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Abstract

In hosting diverse applications with various service requirements in 5G network, net-

work slicing technology is critical factor, which provides multiple isolated and dedicated

virtual network. It is important for the satisfaction of the requests of clients and the profit

of providers of the substrate network to allocate the network slices requested by clients

efficiently into the substrate network. The optimization problem of substrate resource

allocation to network slices is closely related to the virtual network embedding (VNE)

problem known as NP-hard problem, thus it is nearly impossible to derive the optimal

solution within practical time in a large scale network. In addition, considering a practical

use case, it is required to allocate multiple network slices simultaneously, and optimize

the allocation of all network slices while new requests arrive sequentially. Therefore,

the method which can find a feasible solution immediately in such dynamic environment

is essential for network slicing in Beyond 5G network. For the implementation of the

mechanism of deriving a new solution adaptively for dynamic environment utilizing the

previous solutions, genetic algorithm which is an optimization algorithm based on a model

of organism evolution can be applied. As genetic algorithm can deal with general combi-

natorial optimization problems, we modeled the problem of deciding the mapping between

the nodes or links of the substrate network and those of network slices as a combinato-

rial optimization problem, and realize dynamic network slice embedding applying genetic

algorithm to this problem and finding feasible solutions. However, it is known that con-

ventional genetic algorithm tends to lose solution diversity, and Quality-Diversity (QD)

algorithms are proposed as methods overcoming this problem, which output solutions

with diverse characteristics. It seems to be desirable to maintain solution diversity for the
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immediate adaptation to dynamic environment, so we proposed a dynamic network slice

control method using QD algorithm. When multiple network slices are controlled inte-

gratedly, allocation of elements of all network slices must be considered simultaneously,

and the scale of problem space increase exponentially for the number of network slices.

Thus, for the scalability, it is necessary to assign a separate controller to each network slice

and control them separately. On the other hand, it is unable to achieve total optimization

only optimizing each slice separately because it may lead to the degradation of quality of

service (QoS) of other slices in B5G network there are the diverse service requirements.

Hence, introducing unselfish evaluation values additionally as a multi-objective optimiza-

tion, we attempt to realize the cooperative control considering other slices while controlling

slices separately. We model temporal arrival of network slice requests as Poisson process

and evaluated the proposed methods through computer simulation. We assess the degree

of total optimization through the acceptance rate of network slice requests and compared

our methods with methods using conventional genetic algorithm and heuristic proposed

in previous work. As a result, it is shown the acceptance rate of our methods was higher

than other methods. Moreover, we reveal the effects of unselfish evaluation values through

simulation under static environment.
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1 Introduction

There are various use cases in the 5G network, and the network requirements vary by

the applications running on them. As new network services appear daily and their usage

conditions change, it is not realistic to build a dedicated network for each service. There-

fore, one of the most important factors is network slicing technology, which virtually

divides physical resources on a shared substrate network and constructs multiple virtual

networks on the substrate network. As multiple clients request network slices with various

requirements, network providers are required to deploy those slices within finite physical

resources. It is important for both clients and providers to efficiently deploy more slices

under the resource requirements.

Figure 1: Diagram of E2E network slicing in 5G network

Although there have been studies on network slicing in 5G networks from various per-

spectives, few have treated it as a resource allocation problem assuming end to end (E2E)

communication between user equipment(UE) and applications deployed on cloud servers [1].

When network slicing is considered as a resource allocation problem, it is required to op-

timize the allocation of the substrate resources in terms of acceptance ratio and cost while

satisfying the requirements of each slice. This problem is closely related to the virtual net-

work embedding (VNE) problem, which has been studied extensively [2], and formulated

in [3] as network slice embedding(NSE) problem based on the VNE problem. The charac-
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teristics of 5G network slicing assuming E2E communication are that the requirements for

slices vary significantly depending on the service, and that it targets the construction of

networks between UE and cloud servers. Compared to embedding multiple homogeneous

virtual networks, when the requirements of each slice are significantly different, only self-

ish selection is likely to degrade the QoS of the other slices and fail to meet service level

agreement (SLA) and unable to achieve total optimization.

NSE problem is a combinatorial optimization problem, and methods for solving it using

linear programming solver and heuristics based on node ranking have been proposed [2].

Linear programming solver is not scalable to the size of network, and computation time

is a trouble in practical use. In addition, in practical use cases, multiple slices need to

be optimized in parallel as new slice requests arrive over time. In order to find solutions

adaptively to such a dynamic environment in a short time, a method is required that can

find the optimal solution for the new environment by utilizing previous solutions.

The mechanism to adapt to a certain environment by modifying the solution at that

time can be regarded as a model of organism evolution, and one of the optimization

algorithms based on the model is genetic algorithm. Genetic algorithm is one of the meta-

heuristics that can handle general combinatorial optimization problems and has been used

in a wide range of problems because it can handle optimization problems independently

of the properties of the objective function. The previous research [4], which applies the

genetic algorithm to the VNE problem, shows the acceptance ratio of the method is higher

than that of the typical VNE method based on mixed integer programming [5, 6]. Since

the genetic algorithm allows the objective function to be arbitrarily designed, it is useful

in NSE problems to satisfy various requirements simultaneously and to achieve the goal

of total optimization.

