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Abstract—Massive MIMO systems have emerged as a promising
technology for next-generation wireless communication networks.
Beamforming, a key technique in Massive MIMO, significantly
enhances the system’s performance by exploiting the spatial do-
main. This paper presents a collaborative beamforming approach
that leverages vertical collaboration between base stations to
improve adaptation and mitigate fading variations, while also
applying the principle of free energy to optimize beamforming. The
approach involves sharing estimated channel states and learned
models among base stations, enabling them to collectively optimize
beamforming based on the principle of free energy. Evaluations in
single-user operation scenarios demonstrate that both with and
without vertical collaboration, the expected free energy, repre-
senting beamforming performance, decreases over time. However,
vertical collaboration reduces temporary decreases in signal-to-
interference-plus-noise ratio (SINR) caused by independent adap-
tation to fading variations. Furthermore, in a multi-user switching
scenario, the proposed approach ensures stable control by utilizing
learned models and state estimation results, leading to improved
beamforming performance during switching.

Index Terms—Beamforming, Active Inference, Free Energy Prin-
ciple, 5G NR, CoMP

I. INTRODUCTION

In recent years, beamforming has gained significant impor-
tance in the context of the fifth-generation (5G) communication
technology [1]. Beamforming is a technique that enhances com-
munication quality and capacity by controlling the directionality
of the transmitted radio waves using a transmit antenna array.

In particular, the combination of beamforming with Massive
MIMO (Massive Multiple Input Multiple Output) has further
improved the directional capabilities [2]. Massive MIMO utilizes
a large number of transmit and receive antennas, enabling
simultaneous communication with multiple User Equipment
(UE) devices.

However, in the border regions of the coverage area, pro-
viding sufficient communication quality solely through a single
base station can be challenging. This necessitates the need for
Coordinated Multi-Point (CoMP) operations, where multiple
base stations cooperate to perform beamforming and improve
communication quality for UE devices in the border regions [3],
[4].

In CoMP, there is a trade-off between the accuracy of feed-
back information for beamforming and system performance.

Utilizing accurate feedback information enables optimal beam-
forming, but there can be delays or errors associated with obtain-
ing such information. When accurate information is available,
high throughput can be achieved through Joint Transmission
(JT), where multiple base stations transmit the same signal.
On the other hand, when accurate information is not available,
Coordinated Scheduling/Beamforming (CS/CB) is employed,
where multiple base stations transmit different signals while
avoiding interference. In this case, the throughput is lower
compared to JT.

In addition, there is a trade-off between channel state estima-
tion and data transmission in beamforming. To obtain accurate
information, it is necessary to acquire a substantial amount
of feedback information. Typically, dedicated pilot signals are
transmitted for feedback purposes. The transmission of pilot
signals for channel state estimation limits the resources available
for data transmission. Even if the ACK (Acknowledgment) for
data transmission is used as feedback, the feedback information
obtained varies depending on the beam configuration. Therefore,
it is necessary to switch the beams for measurement purposes.
This implies that there are occasions where the opportunity to
sacrifice beams optimized for data transmission arises in order
to obtain feedback.

To address these challenges, we use the Free Energy Principle
(FEP) [5], drawing inspiration from the workings of the human
brain. FEP aims to estimate and utilize the information necessary
for the system to make optimal decisions. In FEP, the goal is
to minimize the free energy, which is a combination of the
exploration and exploitation value. By minimizing free energy,
FEP allows for the selection of actions that strike a balance
between exploration and exploitation. This means that FEP
enables the system to choose actions that are optimal in terms of
balancing the trade-off between exploration and exploitation. In
the context of beamforming or similar scenarios where a trade-
off exists between observation and control, FEP can be leveraged
to make optimal decisions. By using FEP, the cooperation among
multiple base stations in beamforming can be achieved, leading
to an improvement in communication quality.

In this paper, we propose a cooperative beamforming tech-
nique using the Free Energy Principle (FEP). To achieve this,
we deploy FEP agents at each base station and place a higher-



level FEP agent to coordinate their actions. The lower-level
agents perform beamforming using information from the higher-
level agent and feedback information from the User Equipment
(UE). The higher-level agent observes the state of the lower-level
agents and provides feedback in the form of predicted states. By
employing this hierarchical structure, coordinated beamforming
is realized, ensuring coherence across the system.

