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Abstract—“Workstyle Reform” is promoted in Japan to im-
prove the work environment surrounding workers. However, it
is pointed out that the reduction of working hours by improving
marginal productivity may increase workers’ stress on a per-
unit hour basis. The realization of a system that quantifies stress
and improves it accordingly will lead to our well-being, and in
this paper, we propose methods that estimate the stress state of
each individual and control the indoor environment in real time
based on the estimated stress state to maintain or improve a well-
being space. Estimation of the individual stress state is based on
“Yuragi learning,” which is a method of making decisions from
information including noise, based on a model of the cognitive
process of a human brain. We implemented Yuragi learning to
realize real-time stress estimation based on data streaming from
biometric sensor devices. We also implemented the method to
control devices that act in an indoor space on the basis of the
estimation. In our experiment, we prepared two room conditions
with different temperatures and humidity levels and confirmed
that our method estimated the stress state of a subject and
controlled the room with an actuator that directs the air flow to
the subject in a real-time manner.

Index Terms—Bayesian attractor model, biometric informa-
tion, multi-modal integration.

I. INTRODUCTION

In many countries, including Japan, the working environ-
ment surrounding workers is undergoing a reevaluation due
to the decline in the working-age population caused by the
falling birth rate and the aging population, as well as the
diversification of working needs, such as balancing work
with childcare and nursing care. As seen in the “Workstyle
Reform” of Japan, long working hours are being rectified and
in response to the spread of the new coronavirus, work at
home and other work styles that accommodate an individual’s
work-life balance are being recommended [1].

In terms of changes in workplace and work-related cir-
cumstances, the authors of [2] argue that the dominant mod-
els within human resource management theory and research
mainly focus on ways to improve productivity, therefore risk
affecting work-related well-being, and have detrimental con-
sequences for employees and, in some cases, the organization.
There is still room to consider ways of working that increase
productivity while also taking into account personal well-
being [3]. Hence, quantitative methods are required to assess
individual stress for this, but even in the field of mental health,
which is highly related to human stress, assessment methods
have been developed for depression and other mental health
problems.

Reference [4] takes the approach of providing an appropriate
working environment to the challenge of increasing produc-
tivity. This study reported that workers who felt drowsy were
awakened by air and light, and their productivity increased.
If human stress can be estimated quantitatively, it would be
possible to improve overall productivity from various perspec-
tives, such as alleviating stress by manipulating the work space
based on the estimation or directly encouraging people to take
a break. The authors of [5] provide a survey of internal office
spaces and well-being, and point out that while internal office
spaces that provide workers with well-being are important, the
scientific basis for such spaces needs further analysis.

It has been reported that it is possible to estimate an
individual’s stress state using biometric information such as
skin potential activity, skin temperature, and pulse wave [6].
By estimating a person’s stress state based on biometric infor-
mation and manipulating the indoor environment accordingly,
it may be possible to improve the stress of people spending
time in a room. However, there are a few issues that need to
be resolved. First, the biological information obtained from



Fig. 1. System overview

wearable sensors contains noise. Furthermore, the impact of
stress on biological information differs from person to person.

In this paper, we propose a method that estimates the stress
state of each individual. Regarding the noise issue, we utilize
“Yuragi learning,” which is based on the cognitive mechanism
of the brain to make decisions from observed information that
contains noise. Our research group has applied it successfully
in various studies so far [7]. Observation and decision-making
processes in Yuragi learning are based on the Bayesian at-
tractor model (BAM) [8]. The issue of individual differences
is solved by implementing a personalized Yuragi learning
training process and a multimodal integration process. We
also propose a method to control the indoor environment
based on human stress estimated by the method to maintain
or improve a well-being space in which each individual can
spend time comfortably and willingly for work. Our proposal
is to sequentially estimate the stress state using biological
information as input and control the indoor environment, and
can be applied in various ways by changing the devices.

We conduct experiments to verify the series of operations
in which our methods estimate the thermal stress state using
a wristband capable of measuring biometric information and
control a circulator based on the stress state. If the results
indicate that a person is under thermal stress, the circulator
control is applied to eliminate the cause of thermal stress or
improve well-being.

