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Abstract—To construct a digital twin, we have to analyze
a large amount of video data obtained from the real world
in real-time to perceive an accurate current situation. The
increase in the video traffic flowing through networks and the
accompanying increase in power consumption are problems.
One solution is edge computing to distribute video analyzing
tasks; it requires dynamic control of task distribution and
selecting analyzing models according to the network status and
application requirements. Our research group has formulated an
optimization problem for dynamic control of distributed video
analysis systems and proposed a method to optimize power
consumption using a genetic algorithm. However, as the scale of
the problem expands, there are cases where the genetic algorithm
cannot solve the problem because it falls into the local solution.
Therefore, we focus on gene regulatory networks that map a
genotype of an organism to its phenotype. The characteristics of
gene regulatory networks are to memorize specific phenotypes,
to mutate multiple phenotype bits from one-bit perturbation in
genotype simultaneously, and to generate new phenotypes similar
to the memorized ones by the network structure. In this study,
we propose a dynamic control method for distributed video
analysis systems by applying gene regulatory networks to genetic
algorithms. We used a mathematical model of gene regulatory
networks and made it memorized several optimal solutions as
phenotypes. We confirmed the escape from local solutions by
recalling the stored solutions and generating multiple phenotype
bits mutations. We also verified the adaptability improvement
to the dynamic network environment and a new application
requirement by using the gene regulatory network.

Index Terms—Adaptive evolution, digital twin, gene regulatory
network, genetic algorithm, optimization problem.

I. INTRODUCTION

Digital twin technology, which highly integrates a real and
a virtual world, is attracting attention. The digital twin repro-
duces the same environment as the real world in the digital
world as if it were a twin by collecting data about objects
and environments using cameras or sensors. The digital twin
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enables continuous monitoring and optimization of objects
and systems in the real world. The digital twin technology
is expected to bring new value to a variety of industries [1].

To construct the digital twin, accurate and real-time recog-
nition of the real-world situation is necessary. Therefore, we
have to collect and analyze a large amount of video and
sensor data in a short time. A large amount of video data
is generated from multiple cameras or LiDAR sensors and
collected on a cloud server via the network. Then, AI video
analysis technologies, such as YOLO [2], process the data
to construct the digital twin. Users can view the analyzed
results from the digital twin [3]. Research of beyond 5G
and 6G is now actively conducted; it is expected that high-
speed, high-capacity communications with low latency will
be realized. It causes development of applications including
high-capacity communication in a short time; we can expect
the rapid increase of traffic flow through network in the
future. The traffic increase is expected to significantly increase
power consumption in the network [4]. Then reducing power
consumption of the entire network system is a major challenge
in the utilization of the digital twin in beyond 5G and 6G era.

Edge computing technology is one of the solutions for the
communication delay and power consumption by the increase
in video traffic. Edge computing is that places servers, named
edge servers, closer to the data source than the cloud servers
and allocates part of the data processing of the cloud servers to
the edge servers [5]. The power consumption of the network
and communication delays are reduced because the amount of
traffic in the entire network is reduced. The processing latency
of the video data is also reduced because the edge servers are
close to the terminals of users [6].

When we operate edge servers, we have to dynamically
determine how processing is distributed according to the net-
work status and types of applications. Network status includes
network congestion and usage amount of edge and cloud



servers. The required processing latency and accuracy of anal-
ysis vary depending on the applications. To achieve efficient
distributed processing for lower power consumption, we have
to monitor network status regularly and dynamically optimize
the distribution of processing depending on the applications.

Our research group has formulated a power consumption
optimization of a distributed video analysis system as a com-
binatorial optimization problem and proposed an optimization
method using Genetic Algorithm (GA) [7]. The system con-
sists of three types of computational resources, terminal, edge
server, and cloud server, which are connected by networks.
When a camera attached to the terminal acquires video data,
an application on the terminal sends a request to analyze the
video data to the optimization module with a maximum latency
requirement and a minimum accuracy requirement. The opti-
mization module determines the processing distribution ratio
and video analysis AI model for each computing resource
so that the power consumption is minimized while satisfying
the two requirements. Note that, since the video analysis AI
models have a trade-off between processing speed and analysis
accuracy, we have to set appropriate AI models according to
the requirements. Because the system has multiple computa-
tional resources and networks and the complexity increases
exponentially concerning the size of the system, our group has
solved it with GA. In addition, it has been proposed to use the
Bayesian Attractor Model (BAM). The BAM stores multiple
attractors of network status information with corresponding
solutions to the problem. When the BAM judges a current
network status as similar to the stored one, GA uses the
corresponding solution to improve adaptation speed [8].

