BEAMFORMING WITH FREE ENERGY PRINCIPLE UNDER HIERARCHICAL CODEBOOK

Tatsuya Otoshi⁺, Masayuki Murata[‡]

[†] Graduate School of Economics, Osaka University

[‡] Graduate School of Information Science and Technology, Osaka University

Beamforming

- Effective use of a large number of antennas at the base station
 - Generally, base stations have many antennas and terminals have few antennas
 - Since the terminal side has only a few antennas, it is difficult to receive the throughput gain of MIMO.
 - Signal propagation can be made more directional by using a large number of antennas at the base station
- Signal control based on channel propagation conditions is necessary
 - · Base station estimates the propagation state based on feedback from the terminal
 - Controls the signal to be transmitted to amplify the signal received by the terminal based on the propagation state
- Handling of channel state fluctuations is an issue

feedback

Hierarchical Codebook

- Propagation state estimation becomes more difficult as the number of antennas increases
 - Number of feedbacks required increases with the number of antennas
 - Increased overhead due to signal transmission for measurement \rightarrow lower throughput
- Hierarchical beam search by Hierarchical codebook
 - Candidate beams are prepared in advance as a codebook
 - Hierarchical codebook is constructed from spatially rough beams to finer beams
 - Reduction of feedback signal by limiting the search range
- Redo search when propagation conditions change

Approach

- Beamforming has the overhead of estimating the propagation state.
- Hierarchical codebooks enable somewhat efficient search, but require re-search as conditions change

- Lightweight continuous search, rather than re-exploration, is the best way to deal with changes
- The way people perceive the world is active inference, which always combines search and execution
- Application of active inference to keep up with changing conditions with small overhead

Active inference

- Ordinary inference estimates a "good" state given observed values.
- Active inference estimates a "good" state, including changing observed values through actions.
 - Example: Peek under the table to see what is hidden under the table.
 - Example: Switching between various beams to estimate channel conditions
- Using free energy as a measure of goodness

Free energy principle

- A theory that comprehensively describes the functioning of the brain
 - Describe inference and actions as minimization of "free energy"
- Free energy
 - $F = D_{KL}[Q(s)|P(s|x)] \log P(x)$
 - First term: Posterior distribution of state s P(s|x) and approximate distribution Q(s) Kullback-Leibler information amount of
 - Second term : Shannon surprise
- Inference
 - Estimate the posterior distribution
- Action
 - Select the action that will yield the observed value x that reduces the Shannon surprise in addition to the accuracy of the inference

Inference

- observed value x
 - Feedback of signal strength from the device
- condition s
 - Propagation channel information
- State estimation

•
$$\frac{\partial F_{\tau}}{\partial q^f} = 0$$

$$\implies Q^*(s^f_{\tau}) = \sigma \left(\mathbb{E}_{q^i \setminus f} \left[\ln P(\mathbf{o}_{\tau} | \mathbf{s}_{\tau}) \right] + \ln \left(\mathbb{E}_{P(s^f_{\tau-1}, u^f_{\tau-1})} \left[P(s^f_{\tau} | s^f_{\tau-1}, u^f_{\tau-1}) \right] \right) \right)$$

Action

action u

- beam vector w
- Transmission power p
- policy $P(u_t|\pi)$
 - Determine behavior by estimating the policy using the behavior distribution as a policy (control as inference)
 - The actual action shall be the one with the highest probability.
- Policy estimation

$$Q^{*}(\pi) = \underset{Q(\pi)}{\operatorname{argmin}} \mathcal{F}$$

$$\Rightarrow Q^{*}(\pi) = \sigma(-\mathbf{G}(\pi) + \ln P(\pi_{0}) - F(\pi))$$

$$G(\pi) = \sum_{\tau} \mathbf{G}_{\tau}(\pi) \quad \mathbf{G}_{\tau}(\pi) \geq -\underbrace{\mathbb{E}_{Q(o_{\tau}|\pi)}\left[D_{KL}[Q(s_{\tau}|o_{\tau},\pi) \parallel Q(s_{\tau}|\pi)]\right]}_{\text{Epistemic Value}} -\underbrace{\mathbb{E}_{Q(o_{\tau}|\pi)}\left[\ln \tilde{P}(o_{\tau})\right]}_{\text{Utility}}$$

$$= \operatorname{Extimated value of obtaining the observed value of $\mathcal{O}_{\tau}(\pi) = \frac{8}{2}$$$