II. PROPOSAL

Well-being is a subjective indicator and varies from person
to person. Therefore, in this study, we will use a method that
senses various biological information using biometric sensors
and estimates a person’s psychological state from the obtained
biometric information. Based on the estimation results, we will
intervene in the space by controlling actuators and control the
space to relieve the stress state to realize a well-being space
where each individual can work spontaneously without feeling
discomfort.

Here, we describe Fig. 1 and the structure of this section.
First, biometric information is acquired (Sect. II-A). The
biometric information obtained here is sent to the computer as

streaming data. Before describing the stress state estimation
method, BAM and Yuragi learning are explained in detail
(Sect. II-B and Sect. II-C, respectively). The computer per-
forms stress state estimation using Yuragi learning (Sect. II-D).
Based on estimated stress information, the actuator acts on the
indoor space (Sect. II-E).

A. Biometric information and its acquisition

Schmidt et al. provided a publicly available multimodal
dataset for the researchers as WESAD (Wearable Stress and
Affect Detection) [6]. This multimodal data set contains blood
volume pulse (BVP), electrocardiogram (ECG), electrodermal
activity (EDA), electromyogram (EMG), respiration (RESP),
skin temperature (TMP), and 3-axis accelerometer (ACC)
recorded from wrist and chest mounted devices on 15 subjects,
as well as self-reported emotional states for three different
emotional states (neutral, stress, amusement). Self-reported
values for three different emotional states (neutral, stress,
and amusement) were included. Based on these data, a large
number of features (extracted from physiological and motion
signals) and general machine learning methods (decision trees,
random forests, AdaBoost, linear discriminant analysis, k-
nearest neighbor methods) were used to create benchmarks.
Using this information, the three-class (normal, stressed, and
agitated) or two-class (stressed and unstressed) estimation
problem yielded high-level estimation results, indicating that
it is possible to estimate psychological states from multiple
sources of biometric information.

B. Bayesian attractor model

In [8], the task of decision-making is to select one of multi-
ple choices based on observed information, and a probabilistic
framework is proposed in which the decision-making process
is formulated by Bayesian inference. To model the decision-
making process in the brain, a dynamics model is defined in
which the variables representing the decision have attractors,
and each of the aforementioned choices is associated with an
attractor. Bayesian attractor model (BAM) uses Bayesian esti-
mation with external stimuli as input to determine which of the
previously prepared choices the observed target corresponds
to.

In BAM, the probability distribution of the decision state zt
is updated using Bayesian inference when BAM receives input
xt. The posterior probability distribution P (zt|xt) reflects the
ambiguity and uncertainty of brain states. In this Bayesian
inference, the following generative model is assumed.

zt − zt−∆t = ∆tf(zt−∆t) +
√
∆tWt (1)

xt = Mσ(zt) + vt. (2)

Here, f(z) represents Hopfield dynamics, which is one of
the attractor models. f is designed to have N attractors, de-
noted by Φ = {ϕ1, . . . , ϕN}, and N corresponds to the num-
ber of choices to be stored in the model. M = [µ1, . . . , µn] is
a matrix of feature values corresponding to each stored choice.
σ is a multidimensional sigmoid function whose value range



is 0 to 1. Wt and vt are noise terms, Wt ∼ N (0, q2

∆tI) and
vt ∼ N (0, r2I) respectively (I is the unit matrix). N means
normal distribution. Since q and r determine the magnitude
of uncertainty of the dynamics and the observation in the
generative model, q is called dynamics uncertainty and r is
called sensory uncertainty.

By estimating the aforementioned generative model in the
reverse direction by Bayes’ theorem, a model of decision
making is obtained. To account for the non-linearity of the
generative model, an approximate calculation is performed
using the unscented Kalman Filter (UKF). This estimation of
the state yields the posterior probability distribution P (zt|xt)
of zt. Therefore, the attractor to which the internal state of
the brain is close to is determined based on the size of the
probability density P (zt = ϕn|xt). P (zt = ϕn|xt) is called
“confidence” for the nth choice and decisions are made based
on the magnitude of confidence. Even if the observed values
contain noise, the accumulation of observations can increase
confidence and enable appropriate decision-making.

