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Abstract—In multi-sensor systems, certain sensors could have
vulnerabilities that may be exploited to produce AEs. However,
it is difficult to protect all sensor devices, because the risk of the
existence of vulnerable sensor devices increases as the number of
sensor devices increases. Therefore, we need a method to protect
ML models even if a part of the sensors are compromised by the
attacker. One approach is to detect the sensors used by the attacks
and remove the detected sensors. However, such reactive defense
method has limitations. If some critical sensors that are necessary
to distinguish required states are compromised by the attacker,
we cannot obtain the suitable output. In this paper, we discuss
a strategy to make the system robust against AEs proactively.
A system with enough redundancy can work after removing the
features from the sensors used in the AEs. That is, we need a
metric to check if the system has enough redundancy. In this
paper, we define groups of sensors that might be compromised
by the same attacker, and we propose a metric called criticality
that indicates how important each group of sensors are for
classification between two classes. Based on the criticality, we can
make the system robust against sensor-based AEs by interactively
adding sensors so as to decrease the criticality of any groups of
sensors for the classes that must be distinguished.

Index Terms—Adversarial examples, sensors

I. INTRODUCTION

The fusion of machine learning (ML) with various sensors
has significantly advanced crucial areas, including healthcare
[8], self-driving cars [5], and other sectors [12]. In these
applications, sensor data is gathered via the Internet or a
network operated by the service provider, and ML models then
use this data to assess the current state. It has been proven that
leveraging data from multiple sensors markedly improves the
precision of these systems’ recognition capabilities.
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However, with the increasing deployment of ML-based sys-
tems, these systems and their models have become targets for
malicious actors. Adversarial examples (AEs) are deliberately
crafted inputs that can cause an ML system to make incorrect
predictions or decisions. Physical AEs for object detectors
have shown that deep neural networks used in safety-critical
cyber-physical systems can be vulnerable to such attacks
[4]. Additionally, Bortsova et al. demonstrated that AEs are
capable of manipulating deep learning systems across three
clinical domains: radiology, ophthalmology, and cardiology
[2].

In multi-sensor systems, certain sensors could have vulner-
abilities that may be exploited to produce AEs. The potential
for altering sensor data by tampering with the sensor device’s
software has been established [3]. Additionally, Monjur et al.
have shown that if an attacker has physical access, hardware
modifications can also lead to data tampering [9]. Furthermore,
our research has indicated that if an attacker manipulates
readings from some sensors, it is possible to alter the outputs
of ML models that utilize multiple sensors [7]. This suggests
that it is not necessary to manipulate all sensor readings
to impact the model’s outputs. We refer to this form of
manipulation as sensor-based AEs.

However, it is difficult to protect all sensor devices, because
the risk of the existence of vulnerable sensor devices increases
as the number of sensor devices increases. Therefore, we need
a method to protect ML models even if a part of the sensors
are compromised by the attacker.

We have proposed a method to detect the sensors used by
sensor-based AEs [6]. In this method, we introduced a model
called the feature-removable model (FRM) that allows us to
select the features used as an input into the model. We obtain
the outputs of the FRM using all features and features from
some of the sensors. If we find inconsistencies between the
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outputs, our method detects the sensors the attacker uses by
finding the sensors causing the inconsistency. After detecting
the sensors the attacker uses, we can use our FRM to keep the
system work; we can obtain the output of the FRM without
using the features from the detected sensors to avoid the impact
of the attacks.

However, such reactive defense method has limitations. If
some critical sensors that are necessary to distinguish required
states are compromised by the attacker, we cannot obtain the
suitable output even if we use the FRM without using the
features from the detected sensors. As a result, we cannot
keep the system work.

In this paper, we discuss a strategy to make the system
robust against sensor-based AEs proactively. A system with
enough redundancy can work after removing the features from
the sensors used in the sensor-based AEs. That is, we need a
metric to check if the system has enough redundancy. In this
paper, we define groups of sensors that might be compromised
by the same attacker, and propose a metric called criticality
that indicates how important each group of sensors is for
classification between two classes. Based on the criticality,
we can make the system robust against sensor-based AEs by
interactively adding sensors so as to decrease the criticality of
any sensors for the classes that must be distinguished.

II. SENSOR-BASED ADVERSARIAL EXAMPLES

In this paper, we focus on the system that gathers values
from multiple sensors and performs classification tasks based
on ML models.

