
Survey on Fairness Issues in TCP Congestion Control Mechanisms
Go Hasegawa and Masayuki Murata

Cybermedia Center, Osaka University
Toyonaka, Osaka 560-0043, Japan

E-mail: {murata,hasegawa}@cmc.osaka-u.ac.jp

Abstract
In this paper, we survey the fairness issues in the congestion control mechanisms of
TCP, which is one of most important service aspects in the current and future Internet.
We first summarize the problems from a perspective of the fair service among connec-
tions. Several solution methods are next surveyed. Those are modifications of TCP
congestion control mechanism and router support for achieving the fair service among
TCP connections. We finally investigate the fair share of resources at endhosts.

1 Introduction

In spite of a rapid growth of the Internet population and an
explosive increase of the traffic demand, the Internet is still
working without collapse. Of course, continuous efforts to
increase the link bandwidth and router processing capacity
is supporting the Internet growth behind the scenes. How-
ever, a most essential device for achieving such a success
is a congestion control mechanism provided by a transport–
layer protocol, i.e., TCP (Transmission Control Protocol).
In TCP, each endhost controls its packet transmission rate
by changing the window size in response to network con-
gestion. A key is that the TCP congestion control is per-
formed in a distributed fashion; each endhost determines its
window size by itself according to the information obtained
from the network.

In general, there are two major objectives in the conges-
tion control mechanism. The one is to avoid an occurrence
of the network congestion, and to dissolve the congestion
if the congestion occurrence cannot be avoided. The other
is to provide fair serviceto connections. Keeping the fair-
ness among multiple homogeneous/heterogeneousconnec-
tions in the network is an essential feature for the network
to be widely accepted. The fair service also involves detect-
ing mis–behaving flows which do not properly react against
the network congestion and unfairly occupy the network re-
sources (such as router buffer and link bandwidth).

The above–mentioned fair service could be achieved if
the network explicitly allocates the network resources to
each of active connections. An example can be found in the
ATM ABR service where the rate of each source is deter-
mined by switches [1]. Of course, such a strategy cannot be
adopted in the Internet. The basic role of the network layer
is to carry the bitsbetween endhosts [2], and the congestion
control is performed by TCP, which is a transport proto-
col located at the endhosts. It is just a fundamental prin-
ciple of the Internet, and only such a philosophy can real-

ize a fully distributed network. However, it also introduces
several problems. TCP at endhosts should react against the
network congestion using imperfect information on the con-
gestion level of the network. The end user can intentionally
or unintentionally modify the TCP code so that it does not
react against the network congestion properly. Such a mis–
behavingconnection may continue to send packets with-
out throttling the window even if the congestion happens
in the network. If other users properly perform the conges-
tion control, that mis–behaving user may be able to receive
higher throughput without window throttling. It is becom-
ing more critical with an increase of the commercial use of
the Internet, and the authors believe that fairness issues are
sometimes more important than performance issues (e.g.,
total throughput of an aggregated flow on the link).

Actually, some recent researches impose that the network
takes an active role in congestion control. It seems to violate
the fundamental principle of the Internet, but we actually
need a participation of the network in order to improve the
fairness among connections. Perhaps, the fairness degree
is much dependent on the functionality provided by the net-
work, and functional partitioning between the network layer
and the transport layer should be reconsidered in order to re-
solve the fairness problems for the current Internet. Keeping
those facts in mind, we will focus on the fairness aspect of
TCP in this paper.

This paper is organized as follows. We first summarize
the congestion control mechanism of TCP and point out the
fairness problems in Section 2. Router support for TCP
congestion control is also described. We then review the
methods for fairness improvements by TCP congestion con-
trol algorithms in Subsection 3.1, and by packet buffering
and scheduling algorithms at the router in Subsection 3.2.
We also describe TCP–friendly rate control for non–TCP
connections (Subsection 3.3) and fair resource allocation at
endhosts (Subsection 3.4). Concluding remarks are finally
presented in Section 4.

1



2 Congestion Avoidance and Dissolu-
tion

In this section, we first summarize the existing congestion
control mechanisms of TCP, which is performed at the end-
hosts. The router’s packet processing mechanism to support
the congestion control is next introduced. Those include
RED (Random Early Detection) and ECN (Explicit Con-
gestion Notification).