C. Yuragi learning

Our research group has proposed a machine learning method
for decision making based on BAM as Yuragi learning, and has
successfully applied it to various applications [7]. The human
brain is capable of performing complex cognitive and task
functions simultaneously. The secret of this brain is believed to
lie in the fluctuations (called “Yuragi” in Japanese) that exist
in all living systems, including the human brain. Biological
systems can have a high degree of freedom by utilizing noise
rather than eliminating it. BAM is one of the models of
human decision-making proposed to explain reaction times,
correct response rates, and changes in decision making in
decision-making experiments. Yuragi learning is a framework
for engineering applications of BAM, providing design of
observations (preprocessing), design of attractors (training),
and ties between decision-making and various estimation
problems.

D. Stress estimation by Yuragi learning

Figure 2 provides an overview of our stress estimation
method in which we create discriminators using Yuragi learn-
ing. We extract features from the information observed in each
modality. We denote the observation of the ith modality by
o
(i)
t and the features extracted from o

(i)
t by x

(i)
t . x(i)

t is used
as input to the corresponding discriminator based on Yuragi
learning. Each discriminator updates its cognitive state z

(i)
t

using feature inputs x
(i)
t for the ith modality. Fi = P (z

(i)
t =

Φ|x(i)
t ) is the output of the discriminator, and our method

makes the final decision by integrating Fi for all modalities.
Yuragi learning is a method that makes decisions after accu-

mulating a sufficient amount of observations, and is character-
ized by being less susceptible to temporary noise. Therefore,
we address the noise in biometric information using Yuragi
learning. We also take into account individual differences
by configuring the discriminators for each person. Training
in Yuragi learning simply sets the features corresponding to

Fig. 2. Stress estimation model of the proposed method

stress/non-stress states to its feature matrix M . Therefore,
it is possible to easily train a classifier for each individual.
Additionally, the useful modalities are also distinct for each
person. Therefore, we also select the useful modalities for
each person using the confidence level of Yuragi learning. The
estimation results with high confidence level are used for the
final decision. By doing so, we can avoid using results that
cannot differentiate the stress state in the current situation.

1) Training: Training dataset requires biometric informa-
tion labeled to represent various states. In this paper, we use
the label “stress” to represent the state of stress and the label
“non-stress” to represent the state of not feeling stress.

a) Feature selection: This section explains the process
of selecting features. The candidate selection process begins
after collecting some observations. We denote the set of time
slots T train in which observed data can be used for training.
Candidate features are selected by the following steps.

• To begin, we include all the features in a candidate feature
set.

• Normalize the features by

xt,j =
xcand
t,j − µj

σj
(3)

where xcand
t,j is the jth feature in a candidate feature set

at time t. µj is the mean, and σj is the standard deviation
of the jth feature where the label is “non-stress.”

• Calculate x̄j , which is the average of xt,j in the case of
stress state,

x̄j =

∑
{t∈T train,L(t)=stress} xt,j∑
{t∈T train,L(t)=stress} 1

(4)

where L(t) is the label of the dataset at time t.
• Check if the magnitude of each element of x̄j is greater

than the threshold λ. If |x̄j | is greater, keep the jth
feature as a candidate feature. Otherwise, the jth feature
is excluded.

For each individual, the same process is repeated for each
modality. Note that if |x̄j | is smaller than the threshold for all
j in a modality, the modality itself is excluded. Through these
steps, we can identify features that can differentiate between
a stress and a non-stress state.



b) Setting of attractor: Discriminators based on Yuragi
learning can be trained by assigning typical features of labels
to attractors. We set the typical features of the non-stress state
to ϕ0 and those of the stress state to ϕ1.

2) Multimodal stress estimation: The initial normalized
features xt are derived from the observation information using
Eq. (3). Subsequently, the decision state is estimated using a
Bayesian approach based on the generative model expressed
in Eqs. (1) and (2), and then the confidence level P (zt|xt)
is calculated. As shown in Fig.2, there is a discriminator for
each modality, each of which estimates the stress state. The
results of each discriminator are then combined to make the
final decision through the following steps.