However, as the scale of the problem expands, GA cannot
achieve optimal solutions and falls into local ones in some
cases. This is because, while GA mutates one bit in many
cases, the mutation is too small to escape from the local
optima; and the mutated individuals are eliminated in the
evolution process. In addition, as the problem scale and the
information on the network status increases, it takes time to
get all the information and judge the similarity of the network
status. It may also be possible to misjudge if the network state
is partially similar. Therefore, it is necessary to be able to
memorize and recall past optimal solutions, independent from
the information on the network state.

We focus on Gene Regulatory Networks (GRN), a mech-
anism in living organisms that maps the genotype of an
organism onto a phenotype of a cell. One of the characteristics
of GRN is that mapping from a wide genotypic space to a
narrow phenotypic space facilitates the expression of specific
phenotypes. It is also known that mutation on a particular
gene in the genotype called a sensitive node, causes multi-
ple changes of phenotypes simultaneously [9]. The modular
structure of GRN also allows only a particular module to
change, leading to generate new phenotypic combinations of
past phenotypes.

In this paper, we propose a method to utilize GRN in GA
for optimizing distributed video analysis systems against fluc-

tuations in network conditions and application requirements.
We confirm that GRN, an adaptive evolutionary mechanism
of living organisms, improves the adaptive capability towards
environmental changes surrounding the system. Specifically,
by using the mathematical model of GRN that pre-learned
optimal solutions for several requirements as phenotypes,
we verify whether genotypic and phenotypic mutations im-
prove the adaptability. We verify whether the GRN-based
method can find the optimal solution in less time than GA
by recalling the memorized phenotype without grasping the
entire system state when the system state changes. Also, by
simultaneously changing multiple phenotypes with a small
number of genotypic mutations, it will be verified whether it
is possible to escape from local solutions and quickly find an
optimal solution. In addition, we evaluate whether the GRN-
based method can adapt to inexperienced network status and
application requests by utilizing memorized phenotypes or new
phenotypes generated from the network structure of GRN.

II. RELATED WORK

A. Gene Regulatory Networks (GRN)

GRN is a network of gene interactions. The interactions
can either promote or suppress activity. When genes regulate
other’s activity, various cells are expressed and vital organs are
generated. By setting different initial genes, i.e., genotypes,
it is possible to generate multiple types of cells and organs
from the same GRN. The expression pattern of a gene that is
generated by GRN is called phenotype.

In biological evolution, only mutations that are advanta-
geous for survival are retained by natural selection. Thus, GRN
may be biased in the distribution of phenotypes through the
evolutionary process. Such biases are reported to have three
characteristics in [10]. (1) Distributed associative memory
capable of storing and recalling past phenotypes. (2) Associa-
tive memory that accurately represents a complete phenotype
from a partial embryo. (3) Generalization that generates new
combinations of phenotypic features. In addition, it is possible
to mutate multiple phenotypes simultaneously by mutating
specific genes of the genotype, called a sensitive node, to give
a large variation in the phenotype; this character is verified
using boolean networks, one of the models of GRN [9]. In
a combinatorial optimization problem for a system subject to
environmental variation such as the one targeted in this paper,
adaptability may be enhanced by recalling past memories from
partial environmental conditions. Furthermore, if phenotypic
generalization is utilized, it is expected to generate appropriate
phenotypes for unknown environmental conditions.

We use a mathematical n× n adjacency matrix model [11]
as GRN. The n bit phenotype is calculated by multiplying
the n bit genotype for multiple times. Since the distribution
of phenotypes is biased according to the matrix, the specific
phenotypes can be expressed multiple times as memory.
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Fig. 1. System model.

B. Energy optimization of distributed video processing system
with BAM [8]

Our research group formulated the energy optimization of a
distributed video analysis system as a combinatorial optimiza-
tion problem and proposed a method to solve it by a GA with
BAM. The method with BAM assesses the similarity of the
network environment using all the network state information.
However, it is likely to make misjudgments when the network
state is partially similar as the system scale becomes large. In
this study, we propose an optimization method that does not
use network state information for similarity judgments. We
use GRN, which can generate similar phenotypes as solutions
without network state information.