The evaluation compares the performance of hierarchical
coordination with non-coordination scenarios, elucidating the
effectiveness of hierarchical cooperation.

This paper is organized as follows. Section II discusses
related work. Section III describes the system model. Section IV
presents the proposed method. Section V evaluates the proposed
method. Finally, Section VI concludes the paper.

II. RELATED WORK

In previous studies targeting hierarchical beamforming with
macrocells and small cells, most of them assumed sparse place-
ment of small cells without overlapping with each other [6]–
[8]. In this case, user terminals connect to the small cell at their
location, and if they do not belong to any small cell, they connect
to the macrocell, ensuring a unique correspondence between
cells and terminals. However, in practice, considerations must be
given to terminal allocation between cells, such as the overlap
between small cells or allocating terminals near the periphery
of small cells to the macrocell.

In the work by [9], a method for performing independent
beamforming in situations with overlapping cells and interfer-
ence between them is investigated. However, this approach does
not consider the hierarchical structure of cells.

Each cell determines beamforming and transmission power
using local information within the cell, such as the transmission
rate to the terminal, channel gains, and interference power
including noise. Beamforming and transmission power selection
are performed using Deep Q-network (DQN) from a discrete set
of multiple candidates.

DQN learns the relationship between observed information
and reward (power efficiency as the transmission rate per unit
transmission power) using a neural network. The observed
information uses only local information, while the reward in-
corporates global information by considering the overall power
efficiency of all cells. The learning of the Q-network involves
accumulating observed information and rewards, followed by
offline iterative retraining.

The evaluation demonstrates that the overall power efficiency
improves compared to randomly selected beamforming and
transmission power choices or when using a greedy approach.

In the study by [7], beamforming for small cells within the
coverage of macrocells is investigated. In this case, the interfer-
ence between cells is only considered between the macrocell and
small cells, without considering interference among other small
cells. The macrocell has the ability to determine the transmitted
radio waves with higher priority, while small cells perform
beamforming in the presence of interference from the macrocell.

In the small cells, beamforming decisions are made based on
channel coefficients, interference power from the macrocell, and

noise power. Additionally, for each user terminal, the decision
of whether to block it or not is made. Blocked terminals cannot
transmit radio waves, reducing interference to other terminals.
The beamforming and blocked user terminals are computed
by solving an optimization problem to maximize the sum of
transmission rates for all terminals.

In the context of active inference based on the principle of free
energy, the policy π = (a1, · · · , aT ) representing a sequence
of selected actions is determined to minimize the following
expected free energy:

G(o1:T , s1:T , π) = EQ[logQ(s1:T , π) (1)

− log P̃ (o1:T , s1:T , π)]

Here, o1:T represents the observations, s1:T represents the
states, Q represents the approximate posterior distribution, and
P̃ represents the target distribution.

Given π, the expected free energy at each time step τ can be
independently calculated as follows:

Gτ (π) = EQ(oτ ,sτ |π)[logQ(sτ |π)− log P̃ (oτ , sτ |π)] (2)

≥ −EQ(oτ |π)[DKL(Q(sτ |oτ , π)||Q(sτ |π))] (3)

−EQ(oτ |π)[log P̃ (oτ )]

The first term in the above equation provides the information
gain of posterior distribution update by obtaining the new
observation oτ . The second term represents the expected utility
based on the observation oτ . The utility needs to be specified
in advance by the prior distribution P̃ (oτ ). Both the first and
second terms are negative, and as the information gain and utility
increase, the expected free energy decreases.

Hierarchical active inference models primarily focus on hi-
erarchical organization within a single individual, where the
upper layers provide goals to lower layers to determine specific
actions [10]–[13].

In the context of small cell-macrocell systems, the macrocell
not only modifies the goals of the small cells but also controls its
own behavior. Additionally, the macrocell needs to interact with
multiple small cells. While the coordination of multiple agents
has been addressed in [13], it does not involve hierarchical
coordination but rather coordination between equal agents.

In [12], hierarchical active inference is applied to robot
motion control. The hierarchical structure in this case refers to
the temporal hierarchy within a single robot, where the upper
layers determine long-term trajectories while the lower layers
decide short-term motor controls.

The upper layers aim to reach suitable positions based on
preference distributions, while the lower layers aim to minimize
deviations from the assumptions made by the upper layers using
the upper layers’ estimated distributions as prior beliefs.

