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Abstract—Beamforming plays a crucial role in enhancing
the performance of wireless communication systems. However,
achieving optimal beamforming entails a trade-off between explo-
ration and exploitation, where the system needs to balance the ex-
ploration of different beam directions with the exploitation of the
best available beam. Motivated by the exploration-exploitation
trade-off, we propose the FEP method, which leverages hierar-
chical modeling and adaptive beam switching to optimize this
trade-off. Through simulations in a dynamic environment, we
evaluate the performance of the FEP method in terms of expected
free energy minimization and signal-to-interference-plus-noise
ratio (SINR) maximization. The results demonstrate that the
FEP method effectively maintains high SINR levels through
adaptive beam direction selection, reflecting efficient exploitation.
Comparative analysis with other beamforming methods further
highlights the superior performance of the FEP method in terms
of average signal quality and stability.

Index Terms—Beamforming, Beyond 5G, Active Inference,
Free Energy Principle, Hierarchical Codebook

I. INTRODUCTION

Massive MIMO technology has shown great potential for
enhancing coverage and improving spatial utilization in wire-
less communication systems [1]. However, beamforming, a
key technique in Massive MIMO, faces challenges in accurate
channel state estimation. This challenge arises due to the
need for feedback from the terminals, resulting in round-trip
delays and reduced throughput due to observation-based radio
transmissions. Particularly in Massive MIMO systems with
a large number of antennas, the dimensionality of channel
state estimation increases, leading to increased overhead for
estimation.

In the context of 5G, beamforming techniques utilizing
codebooks have been standardized to alleviate the aforemen-
tioned challenges. By predefining a fixed number of candidate
beams, the overhead associated with beam search can be
reduced. However, as the number of antennas increases, the
number of candidate beams also escalates, giving rise to
concerns regarding search overhead. To tackle this issue, hier-
archical codebooks have been proposed [2], [3], which enable
efficient beam search by employing broader-angle beams in
the upper layers and narrower-angle beams in the lower layers.
This approach gradually refines the beam selection from coarse
granularity to fine granularity.

Nonetheless, existing methods for hierarchical beamforming
assume a static environment and depend on sequential search
of the hierarchical codebooks from top to bottom in the
spatial domain. In practice, it is necessary to simultaneously
explore both higher and lower hierarchical levels, adapting to
changing conditions. These challenges arise due to a system
model that separates the stages of exploratory observation-
based estimation and utilization-based data transfer.

Recently, the Free Energy Principle (FEP) has garnered
significant attention in the realm of neuroscience due to
its potential applications in various domains [4], [5]. FEP
introduces a unifying framework that tackles estimation and
decision-making by framing them as processes aimed at min-
imizing free energy. This notion of free energy encompasses
both epistemic and pragmatic values, fostering a harmonious
equilibrium between exploration and exploitation during the
estimation and decision-making phases. When integrated into
the context of beamforming, FEP stands out for its capability
to dynamically and intelligently adjust the equilibrium be-
tween exploration and exploitation in response to evolving
environmental conditions. Also, FEP has the capability to
iteratively update the internal model itself. This aspect stands
in contrast to conventional methods (e.g. neural network [6])
that require time-consuming retraining. FEP, on the other hand,
enables swift adaptation to changing circumstances while
simultaneously enhancing the accuracy of the internal model.
As a result, FEP not only aligns with the principles of adaptive
beamforming but also offers a novel approach to optimizing
the performance of beamforming techniques amidst changing
contexts.

In this paper, we present a novel approach that utilizes Free
Energy Principle (FEP) agents for beam selection at each level
of the hierarchical codebook. These FEP agents make use of
feedback information from the terminals to select beams at
their respective levels. The FEP agents in the upper and lower
levels simultaneously make independent decisions, but they
exchange state information to ensure coherent beam selection
across levels. To account for the disparities in spatial and
temporal scales between the upper and lower levels, we set
longer intervals for updating the state in the higher levels.
This allows for the reflection of the differences in spatial and
temporal scales between the upper and lower levels.