On the other hand, it is known that the population converges to a single form in

conventional genetic algorithms, unlike in nature where diverse forms can be found. For

rapid adaptation to environmental variations in the NSE problem, it is required to main-

tain diverse solutions in the population. In response to this, methods have been proposed

that can generate diverse and high-quality solutions by proceeding with optimization while

maintaining solution diversity, and such methods are called quality-diversity algorithms.

MAP-Elites (Multi-dimensional Archive of Phenotypic Elites) [7] and NSLC (Novelty
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Search with Local Competition) are representative examples, and our group’s paper ap-

plying them to the dynamic VNE shows [8]. Because of its lower computational cost,

in this paper, we applies the MAP-Elites algorithm to the NSE problem and proposes a

method of optimizing multiple network slices in parallel.

The genetic algorithm treats the solution as if it were an individual organism, and

proceeds with optimization by repeatedly generating and selecting new individuals from

a randomly generated population. Each individual has a sequence of integers called the

genotype, and the genotype must be decodable into a phenotype, or solution, by some

procedure. In addition, each individual has an evaluation value that determines whether

or not it can survive in its environment, which is called its fitness. The genotypes can

be changed by genetic manipulation, such as crossover with the genotype of another in-

dividual or mutation, to produce new individuals with new genotypes. Their fitness is

calculated from the solutions obtained by decoding their genotypes, and the values deter-

mines whether they remain in the population.

In order to apply the MAP-Elites algorithm to the NSE problem, it is necessary to

define the encoding method of the solution and the fitness. In MAP-Elites, it is known the

encoding method that directly encodes parameters as genotypes is effective [9], and in the

NSE problem, the correspondence of the substrate node/path to each virtual node/link

in the network slice can be used as the genotype. Since it is important to embed the

network slice in the NSE problem by satisfying the requirements and saving the substrate

resources, the fitness is defined as a value that decreases when the slice requirements are

violated and increases when the residual resources are large.

As mentioned above, in a realistic scenario of the NSE problem, it is required to be

embed multiple network slices in parallel. If embedding of all network slices is controlled

by a single controller, the size of the problem space increases exponentially with respect to

the number of network slices, since combinations about elements of all network slices must

be handled. Therefore, it is not realistic to control multiple network slices with a single

controller from the perspective of scalability. Therefore, in this method, a controller using

the MAP-Elites algorithm is assigned to each network slice separately, and optimization

of each network slice is performed in parallel. However, it is unable to achieve total op-

timization by simply optimizing each individual slice. Therefore, by introducing unselfish
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evaluation values into the fitness, we aim to realize cooperative behavior and achieve total

optimization.

We evaluated the effectiveness of this method through computer simulation. We mod-

eled the arrival of network slice requests as a Poisson process, quantified the degree of

total optimization through the acceptance ratio, and compared the methods introducing

unselfish evaluation values and not in a simulation program in which multiple network

slices generated over time are controlled by individual controllers in parallel.

The remainder of this paper is organized as follows. Section 2 introduces the overview

of NSE problem and QD algorithms, and the detail of MAP-Elites, the QD algorithm used

in this research. Section 3 formulates the NSE problem in detail and describes the models

used in the simulation. Section 4 explains and formulates our method. Section 5 shows

the simulation settings and the results of computer simulations. Section 6 summarizes

this paper.
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2 Related work

2.1 Network Slice Embedding Problem

As the use cases in 5G networks have diversified in recent years, so have the requirements

for the networks. Specifically, there are such use cases as URLLC (Ultra-reliable and

Low Latency Communications), which requires high reliability and low latency for appli-

cations such as automated driving and remote medical robots; eMBB (enhanced Mobile

Broadband), which requires high data rates for such applications as video streaming; and

mMTC (Massive Machine Technology), which requires simultaneous communications in

large-scale networks such as sensor networks and IoT [10]. Cooperative control is essential

to efficiently deploy slices with different requirements simultaneously. On the other hand,

integrated control of all slices for total optimization leads to an increase in the problem

scale and makes it difficult to solve the problem in a practical time. Therefore, while each

slice is controlled individually, it is required to cooperate with each other to improve the

overall acceptance ratio of network slice requests.

When the control of network slicing in 5G networks is regarded as an optimization

problem, it has various algorithmic aspects, one of which is as a resource allocation prob-

lem [1]. In [11], network slice optimization is defined as a Virtual Network Embedding

(VNE) problem, but the target of control is from the base station to the core cloud, not

E2E communication including UE. In addition, Chien et al. [12] assumes E2E communi-

cation on 5G networks and implements resource allocation control for network slices, but

the slice embedding is not subject to control, and the resource allocation algorithm does

not consider optimization. Ludwig et al. [2] defines the optimization of network slice em-

bedding for E2E communication including UE as the NSE problem, which is an extension

of the VNE problem.

In the NSE problem, the substrate network and network slices are modeled as undi-

rected graphs, and the nodes composing the substrate network are classified as UE and

cloud nodes, while the nodes comprosing the network slice are classified as UE and appli-

cations. Cloud nodes and substrate links have finite resources, which are consumed to host

applications and communications between UE and applications. The NSE problem is to

determine which requests to accept from multiple network slices and the way to allocate
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resources to those slices under this resource constraint. In [3], the NSE problem including

application chains is formulated, and the definition in this paper is mainly based on the

description in this work. However, we exclude the terms of availability and reliability that

are defined in this work.