III. OVERVIEW OF THE SYSTEM MODELS AND THE
PROPOSED METHOD

A. System overview

We describe the system overview in Fig. 1. The system has
three computation resources, terminals connected to cameras,
edge servers, and cloud servers. The terminals and the edge
servers are connected by access networks. The edge servers
and the cloud servers are connected by backbone networks. An
application on a terminal sends a request to the system with
requirements of latency and accuracy. An optimization module
monitors the information of each network, such as bandwidth
and propagation delay. When the module receives the video
processing request, it creates a session on the path via the
terminal, an edge server, and a cloud server. Then, the module
allocates the appropriate processing ratio and AI model for
each computing resource using our proposed method, “Genetic
Algorithm using GRN” in Fig. 1. After the allocation, video
data is sent from the camera to the terminal and the edge server
according to the processing ratio; the cloud server processes
the remaining data. Note that, the optimization module does
not supply the video analysis task until it finds a solution that
satisfies the requirements of the request.

B. Definition of optimization problem

The energy optimization of the distributed video analysis
system is defined as a combinatorial optimization problem.

We use the almost same definition of previous work [8] of our
research group. The proposed method optimizes the processing
ratio and AI model that satisfies the application requirement
and reduces the power consumption of the entire system. The
processing ratio is the ratio of allocated video analysis tasks
for each computing resource. The AI model is the model of
the video analyzer to be used in each computing resource. Two
requirements are processing delay requirements and accuracy
requirements of video analysis. Note that, since the video
processing AI models have a trade-off between processing
speed and analysis accuracy, we have to set appropriate models
according to the requirements.

1) Optimized variables: The two types of control informa-
tion are processing ratio W d

s and AI model Md
s , where s de-

notes session and d denotes device. The optimal combination
of these variables considering all sessions and the entire power
consumption in the system is searched.

2) Constraints: The constraints in this optimization prob-
lem are the end-to-end (E2E) delay and analysis accuracy of
the processing request.

The E2E delay is defined as

Ts(t) =
∑

d∈Ds
T d
s (t) +

∑
n∈Ns

Tn
s (t) ≤ Tmax

s ,∀s ∈ S,

(1)
where S is the set of all sessions. Ds and Ns are the
set of devices and networks used by session s, respectively.
T d
s (t) is the processing delay for video analysis on device d

of session s, and Tn
s (t) is the processing delay and the

transmission delay in network n of session s. The constraint
of the processing delay is Ts(t) < Tmax

s ∀s ∈ S, where Tmax
s is

the upper limit of processing delay sent from the application.
The analysis accuracy is defined as.

As =
∑

d∈Ds
AMd

s W d
s /|Ds| ≥ Amin

s ,∀s ∈ S, (2)

where As is the video analysis accuracy in session s, AMd
s

is the analysis accuracy when using model Md
s on device d,

and
∑

d∈Ds AMd
s W d

s /|Ds| is a weighted average of analysis
accuracy. The constraint of the analysis accuracy is As(t) >
Amin

s ∀s ∈ S, the Amin
s is the lower limit of analysis accuracy

sent by the application.
3) Objective function: The overall system power consump-

tion E(t) at time t is an objective function. It is defined as
the sum of the power consumption of devices Ed(t) and of
network En(t) of each device d and network n as

E(t) =
∑

d∈Ds
Ed(t) +

∑
n∈Ns

En(t). (3)

C. Optimization method

1) Encoding: To solve the optimization problem, the con-
trol information for distributed processing needs to be encoded.
The phenotype is represented in a bit string as [W d

s ∀s ∈
S, ∀d ∈ Ds,Md

s ∀s ∈ S, ∀d ∈ Ds], where session s and
computing resource d.



2) Genetic Algorithm (GA): GA is an optimization method
that performs genetic manipulations such as crossover and
mutation on a population containing N individuals and con-
serves the individuals suitable to the environment for the
next generation. The suitability is calculated by the fitness
function, defined in (4). Each individual has a genotype and
phenotype; and in GA, the phenotype is mapped directory
from the genotype. Individuals are selected according to their
fitness, and individuals similar to them are generated through
genetic manipulation to search the solution space around the
similar one. The procedure of a simple model of GA, called
Simple GA (SGA) is below.

i To initialize genotypes of N individuals to random values.
ii To generate new individuals by crossover and mutation.

iii According to the fitness of the phenotype mapped by the
genotype, selecting N individuals remaining in the next
generation, and repeat i) and ii).

3) Fitness function: The fitness function indicating adapt-
ability of individual is defined as

F (t) = −E(t)−α
∑
s∈S

(Ts(t)
max −Ts)−β

∑
s∈S

(As(t)−Amin
s ).

(4)
The fitness is high with the reduction of the power consump-
tion E(t). The second and third terms are penalties of delay
and accuracy respectively, where α and β are coefficients.