In the upper layers, the path with the minimum expected free
energy is determined by weighing the expected free energy at
each point along the trajectory. On the other hand, in the lower



layers, individual movements are determined through sampling
based on the magnitude of the expected free energy.

Using an actual robot and only RGB camera data, the ability
to correctly move to the target position has been confirmed.
However, this work does not consider comparisons with other
methods or environmental changes.

In [13], a hierarchical active inference approach is applied
to a cooperative cooking game called ”overcooked,” where
agents (cooks) cooperate with each other. To facilitate agent
cooperation, each agent estimates the goals of other agents and
shares those goals.

In this approach, hierarchical organization occurs within each
agent, with an upper layer that sets goals and a lower layer that
determines specific actions. The estimated goals of others and
top-down goals from the upper layer are reflected as the Kalman
gain in the Kalman filter, and the lower layer makes decisions
for integrated actions.

It has been demonstrated that this approach achieves com-
parable performance to Bayesian Delegation, which combines
Bayesian estimation and Q-learning, in a shorter computation
time.

III. SYSTEM MODEL

A. Components

The system consists of M macrocells and S small cells that
communicate with D User Equipment (UE). We consider a
scenario where downlink communication involves interference
among the beams transmitted from the base stations and inter-
fering with each UE.

We define the set of base stations for macrocells as B(m), the
set of base stations for small cells as B(s), and the set of UEs
as U :

B(m) = {b(m)
i |i = 1, · · · ,M} (4)

B(s) = {b(s)i |i = 1, · · · , S} (5)

U = {ui|i = 1, · · · , D} (6)

The set of all base stations is denoted as B = B(m) ∪B(s).

B. Channel Coefficients and Beamforming

Each base station b transmits signals using Mb antennas, and
the signals are transformed by the spatial characteristics and
reach the Mu antennas of the receiving UE u. The spatial
characteristics are represented by the matrix Hu,b(t), where
the element hu,b

ij (t) represents the channel coefficient when
transmitting from antenna i to antenna j.

At each time, each UE u is connected to one of the base
stations b, and this correspondence is represented by A(t). The
element au,b(t) of A(t) is 1 if u is connected to b, and 0
otherwise.

Each base station adjusts the phase and amplitude of the
transmitted signals for each antenna and performs beamforming.
The phase is represented by the beamforming vector wb(t), and
the amplitude is represented by Pb(t). The relationship between
the transmitted signal xb(t) and the received signal yu,b(t) is
given by:

yu,b(t) =
√

Pb(t)H
u,b(t)wb(t) ◦ xb(t) (7)

where ◦ denotes element-wise multiplication.
1) Electromagnetic Interference: UE u receives signals that

include noise and signals transmitted from other base stations,
causing interference. The received signal at UE u is given by:

yu(t) = yu,b(t) +
∑

b′∈B\{b}

yb′(t) + σu(t) (8)

The Signal-to-Interference-plus-Noise Ratio (SINR) is defined
as follows:

γu(t) =
Pb(t)∥Hu,b(t)wb(t)∥2

Iu(t) + σ2
u(t)

(9)

Iu(t) =

∥∥∥∥∥∥
∑

b′∈B\{b}

yb′(t)

∥∥∥∥∥∥
2

(10)

where I(t) represents the strength of interference signals, and
σ2(t) represents the power of noise.

C. Objective Function

The data transmission rate to UE u is estimated using SINR
as follows:

Cu(t) = log(1 + γu(t)) (11)

In the paper by [9], the reward is defined as the total
transmission rate of all cells per unit power consumed by all
cells, aiming to maximize the overall power efficiency. In this
case, the power efficiency at time t is given by:

EE(t) =
∑
u

EEu(t) (12)

EEu(t) =
Cu(t)∑
b Pb(t)

(13)

However, when using this objective function, fairness among
UEs is not considered, which may lead to unfairness among
UEs, such as prioritizing nearby UEs that can achieve higher
transmission rates while making communication difficult for
distant UEs. In the paper by [14], for the case of beamforming
in a single base station, they propose using objective functions
that consider fairness, such as the logarithmic sum of power
efficiency for each UE or the maximization of the minimum
power efficiency. Similar objective functions can be applied
in the case of multiple base stations to achieve beamforming
considering fairness.