In [2], an extension of the NodeRank method is proposed, which is a heuristics for

the VNE problem, and shows high scalability in terms of computation time, while having

similar acceptance ratio of slice requests compared to an existing method based on integer

linear programming. On the other hand, even though this work includes latency in the

slice requirements, the proposed method does not consider latency. In addition, although

the proposed method assumes the parallel embedding of multiple network slices, it does

not incorporate the network resource condition varying over time and information from

other slices into the ranking, and does not consider the total optimization.

The aim of this research is to realize a parallel optimization method that controls net-

work slices individually to ensure scalability, while cooperating with each other to achieve

total optimization. Taking advantage of the flexibility in designing the fitness (objective

function) and search space of the quality diversity algorithm, we incorporate the terms

about latency requirements and necessary for cooperation with the controller managing

other slices into the fitness and design a search space effective for improving the fitness to

achieve efficient total optimization.

2.2 Quality-Diversity Algorithm

Conventional optimization algorithms search for a single global optimal solution that max-

imizes the objective function, and multi-objective optimization algorithms also search for

vertices in the search space. Quality diversity algorithm is evolutionary algorithmic frame-

work that differ from them in that it exhaustively searches for qualitatively different and

superior solutions distributed throughout the search space [13]. The main difference from

multi-objective optimization algorithms is that they search within the feature space rather

than the genotype space, and they also search in regions of the feature space where there

are no vertices of the objective function. This concept originated in the novelty search [14],

and algorithms that divergently search for superior solutions in the search space, such as

NSLC [15] and MAP-Elites [7], were developed, and the quality diversity algorithm has
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been proposed as the framework of such algorithms [16]�

In optimization with the QD algorithms, it is necessary and important to define the

fitness which is the evaluation value of the solution and the feature space. Since the

population evolves to improve the fitness, it is necessary to define the fitness appropriately

in order to achieve the objective. It is also important to design the feature space so that

various solutions are widely distributed, since solutions are divergently searched in the

feature space.

2.2.1 MAP-Elites Algorithm

MAP-Elites [7] is a sort of QD algorithm that aims to compute the maximum fitness

distribution in a low-dimensional feature space for a high-dimensional search space. Users

of MAP-Elites need to select several features of interest from the problem object and

design a feature space. The feature space has dimensions whose variables are those features

and they are divided at a certain granularity, which makes cells in the space; MAP-Elites

outputs the solution with the highest fitness in each cell on the feature space. It is reported

that MAP-Elites is unlikely to fall into a local optimum compared to conventional genetic

algorithms, as it calculates individuals with high fitness in a larger region of the feature

space in parallel and generates a new solution based on them.

MAP-Elites is inspired by novelty-search [15] with local competition: since MAP-Elites

seeks only a single optimal solution for each cell (this solution is called an occupant), if

the newly generated solution belongs to a cell that already has an occupant, the solution

with the higher fitness of them remains as the occupant. This property reflects the fact

that selection occurs through local competition with neighboring individuals in nature.

The pseudocode of MAP-Elites is shown in Algorithm 1. F and X are sets, returning

fitness and individuals with a cell identifier (ID) as index, respectively. A unique ID

for each cell is returned by feature_descriptor where the same value is always returned

for features contained in the same cell. Each cell contains the individual with the highest

fitness among the individuals explored in it. In each iteration, random variation (mutation

and crossover) is applied to a randomly selected individual from the population, and the

individual is compared with the current occupant of the cell corresponding to its features,

and if it has higher fitness, the occupant is replaced with it, leading to evolution.
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Algorithm 1 Pseudocode of MAP-Elites [7]
procedure MAP-Elites

F ← ∅,X ← ∅

for iter ← 1, I do

if iter < G then

x′ ← random_solution()

else

x← random_selection(X )

x′ ← random_variation(x)

b′ ← feature_descriptor(x′)

f ′ ← fitness(x′)

if F(b′) = null or F(b′) < f ′ then

F(b′)← f ′

X (b′)← x′

return feature-fitness map (F and X )

14



3 Formulation of Dynamic Network Slice Embedding Prob-

lem

In this research, the NSE problem is formulated mainly based on the previous work [2] [3].

The substrate network and network slices are modeled as undirected graphs. A undirected

graph is expressed generally as a ordered pairG = (V,E), where V is the set of vertices, and

E is the set of edges. The edge between two vertices vi, vj ∈ V is denoted by ei,j = (vi, vj).

Then, the substrate network is represented by NS = (VS , ES). The vertices of substrate

network is classified into UE and cloud nodes, they are denoted by VU , VC , respectively, and

VS = VU∩VC . ES represents the wired or wireless links, and there is no connection between

UE, which means ∀ei,j ∈ ES (vi ∈ VC ∨ vj ∈ VC). The cloud nodes and the wired/wireless

links have finite resources. CPU resource C(v) and memory capacityM(v) of a cloud node

v ∈ VC , and throughput T (e) and latency L(e) of a link e ∈ ES are considered in this

research. In addition, all cloud nodes have a loop with infinite throuput and zero latency.

This is because the situation is assumed that each cloud node consists of multiple nodes

and each of them can host application individually.

Similarly, the requested network slice is represented by NR = (VR, ER). The net-

work slice consists of some of the UE in the substate network and applications hosted

by cloud nodes. Thus, let V ′
U ⊂ VU and VA denote the set of the UE used in this

slice and the applications, respectively, and VR = V ′
U ∪ VA. ER is the set of virtual

links between UE and applications, and the is no virtual link between UE, which means

∀ei,j ∈ ER (vi ∈ VA ∨ vj ∈ VA). The applications and the virtual links have attributes of

the resource requirements corresponding to the substrate resources(C,M, T, L).