D. Proposed method to use GRN for GA

We embed GRN in GA. We deploy an adjacency matrix as
GRN in each individual and map the phenotype through the
GRN.

1) Calculation of phenotype: We calculate the phenotype
array by multiplying the genotype array and the adjacency
matrix of GRN multiple times. The phenotype represented by
P (t) = [p0(t), p1(t), . . . , pn(t)] at k-th step is calculated as

pi(k + 1) = pi(k) + τ1σ
(∑n

j=0
bijpj(k)

)
− τ2pi(k), (5)

where genotype vector is G = [g0, g1, . . . , gn](−1 ≤ gk ≤ 1),
GRN matrix is B = [bij ](0 ≤ i, j ≤ n), and pi(0) = gi. The
fitness of an individual is calculated by pi(k

∗), where k∗ is a
parameter of calculation steps. τ1 and τ2 are coefficients of an
effect of interaction between genes and a decay ratio of the
expression pattern respectively. σ is a sigmoid function and
we set a hyperbolic tangent function.

2) Algorithms: We introduce phenotype mutation in addi-
tion to the genotype mutation. The phenotype produced by
GRN is biased. Therefore, individuals biased by GRN with
only genotype mutation cannot generate every phenotype in
the phenotypic space. By adding the phenotype mutation, the
proposed method can achieve every solution. The balance
of each mutation is configured by the parameter N2. The
algorithm of the proposed method works in the following steps
and repeats ii), iii), and iv).

i To initialize genotypes of N individuals to random values.

ii To calculate the fitness from the phenotype of individuals
and save the best N1 ones as elite.

iii By phenotypic mutation, generating N2 individuals for the
next generation from the current population.
a) Selecting one individual by selection method, such as

roulette selection.
b) To generate a new individual by applying mutation and

crossover to the phenotype of the selected one.
c) To repeat a) and b) until N2 individuals are generated.

iv By genotypic mutation, generating N−N1−N2 individuals
for the next generation from the current population.
a) To select one individual by the selection method.
b) Generating a new individual by applying mutation

and crossover to the genotype of the selected one and
calculating its phenotype.

c) To repeat a) and b) until N −N1 −N2 individuals are
generated.

3) Memorizing phenotypes by GRN: We refer [10] to design
an adjacency matrix of GRN to express specific phenotypes.
We evolve GRN by selection pressure in the direction closer
to the target phenotypes to be memorized. First, we initialize
the genotype vector G and the GRN adjacency matrix B with
zero. Second, we select one target phenotype and mutate G and
B to minimize the hamming distance between the generated
phenotype by GRN and the target one. Third, we switch the
target phenotype and continue mutations. Switching the target
phenotype multiple times creates a bias in the expression of
the phenotype, i.e., GRN memorizes the phenotypes.

IV. EVALUATION

We confirm that the GRN-based proposed method improves
adaptability to the dynamic environment and how the char-
acteristics of GRN affect it. The adaptability is measured by
the fitness function F (t) defined as (4) and power consump-
tion E(t) in time t defined as (3).

The environmental changes in this distributed video analysis
system include two cases: switching applications that use the
system and fluctuating network status. The applications are
divided into two types: applications that have used the system
multiple times and applications that have never used the system
or used the system a few times. GRN can memorize optimal
solutions that can satisfy the requirements of the former, call-
ing it a known application, and achieving a reduction of power
consumption. When the known application sends a request, the
memory stored in the GRN can make the adaptability high.
Optimal solution of the latter, calling it a new application,
is not memorized in GRN. In addition, it is considered the
network status, such as the available bandwidth for this system,
changes more frequently than the application switching. Thus,
we simulate three cases to evaluate the adaptability of the
GRN-based proposed method: the application switches to the
known ones, the known application and dynamic network
bandwidth, and switching to the new application in dynamical
network bandwidth.



In this optimization problem, the structure of the optimal
solution can be clustered into several patterns. Concretely, the
distribution ratio of tasks is distinctive, such as processing all
video analysis tasks in the cloud server or processing some
tasks at the edge and most tasks at the terminal. The switching
of the application requirements tends to reform the structure of
the solution, i.e., requiring large-scale phenotypic mutations,
such as changes in the processing proportions and deployed AI
models. On the other hand, differences in network bandwidth
rarely vary the structure of the solution greatly. The changes
affect mainly the AI model selection and some processing
proportions. In other words, it causes smaller changes than
the application switching. Based on these characteristics, we
discuss the utilization of GRN with environmental changes.

