

システム環境を記憶した GRN の作成							11 適応性の評価方法								12
 既存の学習 同時に GRN の学 三つの それそ > GA 	習アノ 複数 認 アプ の が A を 様	レゴリズム の記憶を係 定 リケーショ 性能要求に 数回実行して、	x ^[14] を利用 特すること コンの性能要 こおける有利 見つかった準最	して表現型を ができる 求を既知の環境 な解を選択して 適解を選択(セッシ	:学習 急として事前に設定 CGRNに学習 ンヨン数: 4)			 GRN を用いる 評価1:アプ 大きな環 アプリケ- 評価2:帯域 トロな環 ・評価3:学習 > 未知の環 	場合と用い リケーション ^{見変動への適} -ションは GF 幅が変動する ^{見変動への適} 時に想定し	ハない場合 ンが切り替わ 芯性を評価 RN が事前に学 る場合 でいないアプ む性がどのよう	で3) る場合 習したも リケー	通りの現 ちのから周 ションに するか検証	環境変動へ 期的に切り替 おいて帯域	への適応(わる) が変動する	生を評価
	要求	衣:住肥 セッション	36:11版表示とす自ては元気水型(ビダンゴンダ:*) (シション) 運転時に56:14歳(あ新):04:11(20) (20) (20) (20) (20) (20) (20) (20)												
	A	1 2 3 4 1 2 3 4 1 2	0.05115 0.10679 0.06512 0.09143 0.12866 0.14595 0.04433 0.09747 0.04957 0.08061	52.828 29.842 55.647 30.241 38.833 46.161 34.157 46.974 50.332 27.674	$ \begin{bmatrix} 7,0,0,3,0,5\\0,0,7,1,5,1\\0,0,7,2,3,7\\0,0,5,1,1,5 \end{bmatrix} $ $ \begin{bmatrix} 0,0,5,3,2,4\\0,0,6,1,4,5\\6,0,0,4,3,3\\0,0,6,1,2,5 \end{bmatrix} $ $ \begin{bmatrix} 7,0,0,4,2,5\\0,0,0,4,2,5 \end{bmatrix} $			Entric LL 2016 Fire LL 20 Fire LL 20	生から基準の解の発見に いに記憶させた準最適解の 制約条件を満たす解の発見 生から10秒後と180番 ワークの設定 アクセス キットワーク 10-50Mps (250Mps) 10-50Mps (250Mps)		- 要する時間)発見 (得域の変動によって解空間が変化するため基準の解を変更してい 秒後の解の適合度の高さ (評価2,3) ま:デバイスの設定 (平面2,3) ま:デバイスの設定 (PU Core i7-8700T Core i9-10940X Xeon GOLD 62 GPU GeForce GTX1070 RTX A5000 Tesia T4×2 ま: 取行の能以降分析 at モデル・作弊				を変更している) ウトサーバ m GOLD 6226R×2 la T4×2 性能
	С	3	0.07007	35.058	0,0,5,0,6,4, 0,0,7,0,1,6]			1ビットの 送信電力	193 × 10 ⁻⁹ W	60 × 10 ⁻⁹ W	Mo YOL	odel LOv3-tiny	Accuracy: A ^{M^d} 33.1 %	FLOPS: 0 ³ 5.6 B	(0,1,2)
[14] R. A. Watson, G. P. "DEVELOPMENTAL	. Wagner MEMOF	, M. Pavlicev, D. XY "," Evolution,	M. Weinreich, and F vol. 68, no. 4, pp. 1	R. Mills, "THE EVOLU 124–1138, 04 2014. [On	TION OF PHENOTYPIC COF line]. Available: https://doi.org	RELATIONS AND /10.1111/evo.12337		1フレームあたりの ピット数	470	Kbit	YO	LOv3 LOv3-spp	55.3 % 60.6 %	65.9 B 141.5 B	{3,4,5} {6,7}