IV. DISTRIBUTED BEAMFORMING BY FEP

A. Active Inference by Multiple Agents

To minimize the expected free energy, it is necessary to
calculate the expected free energy for all possible actions based
on the observations and states. In the case of beamforming
with multiple base stations, the number of observations, states,
and actions increases with the number of base stations. In



particular, for states and actions, considering their combinations
is necessary for distribution calculations, making it impractical
to minimize the expected free energy of the entire system.
Therefore, it is desirable for the active inference agents deployed
at each base station to decide local actions based on local
information.

In this regard, each base station b ∈ B determines a local ac-
tion sequence π(b) = (a

(b)
1 , · · · , a(b)T ) to minimize the following

local free energy under the local observation information o
(b)
τ

and the local state s
(b)
τ :

Gτ (π)
(b) = E

Q(o
(b)
τ ,s

(b)
τ |π(b))

[logQ(s(b)τ |π(b)) (14)

− log P̃ (o(b)τ , s(b)τ |π(b))]

In this case, collaboration with other base stations is achieved
through the exchange of local observation information o

(b)
τ or

prediction and prediction errors. In FEP, collaboration at the
same hierarchical level is achieved by other agents observing
the results of an agent’s actions through observations [13]. On
the other hand, collaboration between upper and lower levels
is achieved through the exchange of predictions and prediction
errors, where the upper level predicts the state of the lower level
from a higher level of abstraction, and the lower level conveys
the prediction error to the upper level [12].

In the case of beamforming, collaboration at the same hier-
archical level involves collaboration where the settings of each
beamforming are observed as equal partners, while collabora-
tion between upper and lower levels involves the upper level
predicting the desired states of each small cell as a result of
mediating the interference of each lower level, and the lower
level providing feedback on prediction errors to the upper
level. In this case, collaboration between the upper and lower
levels requires more overhead for exchanging information since
it is necessary to transmit information about the distribution
rather than the determined value of beamforming results in the
case of collaboration at the same hierarchical level. Therefore,
collaboration between the upper and lower levels is expected to
be performed on a longer timescale than collaboration within
the same hierarchical level.

B. Active Inference in Vertical Collaboration

We provide a detailed description of the operation of active
inference agents in the vertical collaboration between base
stations. Specifically, we define observations, states, actions, and
preference distributions in the framework of FEP.

1) Lower-level Agents: Lower-level agents are deployed in
each small cell and determine the shape of the beam based on the
feedback from the user equipment (UE). Although lower-level
agents are independent of each other, they achieve cooperation
among agents by receiving the predicted distribution from the
upper level and implementing control along the preference
distribution.

a) Observations: We assume that base station b can ob-
serve the transmission rate to each UE based on the feedback
from the UE, denoted as Cb(t). Therefore, it corresponds to
ob(t) = Cb(t).

As feedback, the receiving side SINR is measured through
CSI or SS, and the transmission rate is estimated from the SINR.

b) States: Based on the observed transmission rate Cb(t)
and the information of its own beamforming, base station b
estimates the channel coefficients Hu,b(t). Therefore, the system
state is represented as sb(t) = (Hu,b(t),Cb(t)).

The prior distribution of states is given as the predicted
distribution of lower-level states by the upper level, and the
lower level achieves cooperation by controlling to align with the
assumptions of the upper level. Therefore, the prior distribution
of states in the lower level is given as follows:

P̃C(sb(t)) = P (sb(t)|obh(t)) (15)

where bh represents the base station of the macrocell.
c) Actions: The base station specifies the shape of the

beam by the beam vector wb(t) and determines the transmit
power Pb(t). Therefore, ab(t) = (wb(t), Pb(t)) corresponds to
the actions.

d) Preference Distribution: The preference distribution
sets the desired states for control as the prior distribution with
respect to the observations. When a specific objective function
Rb(oτ ) is set, such as power efficiency or maximization of
transmission rate, the preference distribution can reflect the
objective function R(oτ ) by using the Boltzmann distribution
as the preference, where utility is measured in terms of the
logarithm of the preference distribution. It can be represented
as follows:

P̃R(oτ ) ∝ exp(βR(oτ )) (16)

where β is a parameter that determines how much the preference
biases depending on the magnitude of the objective function.