A. Simulation settings

We use three types of devices (Ds = {t, e, c}): terminal,
edge server, and cloud server, and two types of communication
networks (Ns = {naccess, nbackborn}): access network and
backbone network. We assume that one terminal executes
one application and constitutes one session. The simulation
environment is configured for the cases with one, two, and
four sessions. In this paper, we focus on cases of four sessions
due to page restriction. The number of computing resources
and structure of the network is shown in Fig. 1.

1) Device setting: Table I shows the configures of each
device. We use an estimation model based on actual measure-
ments [8] to define the value of the processing latency and
power consumption model.

GPU processing load rate Ld(t) is estimated as

Ld(t) =
(∑

s∈Sd
Od

s (t)
)
/
(
CdEffd

)
, (6)

where d and t are the device and the time respectively.
Processing load Od

s(t) on session s is calculated as

Od
s(t) =

(
(OMd

s (t) +OA)W d
s (t) +OB

)
(FPS). (7)

By using (7), processing latency T d
s (t) and power consump-

tion Ed(t) is calculated as

T d
s (t) =

(
OMd

s (t) +OA +OB
)
/
(
CdEffdLd(t)

)
, (8)

Ed(t) = Ed
IDLE + αEEd

CPU-TDP + βEEd
GPU-TDPL

d(t). (9)

2) Network settings: We set the network of simulations as
shown in table II unless there is an environmental change.
Calculations formula and models are based on the previous
work [8]. The network transmission delay Tn

s (t) and network
power consumption En(t) are defined as

Tn
s (t) = R

(
1−

∑
d∈Ds,n

pass
W d

s (t)

)
/Bn(t) + Tn

prop, (10)

En(t) =
∑

s∈S
R

(
1−

∑
d∈Ds,n

pass
W d

s (t)

)
Ebit, (11)

where Ds,n
pass is the set of devices that a session s has passed be-

fore reaching network n and Bn(t) is the available bandwidth
on network n at time t satisfying Bn(t) ≤ Bn

max.

TABLE I
DEVICE SPECIFICATIONS AND ESTIMATED PARAMETERS.

Spec and variables Terminal t Edge server e Cloud server c
CPU Core i7- Xeon GOLD Core i9-

8700T 6226R ×2 10940X
TDP Ed

CPU-TDP 35W 150W ×2 165W
GPU GeForce Tesla T4 ×2 RTX

GTX1070 A5000
FP32 Cd 6.463Tflops 8.141Tflops×2 27.77Tflops
TDP Ed

GPU-TDP 150W 70W ×2 230W
Efficiency Effd 0.4 0.39 0.48

IDLE power Ed
IDLE 55.236W 334W 258.3176W

FLOPS A and B (1.5, 0.1) (2.2, 0.1) (8.1, 0.4)
(OA, OB)

(αE , βE) (0.97, 0.78) (0.97, 0.67) (0.29, 0.81)

TABLE II
NETWORK PARAMETERS AND SET VALUES IN THE SIMULATIONS.

Network type naccess nbackborn

Bandwidth: Bn
max 25 Mbps 250 Mbps

Propagation delay: Tn
prop 10 ms 10 ms

Power consumption per bit: Ebit 193×10−9 W 60× 10−9 W
Bit per frame: R 470 Kbit

3) Predefined application performance requirements: We
set three types of requirements as the known applications.
Their optimal solutions are memorized as phenotypes by GRN.
Table III shows the predefined performance requirements and
the phenotypes. The phenotypes are obtained by multiple
searches using SGA because the computation of all bit-string
combinations requires an enormous time. In this search, the
network bandwidth is fixed to the value in Table II, which is
an almost mean value of the network bandwidth variation.

4) Settings of parameter, etc.: In the proposed method,
unless we specified, N = 100, N1 = 5, and N2 = 50. In other
words, the population has 100 individuals and the number of
individuals generated by the proposed method is 5 : 45 : 50
for elite individuals, generated by genotypic mutation, and
generated by phenotypic mutation.

In genetic algorithm, we introduce roulette selection and

TABLE III
PREDEFINED PERFORMANCE REQUIREMENTS AND ITS SOLUTIONS.