2.1 TCP Congestion Control Algorithms

The TCP sender maintains congestion window(usually rep-
resented as cwnd), and it can inject new packets into the
network up to the congestion window without receipt of ac-
knowledgements. It is flow control between TCP sender
and receiver. As a congestion control mechanism, the TCP
sender dynamically increases/decreases the window size ac-
cording to the degree of the network congestion. The con-
gestion level is conjectured via packet losses, which can
be detected by discontinuous receipts of the acknowledge-
ments, or timeout expiration. The timeout expiration hap-
pens if more than two or three packets in the congestion
window are lost [3]. The TCP sender then recognizes that
the network is congested, and throttles its window. Other-
wise, it determines that the network is not congested, and
inflates its window.

More specifically, TCP Reno has two phases in increas-
ing the congestion window cwnd; slow start phase and con-
gestion avoidance phase. When an ACK packet is received
by the TCP sender at time t + tA, cwnd(t+ tA) is updated
from cwnd(t) as follows (see, e.g., [4]);

cwnd(t+ tA) =


Slow Start Phase:
cwnd(t)+ m, if cwnd(t) < ssth(t)

Congestion Avoidance Phase:
cwnd(t)+ m2/cwnd(t), if cwnd(t) ≥ ssth(t)

where ssth(t) is the threshold value at which TCP changes
its phase from the slow start phase to the congestion avoid-
ance phase. When packet loss is detected by timeout,
cwnd(t) and ssth(t) are updated as follows;

ssth(t) = cwnd(t)/2; cwnd(t) = m.

When packet loss is detected by a fast retransmission algo-
rithm [4], the window size cwnd(t) is halved. That is,

ssth(t) = cwnd(t)/2; cwnd(t) = ssth(t).

TCP then enters the fast recovery phase [4]. In this phase,
the window size is increased by one packet when a duplicate
ACK packet is received, and cwnd(t) is restored to ssth(t)
when the non–duplicate ACK packet corresponding to the
retransmitted packet is received. Most of the current TCP
implementations are based on the above–mentioned TCP
Reno version. However, it is far from the perfect one; many
problems have been pointed out in the past literature. See,
e.g., [5, 3, 6].

������

�������	��
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

����	��
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��

����	��
�
�

�����
����
τ
�

τ
�

τ
�

τ
�

τ
�

τ
�

τ
�

τ
�

τ
�

τ
��

����
����
τ
�

������

��	�
���

Figure 1: Simulation model

In this paper, we focus on the fairness aspect of TCP, and
several simulation results are presented in the below. A sim-
ulation model is depicted in Figure 1, where the bottleneck
link is shared by ten connections. The bandwidth of the
bottleneck link b0 and the propagation delay τ0 are set to be
100 Mbps and 1 msec, respectively, throughout this paper.
The router’s buffer size is set to 512 packets unless other-
wise specified. The access link capacity bi (1 ≤ i ≤ 10)
and the propagation delay τi (1 ≤ i ≤ 10) will be changed.
For simulation, we used the network simulator ns2 [7].

Due to an intrinsic nature of the window–based con-
gestion control mechanism of TCP, TCP connections do
not receive same instantaneous throughput even if connec-
tions share the identical end-to-end path. We set the ho-
mogeneous case using Figure 1; all bi’s and τi’s are set to
100 Mbps and 10 msec, respectively. Figure 2(a) shows
the time-dependent behavior of the window sizes of con-
nections. Note that in the figure, only connections C1 and
C10 are plotted for clear presentation. Throughputvalues of
all connections (averaged over 20 sec simulation time) are
compared in Figure 2(b).

If TCP connections have different propagation delays,
even the long–term throughput values become different.
A simulation result is shown in Figure 2(c). In obtain-
ing the figure, we change the propagation delays as τi =
10 × i msec, while link capacities are unchanged. The fig-
ure shows that connections with smaller propagation delay
clearly obtain larger throughput than other connections with
longer one [8], and throughput values are almost in inverse
proportion to the the propagation delays. More importantly,
if the link capacities of TCP connections are different, the
relative throughput of TCP connections against its access
link bandwidth are much different. Figure 2(d) shows such
a case. In obtaining the figure, we set the propagationdelays
τi’s to be 1 msec, but the link bandwidth bi = 10 × i Mbps
for connection Ci. The result in Figure 2(d) indicates that
the throughput values are far from a linear relation to the
link capacity. It means that more bandwidth does not help
improve the throughput.