• Creation of confidence vectors
We construct a confidence vector that includes the confi-
dence calculated from each discriminator. The confidence
vector for the ith discriminator is obtained by

Fi = P (z
(i)
t = Φ|x(i)

t ) (5)

• Exclusion of results with low confidence
Some discriminators may not be able to distinguish
the stress state. In such cases, the confidence of the
discriminator becomes low. In our method, we exclude
the results of discriminators whose confidences are less
than a pre-defined threshold.

• Integration of confidence vectors
We integrate the confidence vectors of the selected dis-
criminators. The method to calculate the weighted sum
of confidence vectors is used.

F =
Σi∈MwiF̄i

Σiwi
(6)

where M is the number of modalities, F is the final
result after integration, and wi is the weight for the
ith modality. M is determined by the process exclud-
ing low-confidence modalities and the process described
in Sect. II-D1. F̄i is the normalized confidence vector
obtained by

F̄i =
Fi∑

j∈M Fj
(7)

Note that wi needs to be defined in advance. In this paper,
we assume that wi is trained using the data of the subjects
so as to maximize the accuracy of the final decisions F .
Then, common wi can be used for all subjects.

The estimation of stress state using biometric data has
been tested on 31 subjects to confirm its validity in our
preliminary experiment. This paper presents the realization of
a framework for automatic control of the indoor environment
using biometric data, and for reasons of space limitation, we
omit the detail of the result.

E. Control of actuator

Various approaches targeting a person’s five senses can be
considered to control actuators to maintain a sense of well
being in the indoor space. For example, music could be played

Fig. 3. E4 wristband [9] Fig. 4. Daikin assist circulator [10]

to encourage a break when strong stress is estimated, or an
aroma diffuser could be used to spread the person’s preferred
scent in the space. In this paper, we implement a specific
example of stress reduction in a thermal environment through
the use of air conditioning equipment. Details are given in the
next section.

III. EVALUATION

A. Implementation

In the experiment, we consider the discomfort felt when
the temperature and humidity in a room are set to values
that would be perceived as uncomfortable, and show that
the proposed system can estimate such stress and control the
actuators in real time.

1) Devices: We use the E4 wristband (Fig. 3) [9] to
acquire biometric information, which is also used in [6],
manufactured by Empatica. The E4 wristband can acquire 3-
axial acceleration (ACC), blood volume pulse (BVP), elec-
trodermal response (EDA), heartbeat interval (IBI), and skin
temperature (TMP).

In order to relay the biometric information obtained from the
E4 wristband to the computer that performs Yuragi learning,
we installed a streaming server provided by Empatica. The
streaming server software is installed on a laptop computer and
connected to the E4 wristband via Bluetooth. The streaming
server is capable of acquiring biometric data from multiple E4
wristbands and transmitting the data over the network using the
APIs provided by Empatica. Note that observed data are also
stored on the wristbands, and if communication is temporarily
interrupted, it has the ability to resend the data it was unable
to send when reconnected.

For an actuator to control an indoor room, we use a Daikin
assisted circulator (Fig. 4) [10]. In addition to the airflow ad-
justment function, this device has the function of adjusting the
airflow direction. The assist circulator is connected to a small
Linux-based computer (we used a Raspberry Pi3 model B,
hereinafter abbreviated as PI3) via serial communication. We
have made hardware modifications to the assisted circulator
so that its operation can be changed by serial commands sent
from the PI3. In the implementation in this experiment, the
estimation of the stress state by Yuragi learning is performed
on a computer that runs the streaming server, so this computer
sends control commands to the assist circulator via the PI3.



2) Feature extraction: Stress state estimation using Yuragi
learning is performed on the computer where the aforemen-
tioned streaming server is installed. The stress estimation soft-
ware using Yuragi learning and the streaming server software
communicate with each other through socket communication
using TCP. In this implementation, the Yuragi learning soft-
ware connects to localhost with a specified port. By specifying
in advance the type of biological data to be acquired by the
streaming server, the biological data arrive at the socket as
streaming information.

In this implementation, we obtain four types of biometric
information, TMP, EDA, BVP, and IBI from an Empatica E4
wristband. That is, the number of modalities is four. In addition
to the raw EDA observations recorded by Empatica E4, we
extract three key values from the recorded EDA by using
cvxEDA [11], phasicEDA, SNMAphasicEDA and tonicEDA.
A brief description follows.