App. require- Latency Accuracy Memorized Fitness
ment for each Tmax

s Amin
s phenotype

session (mAP)
A1 0.04238 s 26.855 % [0,0,6,4,6,2, -365.696
A2 0.12856 s 20.926 % 0,0,3,2,2,4,
A3 0.11831 s 27.375 % 0,0,6,7,6,6,
A4 0.10322 s 22.440 % 0,0,5,1,3,7]
B1 0.06481 s 34.535 % [0,0,5,6,7,5, -389.289
B2 0.05974 s 41.178 % 0,0,6,7,0,5,
B3 0.04144 s 26.532 % 6,0,0,0,7,3,
B4 0.09141 s 37.337 % 0,0,5,1,2,4]
C1 0.12314 s 48.583 % [0,0,7,0,0,4, -379.944
C2 0.03937 s 31.529 % 7,0,0,0,0,2,
C3 0.12405 s 33.166 % 0,0,5,3,7,4,
C4 0.11723 s 23.430 % 0,0,5,1,3,0]



TABLE IV
SPECIFICATIONS OF VIDEO PROCESSING AI MODELS [12].

Model Accuracy: AMd
s FLOPS: OMd

s (t) Md
s

YOLOv3-tiny 33.1 % 5.6 B {0, 1, 2}
YOLOv3 55.3 % 65.9 B {3, 4, 5}
YOLOv3-spp 60.6 % 141.5 B {6, 7}

elite survival strategy, two-point crossover with crossover rate
of 0.2, and point mutation. SGA also stores 5 % of elites.

We set the range of W d
s and Md

s as 0–7, the latter’s
corresponding models are described in Table IV. We also set
(α, β) = (105, 105), (τ1, τ2) = (1.0, 0.2) and k∗ = 10.

B. Simulation of application switching to the known ones

1) Evaluation procedures: We set the application require-
ments from the predefined set shown in the table III as
follows: requirement A→B→C→A→.... and set it to change
periodically every 60 s. We perform 10 trials with 10 applica-
tion changes, in other words, 90 switches excluding the first
one of each trial. We compare the actual computation time to
adapt to the environmental change and power consumption for
both the proposed method and SGA.

2) Results: We show the transition of fitness in Fig. 2.
The proposed method can find the optimal solution in

a shorter time than SGA after environmental changes. The
average computation time and generation of GRN is 0.56 s and
25, and of SGA is 45 s and 2,897 respectively. This is because
GRN recalls the memorized phenotypes in a few generations.
GRN achieves shorter computation times, although it requires
a longer computation time of one generation than SGA due
to the phenotype computation. Also, out of 90 environmental
changes, SGA found the optimal solution 28 times, whereas
GRN found it in all cases. In the proposed method, a single
genotype mutation allows the simultaneous mutation of mul-
tiple phenotype bits and avoids falling into a local solution.

When the number of sessions is 1, we confirm that the
SGA also can reach the optimal solutions in a short time for
all environmental changes. This is because the bit length of
the genotype is short and the optimal solution can be reached
with a relatively small number of mutations in the case. We
have checked that the increase in sessions makes the problem
difficult and SGA could not solve it.

To evaluate the power consumption, we first compare the
unavailable time that the system cannot provide the video
analysis service because the performance requirements are not
satisfied. As an average time for 10 trials, the total unavailable
time was 171 s in SGA, whereas it was 1.27 s in the proposed
method. We can confirm that the stability of the service
was greatly improved. A comparison of the average power
consumption while the performance requirements are satisfied
shows that SGA is 505 W while the proposed method is 378 W.
It indicates a significant reduction in power consumption.

We also focus on the parameter N, the number of 2
individuals generated by the phenotypic mutation. When the
N2 is small, such as 15, the search time is shorter than N2 =

0 60 120 180 240 300 360 420 480 540
time[s]

2500

2000

1500

1000

500

0

fit
ne

ss

SGA
GRN

Fig. 2. Fitness transition when the requirement changes every 60 seconds.
We show results of 10 trials of the proposed method (GRN) and SGA.

50 case because many individuals are generated by genotypic
mutations, i.e., recall. On the other hand, in N2 = 85, it
takes longer time to find the optimal solution than in N2 =
50 case because few individuals are generated by recalling.
We confirmed that phenotype switching requires changing
the solution structure and genotypic mutation, which changes
multiple phenotype bits simultaneously, is effective.

C. Simulation of dynamic network bandwidth with the known
application

We confirm the adaptability of GRN in dynamic network
bandwidth fixing the applications to known ones. Although a
change in network bandwidth does not require a significant
change in the structure of the optimal solution, it does require
changes in some parts of the solution. Namely, in this section,
we evaluate the adaptability in similar environments to the
ones that GRN memorized.

1) Evaluation settings: We randomly select the bandwidth
of the access network and the backbone network in the
range of 10–50 Mbps and 10–500 Mbps respectively to make
50 patterns. We deploy in order of the patterns each 180 s. We
perform it in 10 trials. Thus, the 500 environment is simulated
in each requirement. The application requirement is fixed in
each trial selected from the known ones shown in Table III.