We model the system as the function f(x0:t) where x0:t =
(x0, x1, . . . , xt) is the input of the target system built from the
sensor data received from time 0 to time t and xt is the vector
corresponding to the sensor values at time t. We refer to the
j-th element of the model’s output as fj(x0:t), and fj(x0:t)
denotes the probability that the state at time t is classified into
the i-th class. f(x0:t) represents the classification outcome at
time t.

The vector xt is constructed of the values from multiple
sensors. The values of the compromised sensors can be
monitored and modified by the attacker. The information of
the compromised sensors are represented by the vector B,
which is defined as B = (b1, b2, . . . , bm); bi = 1 if the i-th
value is from the compromised sensor. The sensor values that
the attacker can monitor and modify at times t are given by
ẋt = B ◦ xt, where ◦ stands for the element-wise product.

Based on the sensor values of the compromised sensors,
the attacker creates perturbation. The sensor values including
the attacks become x′

t = xt + B ◦ G(ẋ0:t) where G(ẋ0:t) is
the attack generator and ẋ0:t = (ẋ0, ẋ1, . . . , ẋt). The attacker
can generate the attacks by training G(ẋ0:t) so that the output
becomes the class the attacker wants.

We have demonstrate that such sensor-based AEs are pos-
sible [7]. In this paper, we discuss how to design the systems
based on multiple sensors that are robust against such attacks.

III. CRITICALITY OF SENSORS

In this paper, we define groups of sensors that might
be compromised by the same attacker and define a metric
called criticality that indicates how important each group of
sensors is for classification between two classes. We define the
criticality based of if the classes can be distinguished without
the sensors. The feature removable model (FRM) [6] is useful
to check if the class can be distinguished without the sensors,
because the FRM allows us to select the features used as an
input into the model. The rest of this section explains the
overview of the FRM and the definition of the criticality based
on the FRM.

A. Feature Removable Model (FRM)
The FRM is designed to select the features used in the

classification. We proposed the FRM as a model used to detect
sensor-based AE attacks and sensors used in the attacks; we
proposed a detection method by finding the inconsistencies
of the output of the FRM when changing the features used
for the classification. But, the FRM can be used to define the
criticality of the sensors.

The FRM is build based on the original model for the
classification by changing the first and last layer. In the initial
layer, we add a function to select the features used for the
classification. In this layer, we set the values of the features
that are not selected to 0. Then, we scale the output so that the
number of active outputs becomes similar to the case without
dropping some features based on the dropout [11].

o1,i = a

(
N all

N selected

∑
k

(w0,k,io0,k) + b1,i

)
(1)

where oi,j is the value of the j-th node at the i-th layer, w0,k,i

and b1,i are the weight and bias, and a(·) is the activation
function. The number of all features is N all and the number
of selected features is N selected. By this scaling, we have a
similar number of activated nodes to the case of using all
features even if we exclude some features.

In the last layer, we use the activation function that allows
the output values of multiple classes to be a large value. That
is, we use a function like a sigmoid function instead of softmax
function. By using such a activation function, the FRM can
output large probabilities for multiple possible classes even if
such classes are difficult to be distinguished by the selected
features.

We train the FRM so that the outputted probabilities for
all possible classes become large even if we exclude some
features. One approach to train the FRM is to continue
updating the weights in the model to reduce the loss function
by selecting the features randomly. When training the FRM,
we use the following loss function.

L"removed-feature"(Y, T ) = −
∑
i

w(ti)(ti log yi

+ (1− ti) log (1− yi))

(2)

where Y is the model’s output, ti is the i-th element of T ,
yi is the i-th element of Y , and T is the training label. If the



training label is i, ti is set to 1. If not, 0. w(ti) is defined as
the weight for ti. We set w(0) ≪ w(1) to include the training
label in the output. By using this loss function, we set a large
penalty for the case that the actual class is not included in the
output classes.

B. Definition of Criticality

We can check if the group of sensors g is critical to
distinguish the classes i and j by the output of the FRM
without using the values from the sensors in the group g. If
the sensors in the group g is necessary to distinguish the class
i from j, the output probability of the FRM without using the
values from the group of the sensor g for the class j becomes
large when the data whose actual class is i.

So we define the criticality of the sensor group g for the
classes i and j by

Cs(i, j) =

∑
d∈Di

Y g
j (d)

|Di|
(3)

where Di is the set of data whose actual class is i and Y g
j (d)

is the output probability of the FRM without using the values
from the sensor group g for the class j.

A large value of Cs(i, j) indicates that it is difficult to
distinguish the class i from the class j without values from
the sensor s.