• phasicEDA: Signal R, which is extracted only from the
part of EDA that changed abruptly in a short period of
time

• SNMAphasicEDA: Changes in the calculated periodicity
of R

• tonicEDA: Signal with slowly changing trend taken out
For each of the above total of seven observations, the mean,

standard deviation, minimum value, maximum value, range,
and slope are calculated for a fixed time. These 7× 6 values
are used as feature values. We used a sliding window with a
window size of 60 seconds and a window shift of 0.25 seconds.

3) Yuragi learning: Although the software of Yuragi learn-
ing is available in [12], multimodal processing functions have
not been implemented, and from the viewpoint of real-time
calculation, we implemented it in the C++ language. The basic
feature of Yuragi learning written in the C++ language is
published in [13].

We set the threshold λ to 1.1 for the selection of features.
We also set the threshold value for the confidence obtained
by Yuragi learning to 0.001. The sensory uncertainty r is set
to 0.4 and the dynamics uncertainty q is set to 0.5. These
values were selected from those that were highly effective in
the pre-training data.

B. Experimental setup

To conduct experiments for the validation of the proposed
system, we prepared comfortable and uncomfortable indoor
rooms based on PMV (Predicted Mean Vote) as defined in
ISO 7730 [14]. PMV is a famous index intended to predict
the average value of a group of occupants’ votes on a seven-
point thermal sensation scale (Hot (+3) to Cold (−3)). In this
experiment, the PMV of the comfortable room was set to 0
and that of the uncomfortable room to +2.

Training data is acquired in each room for one subject.
When acquiring the data, an interval of 10 minutes is set
to avoid the influence of the previous environment, and then
the data is acquired for 10 minutes. After the learning is
complete, the subject moves to a room with an uncomfortable
environment and stays for 10 minutes. Yuragi learning is

(a) EDA (b) TMP

(c) BVP (d) IBI

Fig. 5. Observed raw data from E4 wristband

performed for each biological information every second. The
results of the estimation are checked every 10 seconds, and if
the stress state is estimated as an estimation result more than a
certain number of times, the room environment is changed by
an actuator (assisted circulator). This experiment is designed
to show that it is possible to demonstrate that the implemented
system can estimate discomfort due to temperature and humid-
ity and control the equipment to remedy the situation in real
time.

C. Result

We have confirmed that control occurs as expected. The
input during training in each room is shown in Fig. 5, and the
results of feature selection based on these inputs are shown in
Table I for the subject. The blue and orange lines represent
the measured values for 10 minutes spent in the comfortable
and uncomfortable rooms, respectively, where the number of
samples that can be obtained per unit of time differs according
to the Empatica E4 specifications.

The estimation results for each biometric information are
shown in Fig. 6, and the integrated result is shown in Fig. 7.
Note that the actual output of Eq. (6) is the confidence level
in two attractors (ϕ0 corresponding to the non-stressed state
and ϕ1 corresponding to the stressed state), but the estimated
state of each time step is shown in the figure. The solid green
line is the result of the estimation.

We have succeeded in estimating the stress state of the
subject in the uncomfortable room, as shown in Fig. 7.
The air blowing of the circulator continued during the stress
state. Although subjective comfort was somewhat improved
by the airflow provided by the circulator, this was not seen
as a biological response. In the future, further experimental
evaluations will be conducted with different environmental
settings and actuators.



(a) EDA (b) TMP

(c) BVP (d) IBI

Fig. 6. Stress estimation result (0: ‘non-stressed state’ and 1: ‘stressed state’)

Fig. 7. Multimodal Integration of stress estimation

IV. CONCLUSION

We proposed a method for estimating stress by integrating
multiple types of biometric information using Yuragi learning.
In our method, we configure multiple discriminators based on
Yuragi learning. Each discriminator makes decisions based on
the corresponding biometric information. Then, by integrating
the decisions of all discriminators, our method makes the final
decision. Furthermore, our method also excludes decisions
of Yuragi learning whose output confidence is low to avoid
estimation of stress from inaccurate information. Experiments
have shown that the system can operate in real time from
observation of actual biological data to control of actuators.
A future work will be to clarify how to control the actuators
to completely remove stress and how to estimate and control
them for different people.
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