2) Results: Fig. 3 shows the time transition of the fitness
when the application requirement is set to requirements A, B,
and C in Table III, respectively.

In each requirement, SGA and GRN show different tran-
sitions. This is because the magnitude of changes in so-
lution space by the bandwidth fluctuations depends on the
constraints. When the constraint is less strict, the solution
space change tends to be small and the transition tends to
be stable. In requirement A with less strictness of accuracy
constraints, there are less susceptible to network fluctuations
because the tasks tend to be processed by the terminals. In
requirement C with less strictness of delay constraints, because
the bandwidth changes are tolerated, the solution space is
not changed largely. On the other hand, when the application
requires strict constraints, such as requirement B, the solution
space sensitively changes. This is because tasks need to be
processed in high-performance servers, like the cloud, due
to the accuracy constraints, thus the effect of bandwidth
becomes large. Moreover, the solution tends to violate the
delay constraints when the bandwidth changes.



0 2000 4000 6000 8000
time[s]

2500

2000

1500

1000

500

0
fit

ne
ss

GRN N2=15
GRN N2=50
GRN N2=85
SGA

(a) Performance requirement is fixed at requirement A.
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(b) Performance requirement is fixed at requirement B.
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(c) Performance requirement is fixed at requirement C.

Fig. 3. The fitness transitions of the proposed method (GRN) and SGA with
changing bandwidth in 50 patterns. The vertical dotted line is changed time.

New phenotype 0 0 7 3 1 3 7 0 3 2 2 3 0 0 5 4 6 6 0 0 5 1 3 0
Requirement A 0 0 6 4 6 2 0 0 3 2 2 4 0 0 6 7 6 6 0 0 5 1 3 7
Requirement C 0 0 7 0 0 4 7 0 0 0 0 2 0 0 5 3 7 4 0 0 5 1 3 0

One bit difference Same bits with colored ones

Fig. 4. New phenotype generated by the combination of memories.

In the case of requirement A, 10 s after the environmental
change, GRN, where N2 = 50, satisfies the requirement 489
times out of 500, and SGA satisfies it 453 times. GRN achieves
higher fitness 334 times, SGA achieves higher fitness 39 times,
and the same fitness 163 times. The GRN achieves higher
adaptability than SGA. In particular, GRN, where N2 = 50,
reaches an adaptable solution to most network bandwidths in
8 out of 10 trials, such as the solution of 12 th environment in
Fig. 3(a). However, SGA cannot reach it. This solution might
be a local one, but no better solution was found in each trial.
This is because GRN-based individuals can search around the
solution of requirement A more widely than SGA by multi-
bit phenotype mutations from single-bit genotype mutation.
Another reason is the characteristic of GRN that generates a
new phenotype from memorized phenotypes by the network
structure. A phenotype shown in Fig. 4 is generated by GRN
and it is similar to the solution of requirements A and C.
The phenotype shows high fitness in requirement A. GRN can
search around such a new phenotype.

In Fig. 3(a), the unavailable time is 149 s for GRN and

382 s for SGA; the average power consumption is 288 W in
GRN and 366 W in SGA. Power consumption is reduced and
the service is provided stably.

In the case of requirement B, there are 371 cases where
the fitness of GRN, where N2 = 50, after 10 s from network
changes is higher than SGA, 89 cases where SGA is higher
than GRN, and 40 cases where they achieve the same fitness
out of 500 cases. Thus, the proposed method has higher
adaptability than SGA in the same environment. SGA tends
to fall into local solutions in the case of requirement B. For
example, the SGA in Fig. 3(b) finds it in the 26 th environment.
This happened in 9 out of 10 trials. On the other hand, GRN
does not fall into the local solution and it leads to finding
a higher fitness solution than SGA. GRN can escape from
the local solution by multi-bit phenotype mutation caused by
single-bit genotype mutation.

In some cases, GRN takes longer to satisfy the requirements.
The number of times requirements are satisfied after 10 s
from the environmental change is 408 out of 500 cases for
GRN and 467 for SGA, and after 180 s, it is 446 for GRN
and 492 for SGA. One reason is that the local solution found
by SGA was the common solution to satisfy the requirement.
Another reason is that the solution memorized by GRN was
not adaptable to the bandwidth changes. We have to select
an adaptable solution to be memorized in different network
bandwidths, which is our future work. In a comparison of
power consumption, the average power consumption of GRN
and SGA is 389 W and 455 W respectively in Fig. 3(b).
However, the unavailable time of GRN is 1, 294 s which is
longer than SGA, 296 s. This is a case in which GRN could
not achieve more adaptability than SGA.