Through comprehensive evaluations, we demonstrate the
effectiveness of our proposed method. We show that our
approach consistently maintains a higher SINR(Signal-to-
Inference-pluse-Noise Ratio) compared to conventional beam
training techniques and policy-based approaches in multi-
armed bandit problems.

In Section II, we review the existing beamforming studies
and FEP as related studies. Section III describes the assumed
beamforming system model. In Section IV, we propose a
beamforming method based on FEP. In Section V, we present
the evaluation results of the proposed method by simulations.
Finally, in Section VI, we summarize and discuss future issues.

II. RELATED WORK

A. Beamforming with Hierarchical Codebook

Previous literature has focused on the design of hierarchical
codebooks. In many cases, hierarchical codebooks are con-
structed by dividing the angular domain from coarse to fine
granularity, primarily targeting the direction of beams [7], [8].

The mainstream approach in hierarchical codebooks is to
divide the beam directions hierarchically and store beam
vectors corresponding to each direction in the codebook, as
shown in [7], [8]. The upper levels contain candidate angles
with coarse granularity, while the lower levels have candidate
angles with fine granularity. In many cases, at each level, two
alternative angles are selected based on the angle determined
in the upper level as the center. However, when performing
the search from the topmost to the bottommost level, the
minimum number of beam vectors to be explored is achieved
through a three-partition search, which has led to the proposal
of codebooks for ternary tree search [9].

When the receiving terminal is far enough, the direction
of beam emission from each antenna aligns with the beam
direction. However, when the receiving terminal is nearby,
adjustments in the emission direction for each antenna are
necessary based on the distance. Therefore, methods that con-
sider both the beam direction and the distance and construct
codebooks by hierarchically partitioning the two variables
have also been proposed [2], [3]. The upper levels have
candidate angles and distances with coarse granularity, while
the lower levels have candidate angles and distances with fine
granularity. In this case, at each level, a four-choice selection
is performed by dividing the range of angles and distances
into two parts for each variable.

In beam determination, as feedback is obtained for each
beam, increasing the number of beams results in a larger
overhead for feedback. When using hierarchical codebooks,
the overhead is reduced by limiting the number of beams to
be explored.

Beamforming using hierarchical codebooks often involves
beam training, where beams are determined. Beam training is
performed by exploring and determining the beam with the
highest SINR before communication. The search is conducted
from coarse beams at the upper levels to fine beams at
the lower levels, following the hierarchical structure of the
codebook.

Thus, conventional beamforming using hierarchical code-
books assumes offline beam exploration. On the other hand,
active inference allows for online beamforming, which per-
forms communication and exploration simultaneously.

Although not using hierarchical codebooks, a method that
performs online beam training known as the UCB (Upper
Confidence Bound) algorithm is proposed in the literature [10].
This method narrows down the candidate beams using terminal
location information and performs online beam exploration as
a multi-armed bandit problem.

The beam exploration selects the top Btr beams to explore
per round, where the beams with the highest UCB values are
explored, as defined by:

UCBi =
Xi

Ti
+

√
2 log(n)

Ti
(1)

Here, n represents the round number, Xi is the cumulative
reward for the i-th beam, and Ti is the number of times the
i-th beam has been explored. The reward is 1 if the beam has
the highest received signal strength and 0 otherwise.

The first term on the right-hand side represents the selec-
tion criterion for beams with higher average rewards, while
the second term ensures the selection of beams with fewer
explorations relative to the number of rounds. This allows
for beam exploration considering the trade-off between ex-
ploration and exploitation. However, this method does not
consider the hierarchical structure of the codebook, and the
location information of the terminal is obtained from the
satellite, which is limited to the case where the satellite is
in the line of sight.

Our FEP-based beamforming also allows for the use of
these conventional codebooks, and in this paper, we employ a
standard binary partition codebook based on angles. However,
conventional hierarchical codebooks assume a unidirectional
search from the topmost to the bottommost level and may not
be optimal when performing simultaneous searches between
upper and lower levels as required by the attention mechanism
of the FEP.