Figure 2: Diagram of NSE problem
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In the NSE problem, for multiple network slice requests, it is required to decide whether

each of them is accepted or not and how to allocate resources. Let R denote the set of the

N requested network slices, and for each element Nk
R = (V k

R , E
k
R) = (V ′k

U ∪ V k
A , E

k
R)(1 ≤

k ≤ N), whether it is accepted or not is represented by the mapping MA : R → {0, 1}.

In addition, the set of the numbers of accepted network slices is denoted by NA = {k |

MA(N
k
R) = 1}.

MA(N
k
R) :=


1 if Nk

R is accepted

0 otherwise

For each element Nk
R of the set of accepted network slices RA = {Nk

R ∈ R |MA(N
k
R) =

1}, the way to allocate its applications to cloud nodes is represented the mappingMk
N : V k

A →

VC . To extend the domain to V k
R , the mapping M ′k

N : V k
R → VS is defined additionally.

It should be noted that the mapping Mk
N does not have to be injective while the node

allocation in VNE problem does so.

M ′k
N (n) :=


Mk
N (n) (n ∈ V k

A)

n (n ∈ V ′k
U )

The way to allocate virtual links to substrate paths is represented by the mapping

Mk
L : E

k
R → PS , where PS is the set of all possible path on the substrate network. A path

is a finite sequence of vertices, the kth term(vertex) of a path p is denoted by pk, and its

length is denoted by |p|. In addition, the notation ei,j
in∼ p means that the edge ei,j is

included in the path p, and the latency of the whole path p is denoted by LP (p), which is

formulated by

ei,j
in∼ p def⇔ ∃q ((pq = vi ∧ pq+1 = vj) ∨ (pq = vj ∧ pq+1 = vi))

LP (p) :=

|p|−1∑
k=1

L ((pk, pk+1))

The allocated network slice must have the same topology as the requested network

slice, and this constraint is defined as the logical formula 1.

∀k ∈ NA ∀ei,j ∈ EkR
(
Mk
L(ei,j)1 =M ′k

N (vi) ∧Mk
L(ei,j)|Mk

L(ei,j)|
=M ′k

N (vj)
)

(1)
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Moreover, each cloud node must satisfy the resource requirements of applications it

hosts, and this constraint is defined as the logical formula 2.

∀c ∈ VC ∀Attr ∈ {C,M}

 ∑
k∈NA

∑
a∈V k

A(c)

Attr(a) < Attr(c)

 (2)

where

V k
A(c) = {a ∈ V k

A |Mk
N (a) = c}

Similarly, each substrate link must satisfy the resource requirements of the virtual links

established on it, and this constraint is defined as the logical formulae 3,4.

∀ei,j ∈ ES

 ∑
k∈NA

∑
er∈Ek

R(ei,j)

T (er) < T (ei,j)

 (3)

∀k ∈ NA ∀er ∈ EkR
(
LP (M

k
L(er)) < L(er)

)
(4)

where

EkR(ei,j) = {er ∈ EkR | ei,j
in∼Mk

L(er)}

The NSE problem is defined as deciding the mappings MA,M
k
N ,M

k
L satisfying these

logical formula.

In the following subsections, the models about the NSE problem is explained assumed

in the evaluation of this research.

3.1 Substrate Network Model

In this research, the substrate network architecture is assumed to be the layer substrate

consisting of four layers: UE, Node B, edge cloud, and central cloud, proposed in [2], [17].

The layers except for UE are classified as cloud nodes, the resource amount increases, and

the number of nodes decrease in the above order. There are only links connecting between

adjacent layers. Let VNB, VEC , VCC denote the sets of nodes of Node B, edge cloud, central

cloud, respectively, this is formulated by

∀ei,j ∈ ES ((i ∈ VU ∧ j ∈ VNB) ∨ (i ∈ VNB ∧ j ∈ VEC) ∨ (i ∈ VEC ∧ j ∈ VCC))

17



Figure 3: Layer substrate network model

Although the wireless links between UE and Node B are modeled similarly to other

wired links in [2], the available bandwidth is shared among UE connecting to the same

Node B in actual, thus they should be modeled such that the throughput is shared. In this

paper, we added the layer representing radio access network(RAN) between UE layer and

Node B layer, and UE connecting to the same Node B is made through the same RAN to

share the available throughput. Here, |VNB| = |VRAN |∧∀vi ∈ VNB ∃!vj ∈ VRAN (ei,j ∈ ES).

In addition, the links between Node B and RAN have certain throughput and zero latency,

and the links between UE and RAN have infinite throughput and certain latency.

Figure 4: Addition of RAN layer
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3.2 Network Slice Request Arrival Model

Network slice requests is supposed to be issued individually by each client, the issues are

events independent of each other, and such process can be modeled as Poisson process. The

occurrence probability of events in Poisson process follows Poisson distribution, which is a

discrete probability distribution that express the probability of the case the event, which

occurs λ times per time unit on average, occurs k times within a time unit. Let X be the

random variable representing the number of events that occurs within a time unit, the

probability is

P (X = k) =
λke−λ

k!