2) Upper-level Agents: Upper-level agents are deployed
in the macrocell and determine the Coordinated Multi-Point
(CoMP) configuration (i.e., the group of lower-level base sta-
tions performing joint transmission) based on the observed states
estimated by the lower-level agents. The predicted distribution
of upper-level states is used as the prior distribution for the
lower-level states.

a) Observations: The estimated results of the states
P (sbl(t)|obl(t)) in the lower-level base stations bl are used as
observations. Therefore, ob(t) = P (sbl(t)|obl(t)) corresponds
to the observations.

b) States: In the upper level, control is performed based on
the channel coefficients Hu,bl(t) for each lower-level base sta-
tion. Therefore, sb(t) = (Hu,bl1(t),Hu,bl2(t), · · · ) corresponds
to the states.

c) Actions: In the upper level, the group of lower-level
base stations performing joint transmission (JT) is determined.
In other words, a subset of small cells is determined as G ⊆
B(s), and ab(t) = G is defined.

d) Preference Distribution: Similar to the lower level,
the preference distribution in the upper level is a Boltzmann
distribution based on power efficiency or transmission rate, but



it uses aggregated power efficiency and transmission rate for the
entire system instead of individual values for each base station.

C. Beamforming for Multiple Terminals

In the case of multiple terminals, each UE is assigned a time
slot, and only one UE is served simultaneously. Since each
UE has physically different antennas, the channel coefficients
Hu,b between the UE and the base station are independent
for each terminal. Therefore, for each UE u, an agent state
s
(u)
b is maintained, and the state is switched depending on the

UE to which the transmission is directed, thereby achieving
beamforming for multiple terminals.

Here, we assume that the assignment of time slots to UEs is
determined in advance as an external control. Also, regarding
the feedback from UEs to base stations, it is assumed to be the
observation of the estimated time slots for each UE.

V. EVALUATION

To confirm the effectiveness of beamforming coordination by
vertical coordination using FEP, simulation will be used to verify
the operation.

A. Setting

To verify the effectiveness of coordinated beamforming
through vertical collaboration using FEP, we conducted simula-
tions to confirm its operation.

1) System Configuration: We consider a system with 1 UE
equipped with a single antenna and 2 base stations equipped
with N = 4 antennas each. The goal is to transmit signals from
the two base stations to the UE using beamforming techniques.
Initially, we investigate the performance in a static environment
where the channel coefficients remain fixed without temporal
variations. The noise intensity is set to -114 dBm.

Following the approach in [9], we assume that the channel
coefficients undergo time variations modeled as L-path Rayleigh
fading. The channel coefficient hij(t) between the i-th base
station and the j-th antenna of the UE at time t can be expressed
as:

hij(t) =

√
βi,j

L

L∑
l=1

gi,j(t, l)a
†
i,j(θ) (17)

gi,j(t, l) = ρgi,j(t− 1, l) +
√
1− ρ2ei,j(t) (18)

ai,j(θl) =
1√
N

(1, exp(πil · 1 cos θl),

· · · , exp(πil · (N − 1) cos θl))

Here, ei,j(t) represents complex Gaussian noise, and ρ is a
parameter that determines the temporal continuity of Rayleigh
fading. θl denotes the transmission angle of path l, which follows
a uniform distribution (θ̄l − ϑ/2, θ̄l + ϑ/2). Figure 1 illustrates
an example of the time variation of the channel gain ||H(t)||2
under fading conditions.

0 200 400 600 800 1000
time
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Fig. 1. Example of the time variation of the channel gain under fading conditions

2) Base Station Operation: Each base station observes the
received SINR from the UE as feedback. Upon receiving the
feedback, the base station updates its internal models and states
and determines the transmit power and beamforming vector for
the next transmission.

The beamforming vector is selected from a pre-defined set of
N codebooks [1]. The i-th beamforming vector wn is given by:

wn = (
1√
N

exp(
2πi(n− 1)0

N
), (19)

· · · , 1√
N

exp(
2πi(n− 1)(N − 1)

N
))

We use solver pymdp [15] for inference, action, and learning,
in which, the SINR and channel coefficients are discritized into
10 bins and 50 bins.

3) Internal Model Initialization: The internal models
P (oτ |sτ , π) and P (sτ |sτ−1, π) can also be learned as FEP for
expected free energy minimization. For this simulation, we set
the initial models with random values as the initial models for
FEP.