B. Free Energy Principle

FEP is used to explain a wide range of phenomena related to
neural activity and behavior in the brain and provide a common
underlying principle for biological systems [4], [5]. According
to FEP, biological systems are programmed to minimize free
energy. In order for biological systems to achieve goals such as
cognition, perception, and behavior, they must process sensory
information appropriately and minimize free energy.

In FEP, the brain is assumed to compute an approximate
distribution q(x) of the posterior distribution p(x|s) of the
state x of the environment under the observed information s.
The free energy is defined by

F (q, s) =
∑
x

q(x)E(x, s)− (−
∑
x

q(x) log q(x)) (2)

= DKL(q(x)||p(x|s))− log p(s) (3)



where E(x, s) = − log p(x, s) is the logarithm of the si-
multaneous distribution of x and s, and DKL is the KL
divergence. − log p(s) is called the Shannon surprise. Equation
(2) corresponds to the Helmholtz free energy F = U −TS in
statistical mechanics if the temperature T is neglected (T = 1).

III. SYSTEM MODEL

This section describes the model of beamforming assumed
in this paper. We also describe the time scales of the observa-
tion and control loops assumed.

A. Beamforming

The base station uses M antennas to transmit radio waves,
which are transformed by spatial characteristics to reach N
antennas at the receiving terminal (UE: User Equipment). Note
that N = 1 in the cases of [6], [11]. The spatial characteristics
are represented by the matrix H(t), where the element Hij

represents the channel coefficient for the transmission from
antenna i to antenna j.

The transmitter estimates H(t) and performs beamforming
by transforming the phase and amplitude of the transmitted
radio wave for each antenna according to H(t), thereby
improving the efficiency of radio propagation. Beamforming
is specified by the beam vector w(t) and the transmit power
P (t), and the following relationship is established between the
transmit signal x(t) and the receive signal y(t):

y(t) =
√
P (t)H(t)w(t) ◦ x(t), (4)

where ◦ denotes the element-wise (Hadamard) product.
In this case, the signal-to-interference-plus-noise ratio

(SINR) is expressed as follows:

γ(t) =
P (t)|H(t)w(t)|2

I(t) + σ2(t)
, (5)

where I(t) is the strength of the interfering radio wave and
σ2(t) is the strength of the noise.

The transmission rate is also estimated using SINR as
follows:

C(t) = log(1 + γ(t)), (6)

where C(t) is the transmission rate.

B. Hierarchical Codebook

In beamforming, it is necessary to estimate the channel
state H(t) using feedback information and optimize the beam-
forming vector w(t). However, estimating the channel state
incurs significant overhead and is not practical. Therefore, an
approach is used where beamforming vectors are selected from
a pre-defined set of candidates called a codebook. However,
in scenarios with a large number of antennas, such as Massive
MIMO, the codebook itself becomes extensive, requiring the
introduction of hierarchy to improve the efficiency of the
search process.

In a hierarchical codebook, there are Kl beamforming
vectors w

(l)
k for each layer l. The value of Kl increases for

lower layers, and in the case of constructing a codebook with
binary splits, Kl = 2l.

When w
(l)

al is selected at layer l, at the next layer (l + 1),
beamforming vectors similar to w

(l)

al are further divided and
selected. In the case of binary splits, the selection is made
between w

(l+1)

2al−1
and w

(l+1)

2al .
The hierarchical codebook used in the paper is based on

the one described in the literature [7]. The n-th beamforming
vector at layer l is as follows:

w(l)
n = (a(2l,−1 + 2n−1

2l
),0N−2l) (7)

a(N,Ω) = 1√
N
(exp(iπ0Ω), · · · , exp(iπ(N − 1)Ω)) (8)

At layer l, the beam is formed using 2l antennas, and as l
increases, it allows for finer beam configurations.

C. Observable Information on Base Station

Estimating the channel coefficients is essential in beamform-
ing, but since the coefficients themselves cannot be directly
observed, they must be estimated from the signals at the
receiving UE, which are observable.

There are two main methods for measuring signal informa-
tion at the receiving UE: using the synchronization signal (SS)
and using Channel State Information (CSI).

In the case of SS, the signal strength and SINR are measured
using the synchronization signal received in the SS/PBCH
block, which is a set of SS and PBCH (Physical Broadcast
Channel), as a reference signal. SS/PBCH is transmitted
periodically (e.g., every two frames) for initial access, so there
is no need to transmit a new reference signal.