Network slices are deactivated after a certain interval from the time they are hosted,

and the interval is called lifetime. The interval t between occurrence of events in Poisson

process follows the exponential distribution with the below probability density function.

f(t) = λe−λt

Therefore, the model in which n network slice requests is alive simultaneously can be

implemented by setting the lifetime of slices as the random number following the same

distribution as the interval of event which occurs λ/n times per time unit on average.

Thus, the lifetime of each network slice is generated as random number following the

exponential distribution with the below probability density function.

f(t) =
λ

n
e−

λ
n
t
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4 Dynamic Network Slice Control Method using QD algo-

rithm

In the following explanation, the formulae defined in section 3 are used. In this method, the

behavior of the controller of embedding individual network slice is described with MAP-

Elites algorithm, and the controllers assigned to network slices optimize their own embed-

ding separately in parallel. In short, the controllers optimize the mappings MA,M
k
N ,M

k
L

that is the solution of the NSE problem.

The controller of the network slice Nk
R is defined as Ck.

Ck = (Pk, F k, Ak)

where Pk is the population in MAP-Elites algorithm, which is the set of the genotype of an

individual in each cell(occupants) of the feature space, and F k, Ak are the mappings from

the genotype to the fitness and the value representing whether it is feasible solution or

not, respectively. A feasible solution mentioned here is the solution satisfying the logical

formulae 1–4, and Ak(g) = 1 if the genotype g is a feasible solution, otherwise Ak(g) = 0.

The details of the mappings F k, Ak are described in section 4.2. Pk varies every iteration

in Algorithm 1, so the state of the controller at the time t is denoted by Ckt = (Pkt , F k, Ak).

Here, the mapping MA at the time t is defined as

MA(N
k
R | t) :=


1 if ∃i ≤ t ∃g ∈ Pki (Ak(g, i) = 1)

0 otherwise

which means the network slice Nk
R is accepted if the controller Ck has found a feasible

solution by the time t.

The genotypes which are elements in the population Pkt can be translated into the pair

of mappings corresponding to Mk
N ,M

k
L by certain procedure, and the details is mentioned

in section 4.1. Let us define this procedure as the mapping deck here, and the mappings
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Mk
N ,M

k
L at the time t are decided as

Mk
N (a | t) :=Mk

Nt(a)

Mk
L(l | t) :=Mk

Lt(l)

(Mk
Nt,M

k
Lt) = deck

argmax
g∈Ak

t′

F k(g, t′)


where

t′ = max{i ≤ t | ∃g ∈ Pki (Ak(g, i) = 1)}, Akt′ = {g ∈ Pkt′ | Ak(g, t′) = 1}

These formulae means the solution at the time t is made by decoding the genotype of the

individual with the highest fitness of the feasible solutions found last by the time t.

4.1 Encoding of Solutions

In dealing with combinatorial optimization problem using genetic algorithms, the genotype

and the way to decode it into solution as phenotype must be defined. It is known that it is

effective to encode the parameters directly into genotype with MAP-Elites, so the solution

parameters of the NSE problem are used as the genotype in this research. The solution

in optimization of the network slice Nk
R is the mappings Mk

N ,M
k
L, and the parameters

are the substrate elements mapped from a ∈ V k
A and l ∈ EkR. Therefore, the genotype

g is defined as the sequence of the values representing these elements. For nodes, when

Mk
N (ai) = cj(ai ∈ V k

A , cj ∈ V k
C ), gi is set to j. For edges, it is supposed that the substrate

path assigned to each virtual link is selected from only the K shortest paths between the

substrate nodes assigned to the ends of the link, and the number of path when arranged

in the ascending order of length is used as parameter. Let phi,j denote the h-th shortest

path between ci, cj , and it is supposed that each element of EkR can be denoted by ld using

the unique number d ∈ N⩽|Ek
R|. Finally, when Mk

L(ld) = ph
Mk

N (ai),Mk
N (aj)

(ld = (i, j) ∈ EkR),

g|VA|+d is set to h. Thus, any genotype is an element of the set Gk = N|V k
A |

⩽|VC | × N|Ek
R|

⩽K , and

the search space of the algorithm is the set Gk.

Conversely, when the genotype g ∈ Gk is decoded into the pair of mappings corre-

sponding to Mk
N ,M

k
L, each term of the genotype g is translated to the substrate elements
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mapped by the mappings. Thus, the mapping deck is defined as

deck(g) := (ϕkg , ψ
k
g )

ϕkg(ai) := cgi

ψkg (ld) = ψkg ((ai, aj)) := p
g|V k

A
|+d

ϕkg(ai),ϕ
k
g(aj)

Note that the pair of mappings ϕkg , ψkg decoded by deck does not satisfy the logical for-

mulae 1–4 necessarily, and phenotypes not satisfying these constraints are not feasible

solutions.