Estimated value of obtaining the observed value o

Preference prior

- A probability distribution that expresses the goodness of the observed value itself in determining behavior.
 - Corresponds to reward function and objective function
 - Predicted distribution of observations
 - Minimize surprise = Obtain observed values with high probability = Obtain observed values with strong preferences
- Objective function
 - Transmission rate
- Preference distribution reflecting objective function
 - Boltzmann distribution with negative transmission rate as energy

 $\tilde{P}(o_t) \propto \exp(-\beta\epsilon) = \exp(\beta R(o_t))$

Learning

- Observation model: A
 - A probabilistic model that expresses the relationship between
 - Used to estimate the state from observed values and predict observed values u_{t-1} $P(s_t|s_{t-1}, u_{t-1}, B)$

$$\frac{\partial F}{\partial \ln A} = 0 \implies \mathbf{a}^* = a + \sum_{\tau=1}^T o_\tau \otimes \mathbf{s}_\tau$$

- State transition model : B
 - A probabilistic model that expresses the time change of state
 - Used to predict the state when deciding on actions

$$\frac{\partial F}{\partial \ln B} = 0 \implies \mathbf{b}_u * = b_u + \sum_{\tau=2}^T \sum_{\pi} Q(u_\tau | \pi) Q(\pi) \left(Q(s_\tau | \pi) \otimes Q(s_{\tau-1} | \pi) \right)$$

 S_t

 o_t

P(o|s,A)

 S_{t-1}

P(o|s,A)

Searching on hierarchical codebook with FEP

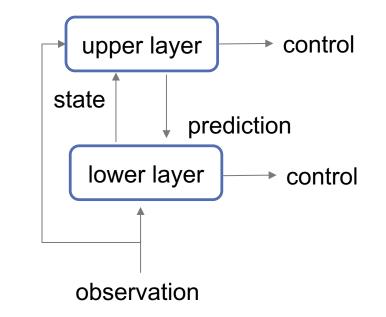
- FEP agents at each level of the Hierarchical codebook
- Active inference is used to make beam decisions at each level
- Information is shared between agents at the upper and lower levels to achieve coordinated operation.
 - Subtle changes are handled by the lower layers.
 - Switching to the upper layer when the lower layer cannot handle the change

Upper layer agent

Hierarchical codebook

Cooperation between hierarchical FEP agents

- Upper layer agent
 - Observes the state resulting from the inference of lower layer agents
 - By reducing the dimensionality of the state, it is possible to reduce the load concentrated on the upper layer.
 - Predicts the desired situation when lower layer cooperation is realized and feed it back to the lower layer.
- Lower layer agent
 - Make control decisions by inferring the state from actual observed values
 - Achieving cooperation by using the predictions of upper-layer agents as the prior distribution for inference
 - Achieving cooperation through inference and control to minimize prediction errors



Simulation environment

- base station
 - 4 antennas
- channel coefficient
 - multipath fading
 - 4 pathes
 - With time variation

$$h_{ij}(t) = \sqrt{\frac{\beta_{i,j}}{L}} \sum_{l=1}^{L} g_{i,j}(t,l) a_{i,j}^{\dagger}(\theta)$$

$$g_{i,j}(t,l) = \rho g_{i,j}(t-1,l) + \sqrt{1-\rho^2} e_{i,j}(t)$$

$$a_{i,j}(\theta_l) = \frac{1}{\sqrt{N}} (1, \exp(\pi i l \cdot 1 \cos \theta_l), \cdots,$$

$$\exp(\pi i l \cdot (N-1) \cos \theta_l)))$$

- UE
 - 1 antenna
 - Concentric circles moving at a constant speed
- Hierarchical codebook
 - 2 layers
 - 2^l beams/layer