When using CSI, a reference signal is sent for observation,
and the received signal is used to measure signal strength and
SINR.

In either case, information from the receiving side is fed
back to the transmitting side, enabling the transmitter to
estimate the downstream channel coefficients.

In limited situations, such as when the same frequency is
used in time division, it is also possible to use the uplink
reference signal (SRS: Sounding Reference Signal) for mea-
surement due to the symmetry of the uplink and downlink
channel coefficients. In this case, the base station observes the
signal directly, so there is no need for round-trip feedback.

We assume that the signal strength and SINR are observed
using these methods in the proposed method.

D. Timescales

Beamforming itself can be switched at a high speed. In fact,
for initial access, beam sweeping switches between two differ-
ent beams within one slot. Specifically, during beam sweeping,
the SS/PBCH block consists of four symbols transmitted by
the base station, with a two-symbol gap between them [12].

Observation information, on the other hand, is acquired
on a slightly slower timescale than beamforming switching.
Feedback of the receiver’s SINR to the base station requires at
least a round-trip time between the UE and the base station to
reply to the transmitted signal from the base station. Therefore,
observations are collected at intervals of multiple symbols
or multiple slots. Specifically, in the case of SS, channel



information is measured using SS/PBCH blocks [13], which
are transmitted periodically every 20 ms, so observations are
obtained every 20 ms. When using CSI, channel information
can be obtained in a shorter time, and according to the
literature [14], the feedback delay for CSI is a minimum of 1
ms. Since beamforming can be switched within a symbol, it
is assumed that control switching can be done fast enough for
the timescale of observation.

IV. BEAMFORMING WITH ACTIVE INFERENCE

We propose beamforming using the FEP to dynamically
perform beamforming while mitigating search overhead. Our
method leverages limited feedback information to estimate the
environmental state and determine the beamforming vector
accordingly based on FEP. It automatically balances the beam
selection for exploration and optimization for data transmis-
sion, assuming feedback is obtained only for the selected
beam. Additionally, to facilitate hierarchical decision-making
with a hierarchical codebook, we deploy agents at each layer
to make decisions and enable state exchange among them.

A. Hierarchical Decision with FEP

Hierarchical decision-making based on the Free Energy
Principle (FEP) is employed in our proposed method. In the
context of FEP, hierarchical active inference through predictive
coding has been advocated [15]. Predictive coding suggests
that the brain predicts input and acts to minimize the prediction
error, which is the discrepancy between the predicted input
and the actual input. In this framework, each layer’s internal
state serves as input for the higher layer, and the lower layer
predicts the lower-level states, forming a multi-level hierarchy
of active inference. It is assumed that higher layers operate on
longer timescales than lower layers.

Considering layer l = 1 as the topmost layer and l = L as
the bottommost layer, let o

(l)
t represent the input at layer l,

and s
(l)
t denote the internal state. For information flow from

lower to higher layers, the lower layer’s estimated internal state
distribution is provided as input:

o
(l)
t = P (s

(l+1)
t |ol+1

0:t ) (9)

Conversely, for information flow from higher to lower layers,
the lower layer’s internal state prediction serves as the prior
distribution:

P (s
(l+1)
t ) = ô

(l)
t (10)

where ô
(l)
t = E

P (o
(l)
t )|s(l)t )

[P (o
(l)
t )] represents the expected

value of observations under the posterior distribution of the
higher layer.

At each layer, the policy π(l) = (a
(l)
1 , · · · , a(l)T ), represent-

ing a sequence of selected actions, is determined to minimize
the expected free energy, guided by the Free Energy Principle:

G(o
(l)
1:T , s

(l)
1:T , π

(l)) = EQ[logQ(s
(l)
1:T , π

(l)) (11)

− log P̃ (o
(l)
1:T , s

(l)
1:T , π

(l))]

Here, Q represents the approximate posterior distribution, and
P̃ represents the target distribution.

