of a slot was 1500 Bytes. The
maximum video packet size was set to fully use the 1500 Bytes MTU.

We simulated a SiPhON network with the dynamic slot scheduling
algorithm and the fixed and periodic slot scheduling. We compared
the end-to-end packet delays of different types of flows. We also sim-
ulated a TSN Ethernet network only as a reference to show the total
delays including traffic shaping and processing algorithms delays in
a commercially available architecture. Direct comparison of the delay
results in TSN and SiPhON is not fair, because TSN Ethernet used TAS
and CBS traffic shapers that further delayed packets in the simulation
and it has processing delays. For a fair comparison, SiPhON should
be simulated with traffic shaping and processing delays. However, the
design of traffic shapers for SiPhON is left as a future work, and the
processing delays in the SiPhON architecture cannot be known until
a prototype of the device is built. We simulated the TSN architecture
only to show that the extra delays due to the slot scheduling in our
architecture may be negligibly low when compared with the total
delays in TSN Ethernet, which includes the delays due to traffic shaping
and processing algorithms.

In the static slot scheduling simulations with SiPhON, the slot
scheduling algorithm applied a manually assigned fixed set of 7 slots
{Listen, Talk GW1, Talk GW2, Talk GW3, Talk GW4, Talk GW5, Talk
GW3} that repeats in cycles. The first Listen slot was used by the master
node to send data to the gateways. The other Talk slots were used
for transferring data from the indicated gateways to the master node.
As there were two video cameras connected to gateway 3, two slots
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Fig. 8. The comparison of latencies of video packets from CAM 5 to Dashcam in (a)
TSN Ethernet, (b) SiPhON with fixed and periodic slot scheduling, and (c) SiPhON with
dynamic slot scheduling.

were assigned to transfer data from this gateway in a slot cycle, which
effectively made the assigned bandwidth to traffic from this gateway
twice the assigned bandwidth to traffic from other gateways. In the
dynamic slot scheduling simulations, the slot scheduling was based on
the dynamic slot scheduling algorithm introduced in this paper.

First, we evaluated the end-to-end packet latency of a video flow.
shows the packet latencies of video traffic from CAM 5 to Dashcam.
The 𝑥-axis is the simulation time in terms of seconds and the y-axis
s the packet latencies in terms of microseconds in all simulation
esults. The 𝑦-axis is plotted in a logarithmic scale. Fig. 8(a) shows

the total latencies due to transmission, processing, and shaping in TSN
Ethernet. There is no slot scheduling in TSN Ethernet, so there is no slot
scheduling delay. The simulation results show that the packet latencies
were between 5 μs and 12 μs. The minimum latency of around 5 μs

as mainly due to the forwarding latency of Ethernet switches and
he rate control of CBS. The maximum latency of around 12 μs was
ainly due to the buildup of AVB slot queues when the video traffic was

locked by TAS while control packets were transferred in CDT slot by
SN Ethernet [36]. The TSN architecture was simulated with store-and-
orward switching because CoRE4INET simulator [34] simulator does
ot support cut-through switching. However, it is possible to estimate
10

he delay of cut-through switching by subtracting the extra transmission
delays. When store-and-forward switching is used, transmission delays
occur at five links. If only cut-through switching was used along the
path between the edge nodes, the transmission delays would occur
at only one link, so the latencies would be around 4 ∗ (1500 ∗
8∕1011) = 0.48μs lower. Considering the amount of current end-to-end
latency, using cut-through switching would not make a big difference.
Figs. 8(b) and 8(c) show the video packet latencies when fixed and
periodic scheduling and dynamic scheduling algorithms were used,
respectively. When the fixed and periodic slot scheduling was used,
most of the latencies were between 0.4 μs and 1.6 μs. On the other
and, when the dynamic slot scheduling algorithm was used, most
f the latencies were between 0.4 μs and 0.8 μs, which was lower
han the fixed and periodic slot scheduling. The delays increased a bit
uring the time (1 ms,2 ms) because of the increased traffic from the
ontrol unit to the Dashcam. The packet delays due to slot scheduling in
iPhON were much lower than the total packet delays in TSN Ethernet,
hich includes traffic shaping and processing delays, so we can say

hat the extra slot scheduling delays due to limitations in the SiPhON
rchitecture can be made negligibly low by using the dynamic slot
cheduling algorithm. As a prototype of the SiPhON device has not been
uilt yet, the processing delays in SiPhON are unknown and there is
o traffic shaping, so the overall end-to-end packet latency in SiPhON
rchitecture cannot be evaluated, yet. The overall end-to-end packet
atency in SiPhON architecture will be evaluated after the prototype of
he SiPhON device is built.