In the case of requirement C, GRN achieves higher adapt-
ability than SGA. In 500 simulations, GRN is superior in
the number of times that requirements are satisfied after 10 s
from environmental changes: 500 times for the GRN and 461
times for the SGA. Also in Fig. 3(c), the unavailable time is
246 s for GRN and 257 s for SGA, which indicates GRN
can provide stable service. The average power consumption
is 392 W for GRN and 421 W for SGA, we can find that
power consumption is reduced. The memorized solution has
a high fitness even if the bandwidth changes. SGA also
achieves high fitness by using the same solution as the previous
environment. Therefore, GRN recalls memories stably, while
the SGA temporarily falls into a local solution, which causes
a small difference.

Overall, we can verify that GRN is more adaptive than SGA
in the same environment. GRN can improve service stability
as long as selecting the adaptable solution in other bandwidth
to store in GRN.

The N2 is a trade-off between the ability to recall the
memory and to search around the memory. This environment
settings requires phenotypic mutations around the optimal
solution. Thus, after recalling the memorized solution, GRN,
where N2 = 85, has better fitness because many individuals
are generated by the phenotypic mutation to search around.



TABLE V
RANDOMLY DEFINED REQUIREMENTS.

App. requirement Latency: Accuracy:
for each session Tmax

s Amin
s (mAP)

D1 0.14406 s 57.585 %
D2 0.06332 s 23.988 %
D3 0.07354 s 54.967 %
D4 0.12460 s 40.494 %
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Fig. 5. The fitness of the proposed method (GRN) and SGA when the
application requirement is in Table V with 50 patterns of bandwidth.

GRN, where N2 = 15, recalled many memorized ones, so
it has less searching ability. Dynamically setting N2 would
improve these adaptations.

D. Simulation of dynamic bandwidth with a new application

We set new application requirements and dynamic network
bandwidth to evaluate adaptability in non-similar environments
where the optimal solution structure is different from the one
memorized by GRN. Variants in requirements tend to change
the optimal solution structure more significantly than changes
in network bandwidth. We evaluate the adaptability of the
proposed method in cases where the solution structure changes
to the not-trained ones and changes in some parts due to
network variations. The application requirements are set as
shown in Table V. In simulations, dynamic network bandwidth
uses the same protocols as in Section IV-C1.

We describe the fitness transitions in Fig. 5. GRN, where
N2 = 50, shows higher adaptability than SGA in early stage,
up to the seventh environment. It is considered that GRN cap-
tures certain features of optimization problems by memorizing
multiple solutions, even if the solution structure differs from
the stored ones. For example, particular bits of phenotypes of
good solutions are often “0” in any case. In other words, GRN
avoids solutions considered to be less adaptive. We need more
evaluations of whether similar results can be obtained in other
cases. After SGA found an adaptive solution, GRN showed
slightly lower adaptability than SGA. SGA can search mainly
around the discovered solution, while GRN searches around
the memorized solution when the genotype mutation occurs.

Adaptation speed of GRN, where N2 = 15, is slower. Since
optimal solution are not memorized, it has to search for a new
one by phenotypic mutation. However, GRN, where N2 = 15,
generates few individuals by phenotypic mutations and many
ones by recalling other solution structure’s memory.

The proposed method consumes 392 W on average, while
421 W for SGA. Also, the unavailable time is 246 s for GRN

and 257 s for SGA. GRN slightly reduces power consumption
and improves stability due to the difference in early stage.

V. CONCLUSION

We proposed an optimization method to improve the adapt-
ability of GA by GRN to distribute tasks for edge computing.
We confirmed that our method could improve the adapt-
ability to the switching of known environments by recalling
the memorized solutions. Also in similar environments to
the memorized cases, our method improved the adaptability.
GRN escaped from local solutions by the multi-bit change of
phenotype from single-bit genotypic mutation and the newly
generated solutions by GRN. Our method is also effective in
a non-similar environment because GRN captures certain fea-
tures of optimization problems by storing multiple solutions.
It avoided solutions that are considered to be less adaptive.
Thus, the proposed method improved the adaptability of GA
and achieved reductions in power consumption.

The matrix structure of GRN poses challenges in terms of
scalability and computational complexity. The number of phe-
notypes that GRN can memorize depends on the mathematical
model. It is necessary to confirm whether GRN can represent
dynamic and complex systems even with increased scale. We
also evaluate in more complex environments, such as more
sessions, and compare with other optimization methods. To
improve adaptability, dynamical adjusting of parameters is also
our future work.
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