In the work [15], the timescales of the lower and higher
layers are predetermined. After a fixed number of iterations
(20 times) of estimation and action at the lower layer, one
iteration of estimation and action at the higher layer occurs.
Then, the lower layer repeats the estimation and action based
on the new prior obtained from the higher layer. Similarly,
in our paper, we assume that the higher layer operates on a
slower time cycle Th compared to the lower layer.

B. Definition of FEP Agents

We design agents corresponding to each hierarchical code-
book layer in the proposed method. Specifically, we define the
agent’s observations, states, actions, and preference distribu-
tion.

a) Observations: The base station can observe the trans-
mission rate C(t) to each UE based on feedback from the
terminals. Additionally, except for the lowest layer, higher
layers can also observe the states estimated by the lower layer.

Therefore, the observations at layer l correspond to
o(l)(t) = (P (s

(l+1)
t |o(l+1)

0:t ),C(t)). The lowest layer only
observes feedback from the terminals, o(L)(t) = C(t).

As feedback, we assume that the receiving side’s SINR
is measured using CSI or SS, and the transmission rate is
estimated from the SINR.

However, the higher the layer, the longer the time interval
for obtaining observations. The specific time intervals and
the impact of temporal smoothing of observations will be
investigated through simulations.

b) States: Based on the observed transmission rates C(t)
and their own beamforming information, the base station es-
timates the channel coefficients Hu(t). Therefore, the system
state corresponds to s(l)(t) = H(t).

State estimation is performed to minimize the error between
the predicted distribution P (o(l)(t)|s(l)(t)) of the observations
and the actual observations. At higher layers, the state does not
necessarily have the same dimensions as the state at the lower
layer and can be an abstract representation. The same applies
to the lower layers, where the system state s(l)(t) corresponds
indirectly to H(t) through the observed values, and there is
no strict requirement for them to match.

The top-down information from higher layers to lower
layers is achieved by overwriting the predicted distribution
P (o(l)(t)|s(l)(t)) with the distribution of the lower layer’s state
P (s(l+1)(t)).

c) Actions: The base station specifies the beam shape us-
ing the beamforming vector w(l)(t) and determines the trans-
mission power P (l)(t). Therefore, a(l)(t) = (w(l)(t), P (l)(t))
corresponds to the actions. However, at each layer, there may
be undetermined choices a(l)(t) = ∅, in which case the choice
of the higher layer is adopted.

d) Preference Distribution: The preference distribution
sets the desired states as a prior distribution for control.

In existing beamforming methods, the objective function
is often the power efficiency or maximization of the trans-



mission rate. However, when considering traffic demands, it
is desirable to set the effective throughput as the objective
function. By choosing a Boltzmann distribution as the pref-
erence distribution with the objective function Rb(oτ ), which
measures utility in terms of logarithm, we can reflect R(oτ )
in the preference distribution:

P̃R(oτ ) ∝ exp(βR(oτ )) (12)

Here, β is a parameter that determines how much the pref-
erence is biased based on the magnitude of the objective
function.

C. Agents Behavior

Each agent in the proposed method performs state estima-
tion upon receiving feedback and determines its action policy
based on the estimated state. Furthermore, when a certain
amount of observations has accumulated, the internal model is
updated through model learning [16]. The following describes
each operation in detail.

1) Inference: When the observed value oτ regarding the
radio wave strength is obtained, the state Sτ of the estimation
regarding the channel is updated. Here, the state is estimated
by minimizing the variational free energy according to the
FEP. The state is estimated as a distribution, and the distribu-
tion Q(sτ |θτ ) follows a categorical distribution.

θτ = arg min
θ

{DKL[Q(sτ |θ)||P (sτ |oτ )]− logP (oτ )} (13)

That is, θτ is calculated as the minimization of the sum
of the true posterior distribution and Q(sτ |θτ ) with the
Cullback-Leibler information content and the Shannon sur-
prise − logP (oτ ).

2) Action: Based on the estimated state, beamforming aτ
is determined as the appropriate action for the situation at that
time. Again, according to the FEP, the action with the smallest
Expected Free Energy is selected. The policy that determines
the series of actions a1, · · · , aT is π, and the probability of
the policy is determined as follows.