4.2 Definition of Fitness

The fitness which is the objective function should be defined appropriately in order to

reflect the requirements. In this method, which optimizes multiple network slices in paral-

lel, when an individual is evaluated in the controller Ck, the slices of the other controllers

should be embedded according to the solution made by them at that time. At the time

t, the residual resource amounts RN of c ∈ VC and the residual throughput of e ∈ ES are

defined as

RN (c, Attr, k, t) := Attr(c)−
∑
n∈Nk

A

∑
a∈V n

A (c|t)

Attr(a)

RL(e, k, t) := T (e)−
∑
n∈Nk

A

∑
er∈En

R(e|t)

T (er)

where

Attr ∈ {C,M}, NkA = {n | n ̸= k ∧MA(N
n
R | t) = 1},

V n
A (c | t) = {a ∈ V n

A |Mn
N (a | t) = c}, En

R(e | t) = {er ∈ EnR | e
in∼Mn

L(er | t)}

Also, the requested resource amounts QN to c ∈ VC and the requested throughput

QL to e ∈ ES when the network slice Nk
R is embedded according to the pair of mappings

deck(g) are defined as

QN (c, Attr, k, g) :=
∑

a∈V k
A(c|g)

Attr(a)

QL(e, k, g) :=
∑

er∈Ek
R(e|g)

T (er)
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where

V k
A(c | g) = {a ∈ V k

A | ϕkg(a) = c}, Ek
R(e | g) = {er ∈ EkR | e

in∼ ψkg (er)}

The essential requirement in NSE problem is satisfaction of the logical formulae 1–4,

so the fitness should be defined such that it decrease as these constraints are violated,

and then the population evolves to satisfy the requirement. The logical formula 1 is

always satisfied essentially by the definition of genotype mentioned in section 4.1, the

logical formulae 2–4 only have to be taken into account. Therefore, the penalty term P k

representing the degree of the violation of the resource requirements is defined as below.

In this term, the term about latency constraint should be weighted significantly since the

formula 4 is independent of the other slice embedding, and the satisfaction of this is top

priority. Thus, setting the constant µ large directs the evolution to satisfy the latency

constraint preferentially.

P k(g | t) :=
∑

X∈{C,M}

∑
c∈VC

max {QN (c,X, k, g)−RN (c,X, k, t), 0}

+
∑
e∈ES

max {QL(e, k, g)−RL(e, k, t), 0}

+ µ
∑
er∈Ek

R

max
{
LP (ψ

k
g (er))− L(er), 0

}

Here, when P k(g | t) = 0, the pair of mappings deck(g) is a feasible solution of the

NSE problem. Therefore, the mapping Ak is defined as

Ak(g, t) :=


1 if P k(g | t) = 0

0 otherwise

Additionally, there is a basic objective in NSE problem is to save the cost of hosting

network slices. This can be achieved by minimizing the total requested resource amount.

Since the amounts of requested resources of cloud nodes from applications are constant,

it is needed to consider only the requested throughput from virtual links.

Therefore, the fitness reflecting these objective can be composed as below.

−ρP k(g | t)−
∑
e∈ES

QL(e, k, g)
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where ρ is a constant, and setting this large leads to the evolution such that achieve the

resource requirements preferentially.

However, this definition of fitness results in just local optimization about the net-

work slice Nk
R since the other slices is not taken into account. To overcome this problem

and realize the cooperative behavior considering the other slices, we defined the unselfish

evaluation values additionally and incorporate them into the fitness.

4.2.1 Unselfish Behavior: Load Balancing

Generally, to accept more network slices, it is important to avoid the resource fragmen-

tation, that is, to reduce the number of bottleneck, which is element with little residual

resource. This can be realized by using the elements with abundant residual resources pref-

erentially. The total residual resources of the substrate elements assigned to the network

slice Nk
R is incorporated into the fitness, thus such solutions are selected preferentially.

Therefore, the mapping Bk is defined as

Bk(g | t) :=
∑

X∈{C,M}

∑
a∈V k

A

RN (ϕ
k
g(a), X, k, t) +

∑
er∈Ek

R

∑
e∈ES(ψk

g (er))

RL(e, k, t)

where

ES(p) = {e ∈ ES | e
in∼ p}

4.2.2 Unselfish Behavior: Giving Way

When MA(N
k
R | t) = 1, if the controller Ck searches for such feasible solutions that do not

use the substrate element where the demand from not accepted slices concentrates, it is

expected more slices is accepted. The individual with the highest fitness in each controller

is the allocation best adapting to the current resource condition and highly possible to be

accepted later. Therefore, the total requested resource amounts by these individuals are

regarded as the demand of the substrate elements. At the time t, the values representing
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the demand of c ∈ VC and e ∈ ES denoted by DN , DL, respectively, are defined as

DN (c, k, t) :=
∑

X∈{C,M}

∑
n∈Nk

R

∑
a∈V n

A (c|t)

Attr(a)

DL(e, k, t) := T (e)−
∑
n∈Nk

R

∑
er∈En

R(e|t)

T (er)

where

NR = {n |MA(N
n
R | t) = 0}, V n

A (c | t) = {a ∈ V n
A | ϕngnt (a) = c},

EnR(e | t) = {er ∈ EnR | e
in∼ ψngnt (er)}, g

n
t = argmax

g∈Pn
t

F k(g, t)

The controller Ck should search for feasible solutions using the substrate elements where

these values are lower, this means the population should evolve to minimize the total

demand of the substrate elements assigned to the slice. Thus, the mapping Dk is defined

as

Dk(g | t) :=
∑
a∈V k

A

DN (ϕ
k
g(a), k, t) +

∑
er∈Ek

R

∑
e∈ES(ψk

g (er))

DL(e, k, t)

where

ES(p) = {e ∈ ES | e
in∼ p}

4.2.3 Definition of Fitness for Cooperative Control

Using the terms defined above, the mapping returning the fitness F k is defined as

F k(g, t) := −
∑
e∈ES

QL(e, k, g)− ρP k(g | t) + ϵBk(g | t)−MA(N
k
R | t) · δDk(g | t)

where ϵ, δ are constants, ϵ should be set small for the third term not to affect the other

requirements. The fourth term is valid only when a feasible solution has been already

found in the controller Ck, and set large to give way to the other controllers.