Next, we evaluated and compared the end-to-end packet latency
f a control flow. Fig. 8(c) shows the packet latencies of video traffic
rom Control Unit to Dashcam. The control unit sent control packets
o the Dashcam at a variable but known interval. Initially, the packet
nterval was 120 μs, but it was decreased to 30 μs in between 1 ms

and 2 ms, then again increased to 120 μs. Fig. 9(a) shows the latencies
in TSN Ethernet. As TSN carries the control packets in a dedicated
slot, all control packets had a fixed latency of 4.2 μs, which is mainly
due to the processing delays of TSN switches. Fig. 9(b) and Fig. 9(c)
show the video packet latencies when the fixed and periodic slot and
dynamic scheduling algorithms were used, respectively. When the fixed
and periodic slot scheduling was used, most of the latencies were
between 0.25 μs and 0.89 μs. On the other hand, when the dynamic
slot scheduling algorithm was used, most of the latencies were between
0.23 μs and 0.39 μs. Again, the dynamic slot scheduling algorithm gave
lower latencies than the fixed and periodic slot scheduling.

Finally, we evaluated and compared the end-to-end packet latency
of a best-effort flow. Fig. 9(c) shows the packet latencies of best effort
traffic from Infotainment ECU to Head Unit. Fig. 10(a) shows the
latencies in TSN Ethernet. Most of the latencies were between 4.8 μ
nd 11 μs. The blocking and buffering of video packets during CDT
lots increased the delays. Fig. 10(b) and Fig. 10(c) show the video
acket latencies when fixed and periodic slot scheduling and dynamic
cheduling algorithms were used, respectively. When the fixed and
eriodic slot scheduling was used, most of the latencies were between
.4 μs and 26 μs. On the other hand, when the dynamic slot scheduling

algorithm was used, most of the latencies were between 0.46 μs and
2.4 μs. Unlike in the fixed and periodic slot scheduling, which assigns a
fixed ratio of the bandwidth to a gateway, the best-effort flows are not
bounded with a portion of the bandwidth in dynamic slot scheduling,
so the best effort traffic could get more bandwidth and get lower packet
delays.

6. Conclusion

In this paper, we presented a novel optical intra-vehicle backbone
network architecture that may have a lower cost and higher reliability
in terms of hardware. However, our architecture may cause higher
packet delays than Ethernet due to the lack of LDs in the gateways.
The overall delays in SiPhON with the slot scheduling, packet pro-
cessing, and traffic shaping delays may be higher than in Ethernet,
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Fig. 9. The comparison of latencies of control packets from Control Unit to Dashcam
in (a) TSN Ethernet, (b) SiPhON with fixed and periodic slot scheduling and (c) SiPhON
with dynamic slot scheduling.

but SiPhON may have a better performance/cost ratio than Ethernet
if it can achieve a lower cost and higher reliability. In this paper, we
proposed two slot scheduling methods and showed that a dynamic slot
scheduling algorithm that can achieve lower packet latencies than fixed
slot scheduling. Moreover, we showed that the packet delays due to
dynamic slot scheduling in SiPhON are negligibly low when compared
to the total delays including traffic shaping and processing delays in a
TSN Ethernet intra-vehicle architecture. As a SiPhON prototype has not
been implemented yet, the processing delays in SiPhON are currently
unknown. Moreover, there are many traffic shaping algorithms in
the literature so evaluating their delays in our architecture requires
separate work. As a future work, we will calculate the processing delays
in SiPhON after a prototype is built. We will also evaluate the delays
of traffic shaping algorithms in SiPhON architecture.
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