P (π) = softmax(−
∑
τ

Gτ (π)) (14)

where softmax(x) = ex∑
x′ e

x′ and Gτ at each time is defined

by

Gτ (π) = EQ(oτ ,sτ |π)[logQ(sτ |π) (15)

− log P̃C(oτ )P (sτ |oτ , π)]

where P̃C(oτ ) denotes the preference for the observed value.
3) Learning: For the internal models

P (oτ |sτ ), P (sτ+1|sτ ), it is possible to set designed values
or learn from data. Therefore, it is also possible to operate
by giving a base model and then updating the internal model
itself according to the situation.

Update P (oτ |sτ ) as Dirichlet distribution Q(A) with pa-
rameter A and P (sτ+1|sτ ) as Dirichlet distribution Q(B)

with parameter B. Again, A,B is obtained by minimizing
the variational free energy as in the state estimation.

AT = arg min
A

EQ(s1:T ,A,π) [logQ(s1:T , A, π) (16)

− logP (o1:T , s1:T , A, π)]

BT = arg min
B

EQ(s1:T ,B,π) [logQ(s1:T , B, π) (17)

− logP (o1:T , s1:T , B, π)]

V. EVALUATION

To evaluate the effectiveness of the proposed method, we
conducted simulations. The evaluation aimed to assess the
performance of the method in dynamic scenarios where UE
is moving, requiring continuous updates of beamforming. We
compared the proposed method against existing approaches
such as online beam training and periodic beam training.

A. Setting

In the evaluation, we considered a scenario where a single
UE with one antenna receives signals from a base station
equipped with N = 4 antennas. To begin with, we verified the
correct functioning of the expected free energy minimization
in a static environment by keeping the channel coefficients
fixed without temporal variations.

The base station observes the UE’s signal-to-interference-
plus-noise ratio (SINR) as feedback and, upon receiving the
feedback, updates the internal models and states of each layer
and determines the power and beamforming vector for the
next transmission. The beamforming vector is selected from a
predefined hierarchical codebook defined by Eq. (7).

The UE performs circular motion around the base station,
moving once per unit time. The distance between the base
station and the UE is set to 200m, and the noise signal strength
at the UE is -114dBm.

In the simulation setting, we consider the time-varying chan-
nel coefficients modeled by L-path Rayleigh fading, following
the approach in [6]. The channel coefficient hij(t) between
base station i and user equipment j at time t is given by:

hij(t) =

√
βi,j

L

L∑
l=1

gi,j(t, l)a
†
i,j(θ) (18)

gi,j(t, l) = ρgi,j(t− 1, l) +
√
1− ρ2ei,j(t) (19)

where βi,j represents the average channel power gain be-
tween the base station and user equipment, a†i,j(θl) is the
steering vector representing the direction of the l-th path,
ei,j(t) represents a complex Gaussian-distributed noise term,
and ρ controls the temporal continuity of the Rayleigh fading
process. θl, are assumed to follow a uniform distribution within
the range (θ̄l−ϑ/2, θ̄l+ϑ/2), where θ̄l represents the average
angle and ϑ denotes the angular spread.

B. Methods

In the evaluation, we compared the following beamforming
methods in the simulations:



1) FEP-based BF(FEP-based Beamforming): This is the
beamforming method based on the FEP described in Sec-
tion IV. The internal models P (oτ |sτ , π) and P (sτ |sτ−1, π)
are learned as expected free energy minimization. The base
station has a two-layer codebook, with the upper layer op-
erating at a timescale Th = 10 times slower than the lower
layer.

2) BT(Beam Training): For comparison, we implemented
beamforming with periodic beam training. Specifically, we
set the training interval to Ttrain = 100, and after per-
forming Ttrain communications, beam training is conducted.
During beam training, communication is not interrupted, but
the beams used for communication are selected sequentially
through hierarchical exploration. Once beam training is com-
pleted, the final determined beam is used for communication
until the next beam training.