4.3 Design of Feature Space

Since MAP-Elites algorithm searches for solutions in feature space, it is important to

design such feature space that can capture the superior solutions spread in search space
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well. In addition, for the flexible adaptation to the environmental change occurring in

dynamic NSE problem, it is effective to use the features whose the optimal value varies by

the environment as variables. Based on above, the features below are used in this method.

1. The total resource amount of assigned nodes

— This feature is the total substrate resource amount of the cloud nodes assigned

to the applications. In the layer substrate network model defined in section 3.1,

the resource amounts varies by the type of cloud node. Therefore, this feature

reflects which type of nodes are mainly used. Since the optimal node usage

varies by the service requirements of the slice and the substrate resource con-

dition, it is effective to search for solutions divergently about this feature.

However, the distribution of the solutions in the dimension whose variable is

this value is heterogeneous, which leads to the degradation of solution search

efficiency. Thus, the value F1 is used as the substitution of this value. Note

that the numbers of the substrate nodes are assigned in order of Node B, edge

cloud, and central cloud.

2. The total latency

— This feature is the total latency of the substrate paths assigned to the virtual

links. This value is correlated mainly with the number of hops of paths, but

the paths with the same number of hops can be distinguished by latency, which

leads to the diverse path selection. Since the diverse path selection results in

avoiding usage of resources with high demand, it is effective in this problem.

For this feature, the value F2 is used as the substitution for the same reason

as above.

F1(g, k) :=

|V k
A |∑

i=1

gi

F2(g, k) :=

|Ek
R|∑

i=1

g|V k
A |+i
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5 Evaluation

For the dynamic NSE problem of controlling multiple network slices in parallel, we com-

pared our proposed method with the previous methods through computer simulations in

the two network slice request scenarios below.

Scenario 1

The scenario based on the network slice arrival model defined in 3.2. The parameters

of the model are set as λ = 0.2, n = 40, and the duration of a single simulation is

1000 time units. The time-out period is set to 100 time units. If a controller does

not find a feasible solution by the period, the network slice request is rejected. This

scenario is used as dynamic environment assuming realistic use case.

Scenario 2

The scenario where 100 network slice requests arrive at the beginning of simulation.

This is used for the evaluation of solution search efficiency and total optimization

performance of each method under static environment.

In any simulation, 100 individuals (solution candidates) are evaluated per time unit. In

this paper, the real-time evaluation is not performed since the simulation program is not

optimized. It is assumed there is no difference about computation time among the methods

because the evaluation process is same in all methods.

The methods we evaluated are shown in Table 1. The proposed methods are notated

with * in this table. The parameters in Table 1 are constants in the equation 4.2.3.

Elitism-based Genetic Algorithm (EGA) is a basic genetic algorithm that adopt elitism to

make its evolution steady and used as a conventional genetic algorithm in this comparison.

The method NR applies RW-BFS which is a heuristic in the VNE problem to this problem

in the same way as the heuristic proposed in [2].

The substrate network is generated based on the layer substrate network model defined

in section 3.1 and common between the scenarios. The parameter settings of the substrate

network used in simulation are shown in Table 2. In Table 2, EA,B is the set of links

between elements of VA, VB, and |E| is the number of elements of VB connected to each

element of VA. Note that elements of EU,NB are through VRAN actually.
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Table 1: The methods used in this comparative evaluation

Parameter

Notation Algorithm µ ρ ϵ δ

*ME-C

MAP-Elites 104 102

10−5 102

*ME-LB 10−5 0

*ME-GW 0 102

ME-I 0 0

GA-C
EGA 104 102

10−5 102

GA-I 0 0

NR RW-BFS [18] - - - -

Table 2: Parameter settings of the substrate network

Node Type Link Type

VU VNB VEC VCC EU,NB ENB,EC EEC,CC

|V | 90 30 10 1 |E| [1, 3] [2, 6] [1, 1]

C,M - [100, 200] [200, 700] [5000, 10000] T [50, 80] [80, 150] [200, 500]

L [3, 7] [3, 5] [2, 4]
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Evaluation Metrics For the quantification of the degree of the total optimization, we

define the acceptance ratio of network slice requests as the metric.

At the time t, the acceptance ratio is given by

|{NR ∈ R | ∃t (MA(NR | t) = 1)}|
|R|

Furthermore, the profitability is also an important metric to evaluate NSE methods, there-

fore we define the revenue and the revenue to cost ratio (R/C ratio) like the previous

work [18]. The revenue Rv(t) and the cost Cs(t) are defined as

Rv(t) :=
∑
k∈NA

 ∑
X∈{C,M}

∑
a∈V k

A

X(a) +
∑
l∈Ek

R

T (l)


Cs(t) :=

∑
k∈NA

 ∑
X∈{C,M}

∑
a∈V k

A

X(a) +
∑
l∈Ek

R

(|Mk
L(l)| − 1)T (l)


Consequently, the R/C ratio is given by

Rv(t)

Cs(t)

In addition, the average revenue over the entire duration is called the long-term rev-

enue, which is given by

lim
T→∞

∑T
t=0Rv(t)

T

Similarly, the long-term R/C ratio can also be defined as

lim
T→∞

∑T
t=0Rv(t)∑T
t=0Cs(t)

5.1 Comparison under the Dynamic Environment

For the performance comparison under the realistic dynamic environment, NSE using

each method is simulated. The parameter settings about network slice requests in this

simulation are shown in Table 3. The same network slice requests and arrival times are

used in every simulation. For the methods except for NR, the simulations are performed

30 times in the same settings since genetic algorithms are probabilistic.