B. Results

In this section, we present the results of the evaluation for
both single-user operation and multi-user switching scenarios.

C. Single-User Operation

Figures 2 and 3 show the results of the expected free energy
and SINR over time for single-user operation without and with
vertical collaboration, respectively.

In Fig. 2, the results without vertical collaboration show the
temporal variations of expected free energy and SINR when
each base station independently performs beamforming. Fig. 3
illustrates the results with vertical collaboration, where the base
stations share the estimated states through higher layers.

From both figures, it can be observed that the expected
free energy decreases over time, indicating the improvement of
the beamforming performance. However, due to the stochastic
variations of the channel coefficients, the expected free energy
shows small fluctuations and does not converge to zero, unlike
in static environments.

The SINR, on the other hand, reaches a high level after
a certain number of iterations in both cases, indicating that
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Fig. 2. Temporal variations of expected free energy and SINR at the UE (without
vertical collaboration)

appropriate beams are selected. However, without vertical col-
laboration, temporary decreases in SINR are observed even after
it initially becomes high. These temporary decreases are caused
by the response of each base station to fine variations in fading,
which affects the changes in beams of other base stations.
In particular, without vertical collaboration, the independent
adaptation of each base station to fine variations in fading leads
to oscillations and further changes in the situation. In contrast,
the sharing of state information through vertical collaboration
allows the upper layers to predict the overall situation and
suppress oscillations in control responses to such fine variations.

D. Multi-User Switching

Next, we consider the scenario of switching the transmission
target among multiple UEs according to a given schedule. The
schedule switches the UE every 300 time units.

Figures 4 and 5 show the results of the expected free energy
and SINR over time for multi-user switching without and with
vertical collaboration, respectively. Each UE is color-coded in
the figures.

Fig. 4 shows the results without vertical collaboration, where
each base station independently performs beamforming for the
switching UEs according to the given schedule. Fig. 5 illustrates
the results with vertical collaboration, where the base stations
share the estimated states through higher layers.

From both figures, it can be observed that the expected free
energy decreases for each UE during the switching process,
indicating the improvement in beamforming performance.
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Fig. 3. Temporal variations of expected free energy and SINR at the UE (with
vertical collaboration)

The SINR, in both cases, reaches a high level after a certain
number of iterations and is maintained thereafter. However,
without vertical collaboration, temporary decreases in SINR are
observed even after it initially becomes high. These temporary
decreases are caused by the response of each base station to fine
variations in fading, which affects the changes in beams of other
base stations. Nevertheless, the use of vertical collaboration
enables stable control by predicting the overall situation based
on higher-level information and transmitting it to lower-level
layers.

Although each UE requires iterations to improve SINR, once
the SINR improves, it remains at a high level. Even when a
UE is switched during the process, the learned models and state
estimation results are maintained, allowing the setting of beams
tailored to the situation of each UE. In practical operations,
since the models and states are continuously utilized, the time
required for the initial iterations is not a significant issue.

VI. CONCLUSION

In this paper, we proposed a collaborative beamforming
approach, utilizing vertical collaboration between base stations
to enhance the overall performance. The proposed approach
leverages the sharing of estimated channel states and learned
models among base stations to improve beamforming adaptation
and mitigate the effects of fading variations.

Through evaluations in single-user operation scenarios, we
observed that the expected free energy, which represents the
beamforming performance, decreased over time in both cases
with and without vertical collaboration. However, without verti-
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Fig. 4. Temporal variations of expected free energy and SINR at the UE (without
vertical collaboration, with 3 UE switching)

cal collaboration, the SINR showed temporary decreases due to
the independent adaptation of each base station to fine variations
in fading. In contrast, with vertical collaboration, the sharing
of state information allowed for the prediction of the overall
situation and suppression of oscillations in control responses,
resulting in improved stability.

Furthermore, we investigated the multi-user switching sce-
nario, where the transmission target switched among multiple
users according to a predefined schedule.

Future work can explore further enhancements to the col-
laborative beamforming approach. One potential direction is
to investigate horizontal collaboration between beamforming
agents, enabling coordinated actions and information exchange
to achieve better overall performance. Additionally, incorporat-
ing predictions of environmental time variations could improve
the adaptability and robustness of the beamforming system.
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