IV. EXAMPLE OF CRITICALITY

A. System

In this paper, we use a system to recognize human activity as
an example. This system uses multiple sensor devices mounted
to the chest, the left ankle and the right wrist of the user. Each
sensor device has 3D accelerometers. The chest device has an
ECG sensor and the other sensor devices have 3D gyroscopes
and 3D magnetometers. This system collects the values from
these sensors and recognize the user’s activity by using the
values as the input of an ML model.

In this system, we use the neural network model based on
the model proposed by Mutegeki et al. [10]. Figure 1 shows
the model. This model is based on the LSTM and handles the
time series of the sensor values. In this experiment, we built
the FRM based on this model.

We train the FRM by using the Adam optimizer with a
learning rate of 0.001 and batches of 32 for 100 epochs. We
set weights in Eq 2 so that w(0) is 1.0 and w(1) is 20.0.

B. Dataset

We use the MHealth dataset [1], which includes 12 distinct
physical activities for ten individuals. The MHealth dataset
includes time-sequenced sensor values. From this data set, we
extract segments with 500 data points using a sliding window
technique. Table I shows the number of extracted segments for
each class. In this table, the abbreviation "St" corresponds to
"Standing,” "Si" designates "Sitting,” "Ly" stands for "Lying
down,” and "Wa" represents "Walking.” Furthermore, "Cl" is
an abbreviation for " climbing stairs", while "WB" signifies
the activity of "Waist bends forward". "FE" refers to "Frontal

elevation of arms,” "KB" delineates "Knees bending,” and
"Cy" is used for "Cycling.” "Jo" denotes "Jogging,” "Ru"
indicates "Running,” and finally, "JF" encapsulates the activity
"Jump front and back.”

TABLE I: The data were used for each class in 12 activities
with 10 subjects (Sj).

Sj1 Sj2 Sj3 Sj4 Sj5 Sj6 Sj7 Sj8 Sj9 Sj10
St 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Si 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Ly 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Wa 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Cl 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
WB 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
FB 3379 3328 3379 3277 2868 2099 2765 3021 2867 2458
KB 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Cy 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Jo 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
Ru 3072 3072 3072 3072 3072 3072 3072 3072 3072 3072
JF 1075 1024 1024 1024 1024 1024 1024 1024 1024 1024

C. Criticality

In this section, we consider the risk that each of sensor
devices can be compromised by an attacker. The values form
the compromised sensors can be changed by the attacker. So,
the system should be able to distinguish the classes without
using one of the sensor devices.

Table II shows the criticality calculated considering the
above risks. In this table, we colored red to the cell with
the criticality higher than 0.9, and yellow to the cell with the
criticality higher than 0.5. This table indicates that criticality
for most class pairs are very low. That is, this system have
enough redundancy and can distinguish such classes without
using one of the sensor devices. However, "Walking" and
"Climbing stairs" are difficult to be distinguished without the
ankle sensor device. "Sitting", "Frontal elevation of arms" and
"Standing" are also difficult to be distinguished without the
wrist sensor device. That is, if these classes are required to
be distinguished, we need to add more sensors to make this
system robust against sensor-based AEs.

V. DISCUSSION TOWARD ROBUST SYSTEM AGAINST
SENSOR-BASED AES

The system is robust against sensor-based AEs, if the
criticality of any risk groups is small for all class pairs required
to be distinguished. However, it may requires a large cost to
achieve that any classes can be distinguished in any cases of
the risks. Therefore, we should focus on the risks with high
probability and the important class pairs.

Considering above points, We can make the robust system
against sensor-based AEs as follows.

Building a system

We make a system based on the existing sensors. Then, we
train the FRM by using the training data from the existing
sensors.



Fig. 1: Neural network model used for experiment

TABLE II: The criticality of each sensor device for each class pair

Ground Truth Class St Si Ly Wa Cl WB FE KB Cy Jo Ru JF
Standing (St) N/A 0.14 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00
Sitting (Si) 0.03 N/A 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
Lying down (Ly) 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Walking (Wa) 0.00 0.00 0.00 N/A 0.91 0.00 0.00 0.59 0.00 0.00 0.02 0.00
Climbing stairs (Cl) 0.00 0.00 0.00 0.21 N/A 0.01 0.00 0.1 0.32 0.00 0.02 0.00