The beams during beam training are selected as follows:
1) Start from layer l = 0.
2) Select a beam a ∈ A(l)(a(l−1)) at layer l.
3) Measure the SINR under the selected beam.
4) If beams at layer l have not been fully explored, go back

to step 2.
5) Select the a(l) with the highest SINR.
6) If l is not equal to L, update l to l + 1 and go back to

step 2.
7) a(L) is the final beam.
Here, A(l)(a(l−1)) represents the set of refined beams avail-

able at layer l when a beam a(l−1) is selected at the upper
layer. A(0) at the top layer represents the set of all coarsest
beams.

3) fixBT: This method is the same as BT, but with Ttrain =
inf . After the initial beam training, the selected beam is
continuously used for communication.

4) UCB(Upper Confidence Bound): This method uses the
UCB algorithm to select a set of beams that maximizes the
UCB defined in Eq. (1). The set size is set to 2, and the reward
is defined as SINR.

5) RAUCB(Risk-Aware UCB): In the UCB method, this
approach stochastically rejects the selection based on UCB
and instead chooses beams with higher average rewards. The
rejection probability Z̃n follows a Beta distribution as given
below:

Z̃n ∼ Beta(1 + Ztot[i], 1 + Ti − Ztpt[i]) (20)

Ztot[i] =

n∑
t=1

zt[i] (21)

zt[i] =

{
1 if maxk∈Sγk,t

γi,t
> Γ

0 otherwise
(22)

Here, γk,t represents the received signal strength of beam
k at time t, S denotes the set of selected beams, and Γ is the
parameter controlling the rejection for UCB, set to Γ = 5dB.

C. Results

1) Behavior of FEP in No Fading Environment: Figure 1
shows the results of the FEP method in terms of the temporal
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Fig. 1. Timeseries of Expected Free Energy and SINR in no fading
environment

changes in expected free energy and SINR for both the upper
and lower layers in no fading environment. The time unit in
the figure corresponds to one loop of observation and control,
which is the same as the number of received SINR feedbacks.

From the figure, it can be observed that both the expected
free energy of the upper and lower layers monotonically
decrease, indicating that the minimization of free energy is
effectively functioning. Additionally, the SINR varies with
changes in the angle between the terminal and the base station.
However, the SINR is maintained at a high level, indicating
that the FEP method is effectively exploiting the best beam
direction.

2) Comparison: Figure 2(a) presents box plots depicting
the average time-varying SINR achieved by each method
during beamforming. To account for the influence of channel
coefficients and stochastic selection, we performed beamform-
ing 100 times for each method using different seeds. Moreover,
Figure 2(b) shows examples of SINR time series. However,
UCB and RAUCB exhibit strong exploratory behavior and
large SINR variations; hence, Figure 2(b) displays only the
results of other methods excluding UCB and RAUCB.

From the figures, it is evident that the proposed method
achieves the highest median SINR among all techniques.
Subsequently, the SINR for BT, which performs periodic
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beam training, is comparatively high, while fixBT, UCB, and
RAUCB result in lower SINR values. The fixed beam selection
in fixBT leads to reduced SINR as it is unable to adapt to
changing environmental conditions. In the case of UCB and
RAUCB, frequent exploratory selections and susceptibility to
noise-induced errors contribute to lower SINR values.

Figure 2(b) further illustrates that the proposed method
maintains consistently high SINR levels throughout the entire
duration. Conversely, BT and fixBT experience temporary
SINR decreases due to environmental fluctuations, which
likely lead to the observed reduction in average SINR. The
continuous high performance of the proposed method indicates
its robustness and effectiveness in handling dynamic environ-
ments.

VI. CONCLUSION

In this paper, we proposed a beamforming method based on
the FEP for multi-antenna communication systems. The FEP
approach leverages hierarchical modeling and adaptive beam
switching to optimize the trade-off between exploration and
exploitation. Through simulation evaluations, we compared
the FEP method with other beamforming methods, includ-
ing regular beam training, fixed beam selection, UCB, and

RAUCB. The results showed that the FEP method achieved the
highest SINR and the minimum variation of SINR, indicating
superior performance in terms of both average signal quality
and stability.

Further research can focus on extending the FEP approach
to more complex scenarios and investigating its performance
under different system parameters and constraints.
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