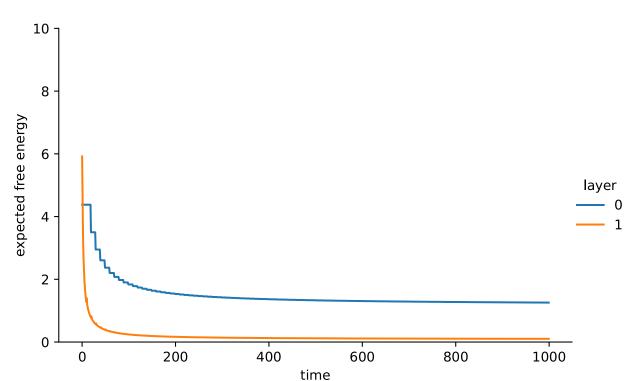
$$\boldsymbol{w}_n^{(l)} = (\boldsymbol{a}(2^l, -1 + \frac{2n-1}{2^l}), \boldsymbol{0}_{N-2^l})$$
$$\boldsymbol{a}(N, \Omega) = \frac{1}{\sqrt{N}} (\exp(i\pi 0\Omega), \cdots, \exp(i\pi(N-1)\Omega))$$

Convergence of Free Energy

 The upper and lower agents operate independently and inferece and control to minimize free energy

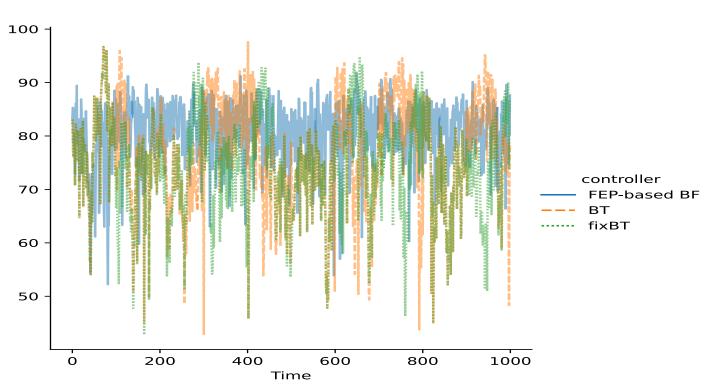
Therefore, they do not necessarily converge.

- As shown in the figure on the right, free energy is converging.
 - Appropriate coordination is achieved through information exchange between upper and lower agents.



Communication performance

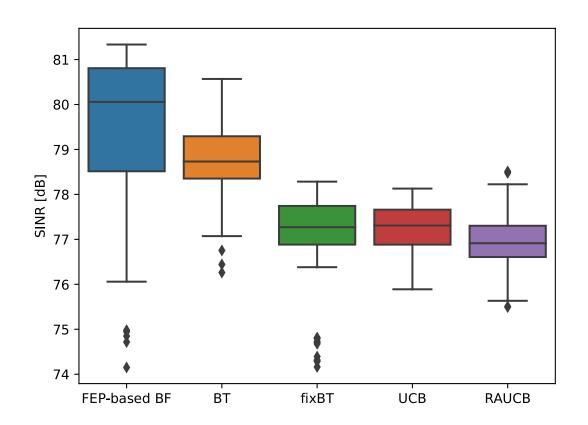
- Methods
 - FEP-based BF
 - BT: Beam training is performed periodically
 - fixBT: Beam training
- Communication performance
 - FEP-based BF maintains stable and high SNR
 - Adaptive control over time variations in the environment
 - BT and fixBT have temporary periods of low SNR
 - This is due to the lack of beam selection suitable for environmental fluctuations.



Comparison

- FEP-based BF has the highest average and quartile SNR
 - In some cases, the minimum value is smaller than BT, but this is due to exploratory behavior
- BT has higher SNR than fixBT
 - Compared to fixBT, which fixes the beam, BT periodically selects the beam and is better able to follow environmental changes.
- UCB and RAUCB have similar or lower SNR than BT
 - Both UCB and RAUCB are basically dealing with uncertainty in a static environment.

- FEP-based BF
- BT: Beam training is performed periodically
- fixBT: Beam training first
- UCB: multi-armed bandit with UCB
- RAUCB: randomly reject UCB



Summary and future work

- Summary
 - Proposed a solution based on the free energy principle framework for beamforming with hierarchical codebook
 - FEP agents are deployed at each level of hierarchy, and state predictions are shared among agents for coordination between upper and lower levels
 - A higher SNR can be maintained on average than with periodic beam training
- Future work
 - Simulation considering the realistic movement of UE
 - Multimodal information processing such as UE location information

Thank you for your attention.