Ankle Waist bends forward (WB) 0.00 0.00 0.00 0.00 0.03 N/A 0.00 0.63 0.00 0.00 0.00 0.00
Frontal elevation of arms (FE) 0.01 0.00 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00
Knees bending (KB) 0.00 0.00 0.00 0.02 0.04 0.57 0.00 N/A 0.00 0.00 0.00 0.00
Cycling (Cy) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.00
Jogging (Jo) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A 0.44 0.03
Running (Ru) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 N/A 0.00
Jump front and back (JF) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.48 N/A
Standing (St) N/A 0.05 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00
Sitting (Si) 0.97 N/A 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00
Lying down (Ly) 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Walking (Wa) 0.00 0.00 0.00 N/A 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Climbing stairs (Cl) 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.06 0.12 0.01 0.00 0.00

Wrist Waist bends forward (WB)) 0.00 0.00 0.00 0.00 0.00 N/A 0.05 0.01 0.06 0.00 0.00 0.00
Frontal elevation of arms (FE) 0.99 0.49 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00
Knees bending (KB) 0.01 0.01 0.00 0.00 0.00 0.04 0.01 N/A 0.17 0.00 0.00 0.00
Cycling (Cy) 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 N/A 0.00 0.00 0.00
Jogging (Jo) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A 0.31 0.04
Running (Ru) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 N/A 0.00
Jump front and back (JF) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 N/A
Standing (St) N/A 0.14 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00
Sitting (Si) 0.03 N/A 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00
Lying down (Ly) 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Walking (Wa) 0.00 0.00 0.00 N/A 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Climbing stairs (Cl) 0.00 0.00 0.00 0.00 N/A 0.00 0.01 0.00 0.00 0.02 0.00 0.00

Chest Waist bends forward (WB) 0.00 0.00 0.00 0.00 0.03 N/A 0.00 0.04 0.00 0.00 0.00 0.00
Frontal elevation of arms (FE) 0.00 0.00 0.00 0.00 0.00 0.00 N/A 0.00 0.00 0.00 0.00 0.00
Knees bending (KB) 0.00 0.00 0.00 0.00 0.00 0.23 0.00 N/A 0.00 0.00 0.00 0.00
Cycling (Cy) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 N/A 0.01 0.06 0.00
Jogging (Jo) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 N/A 0.08 0.02
Running (Ru) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 N/A 0.00
Jump front and back (JF) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 N/A

Assessment of Importance of class identification

We assess the importance of the class identification. In some
applications, mis-classification of some similar classes does
not have a significant impact. Considering that, we need to
evaluate the importance of the distinguishment of classes and
focus on the important class pairs.

Assessment of risk

We also assess the possible risk of compromised sensors.
The sensors with the same location, the same kind of sensors,

or the sensor devices with the same OS might be compromised
by the same attacker. We consider the cases that such sensors
are compromised. We asses risk of each case. We also define
the sensors compromised in each case.

Evaluation based on criticality and update of the system

We then calculate the criticality for the set of the sensors
whose risk to be compromised is high or the important class
pairs. If the calculated criticality exceeds the threshold, we
regard the current system as the system vulnerable to the



sensor-based AEs and add more sensors. After adding the
sensors, we asses the risk of compromised sensors and evaluate
the system again. By continuing the addition of the sensors,
we make the system robust against the sensor-based AEs.

VI. CONCLUSION

In multi-sensor systems, certain sensors could have vulner-
abilities that may be exploited to produce AEs. However, it
is difficult to protect all sensor devices, because the risk of
the existence of vulnerable sensor devices increases as the
number of sensor devices increases. Therefore, we need a
method to protect ML models even if a part of the sensors are
compromised by the attacker. One approach is to detect the
sensors used by the attacks and remove the detected sensors.
However, such reactive defense method has limitations. If
some critical sensors that are necessary to distinguish required
states are compromised by the attacker, we cannot obtain the
suitable output.

In this paper, we discussed a strategy to make the system
robust against AEs proactively. A system with enough redun-
dancy can work after removing the features from the sensors
used in the AEs. That is, we need a metric to check if the sys-
tem has enough redundancy. In this paper, we defined groups
of sensors that might be compromised by the same attacker,
and we proposed a metric called criticality that indicates
how important each group of sensors are for classification
between two classes. Based on the criticality, we can make
the system robust against sensor-based AEs by interactively
adding sensors so as to decrease the criticality of any groups
of sensors for the classes that must be distinguished.

In our future work, we will explore the design of the robust
multi-sensor system in real-world scenarios and demonstrate
that the system is sufficiently robust against sophisticated
adversarial examples.
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