The simulation results for each method are shown in Table 4 and Figure 5–8. Table 4

shows that our proposed method ME-C accepts the most slices and produces the most
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Table 3: The network slice requirements by service types in scenario 1

Service Type

URLLC eMBB mMTC

|V ′
U | [1, 10] [1, 10] [15, 30]

|VA| [1, 5] [1, 10] [1, 5]

C,M [3, 15] [10, 40] [1, 3]

T [5, 15] [10, 20] [1, 5]

L [10, 30] [25, 50] [50, 100]

long-term revenue, which reveals that the total optimization is realized by the cooperative

behavior in our methods. The metrics of all methods using MAP-Elites are larger than

those of other methods. This means that MAP-Elites searches diverse feasible solutions

most efficiently in larger search space. While the difference of the acceptance ratio among

the methods using MAP-Elites is small, the difference of the long-term revenue is large

relatively. Moreover, ME-LB accepts more slices than ME-GW, whereas ME-GW produces

more revenue than ME-LB. This result indicates that the requests with more resource

requirements tend to be accepted by the cooperative behavior “giving way”. On the other

hand, the R/C ratios of ME-C and ME-GW are less than the other ME, which is caused by

the selection of longer paths. It is found from these result that the selection of detour paths

for giving way results in the acceptance of the requests with more resource requirements.

Table 4: Evaluation metrics in scenario 1
ME-C ME-LB ME-GW ME-I GA-C GA-I NR

Acceptance ratio(%) 65.5 65.2 64.8 64.4 62.3 61.2 51.3

Long-term revenue 2861.0 2755.0 2849.4 2709.3 2589.8 2478.3 2102.7

Long-term R/C ratio(%) 50.3 55.4 50.2 55.4 49.6 53.9 50.7
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Figure 5: Acceptance ratio through a single simulation in scenario 1

Figure 6: Long-term revenue through a single simulation in scenario 1
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Figure 7: The transition of the number of accepted network slices over time in scenario 1

Figure 8: The transition of R/C ratio over time in scenario 1
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5.2 Comparison under the Static Environment

For the comparison the profits among the proposed method, we evaluate the methods

using MAP-Elites in scenario 2. The parameter settings about network slice requests in

this simulation are shown in Table 5.

Table 5: The network slice requirements by service types in scenario 2

Service Type

URLLC eMBB mMTC

|V ′
U | [1, 5] [1, 10] [15, 30]

|VA| [1, 3] [1, 5] [1, 5]

C,M [3, 15] [10, 40] [5, 10]

T [2, 3] [3, 5] [1, 2]

L [16, 20] [25, 50] [50, 100]

Simulations are conducted for each of three the sequence of slice requests generated

based on these settings. The transition of number of accepted requests is depicted in

Figure 9. According to this figure, the methods are classified into two groups; the group

including ME-C and ME-GW, and the others. It is shown that the number of accepted

requests of ME-C and ME-GW increases rapidly, which means that the search of feasible

solutions using resources with less demands promotes the acceptance of the other slices.

The more early acceptance of more slices is desirable, and the increase of acceptance ratio

in the evaluation under scenario 1 should be caused by this effect. On the other hand, it

depends on the case which method accept the most slices finally. This suggests that the

properties of the network slice requests affect the effectiveness of the cooperative behaviors.

Based on these figures, it seems the difference between ME-C and ME-LB is negatively

correlated with the final number of accepted requests, which implies that the advantage

of giving way becomes large if the substrate resources are abundant, and the advantage

of load balancing becomes large if not. However, since no statistic analysis is conducted

about this relation, the research about the relation between the properties of requests and

the effectiveness of methods is feature work.
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(a) (b)

(c)

Figure 9: The transition of the number of accepted requests over time in scenario 2
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6 Conclusion

For the dynamic NSE problem in which it is needed to deal with multiple network slices

with diverse requirements, we proposed the total optimization method that optimizes

each slice with individual controller behaving cooperatively in parallel. Taking advantage

of the design flexibility of the objective function in QD algorithm, we incorporated the

unselfish evaluation values into the fitness to realize cooperative behavior, which enables

the total optimization by separate controllers. Through computer simulations under the

realistic dynamic scenario and the static scenario, the comparative evaluation revealed the

effectiveness of our proposed method and the properties of each variant.

In the evaluation, the weighting parameters in the fitness are fixed to certain values,

although we did not conduct the search for the appropriate setting of the parameters. For

example, setting the parameter δ large caused of excess usage of substrate resources in the

conducted simulations. As the finer parameter settings may lead to the improvement of

the performance of proposed methods, this is future work.

Although we made the dedicated simulation program for the evaluation, a sufficient

number of simulations cannot be conducted due to the execution time. For further detailed

research, the simulation program must be redesigned to reduce of the execution time. The

evaluation of the solution candidate can be formulated as matrix operation and accelerated

by using GPU. Subsequently to the acceleration, the large scale simulation should be

conducted to analyze the properties of the methods statistically. These are also future

works.
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