Resolving the above problems is important since the
heterogeneous environment is becoming common as vari-

2



0

50

100

150

200

250

300

350

400

450

500

10 12 14 16 18 20

W
in

do
w

 S
iz

e 
[P

ac
ke

ts
]

Time [sec]

Total Window Size

Window Size of Each Connections

(a) Time dependent behavior of the window size

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(b) Fairness comparisons

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(c) The heterogeneous case with different propagation delays

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(d) The heterogeneous case with different link capacities

Figure 2: The case of TCP Reno applied to the drop–tail
router

ous access methods, such as DSL and Cable Modem ac-
cesses, are realized in the Internet. A main cause of
the unfairness in TCP is owing to its AIMD (Additive
Increase/Multiplicative Decrease) window updating algo-

rithm. It was shown in [9] that only AIMD establishes the
fairness among connections, and the window updating algo-
rithm of TCP is just a class of AIMD. However, it is self–
clocked. That is, the window size is updated only when the
sender receives ACK from the receiver, and therefore the
window curves of TCP connections with different propaga-
tion delays and/or different access link capacities become
different. The window updating algorithm for achieving
fairness can be found in, e.g., [10]. Another version of TCP
to improve the fairness will be described in Subsection 3.1.

2.2 Router Support for Congestion Control

2.2.1 RED (Random Early Detection)

Most routers have employed a drop–tail (FIFO) discipline
as a buffer management mechanism. The drop–tail router
serves incoming packets in the arrival order, and when the
buffer is full, the newly arriving packet is simply discarded.
The problem is that drop–tail routers tend to discard pack-
ets in burst [11], which results in that packets from the same
connection are likely to be discarded. As a result, the fast
retransmit algorithm does not help avoid timeout expiration,
and it leads to a global synchronization problem [12]. Ac-
cordingly, the authors in [13] proposed a RED (Random
Early Detection) gateway algorithm. RED is designed to
cooperate with the congestion control mechanism of TCP. It
detects the beginning of congestion by monitoring the aver-
age buffer occupancy at the router, and notifies the connec-
tions by intentionally dropping packets at a certain proba-
bility. RED sets the packet dropping probability by a func-
tion of buffer occupancy (average queue size). By keeping
the average queue size low, burst dropping can be avoided
even when packets from the same connection continuously
arrive. That is, the algorithm has no bias against bursty traf-
fic.

More specifically, RED uses a low pass filter with an ex-
ponential weighted moving average in order to calculate the
average queue size avg, which is maintained and compared
with two thresholds: minimum threshold (minth) and max-
imum threshold (maxth). The packet dropping probability
is determined in different ways according to the queue size
avg;

• If avg < minth, all arriving packets are accepted.

• If minth < avg < maxth, arriving packets are
dropped with probability p(x).

• If maxth < avg, all arriving packets are dropped.

The function p(x) should depend on average queue length,
x, and a typical (and probably ideal) form of p(x) is il-
lustrated in Figure 3. However, an adequate determination
method is still not clear, and a constant droppingprobability
is usually used [13].

The RED router can avoid the occurrence of retransmit
timeouts of TCP connections, and henceforth most of lost
packets are retransmitted by the fast retransmit algorithm.
Furthermore, the phase effect that all connections exhibit

3



1

max_p

min_th max_th

p

avg
0

min_p

Figure 3: RED packet dropping rate p(x)

the similar window changes can also be avoided [13]. The
RED router is then expected to provide higher throughput
to TCP connections than the drop–tail router [13].

Figure 4 shows simulation results in order to demonstrate
improvements by the RED router. We again use a simula-
tion model shown in Figure 1. Figures 4(a) and 4(b) are
for the homogeneous case and correspond to the case of
the drop–tail router shown in Figures 2(a) and 2(b), respec-
tively. Those figures show that RED can improve the total
throughput. When the drop–tail discipline is used, packet
losses take place continuously, and multiple TCP connec-
tions simultaneously suffer from the performance degrada-
tion by packet losses. With the RED mechanism, on the
other hand, the synchronization of throughput degradation
can be avoided by its probabilistic packet discarding. How-
ever, the main purpose of the RED router is not to improve
the fairness among connections. Even if the access link ca-
pacity is same among all connections, throughput values of
those connections are much affected by the propagation de-
lays. See Figure 4(c), which corresponds to Figure 2(c) of
the drop–tail router. Its unfair property also appears when
the access link capacities of connectionsare different. Com-
pare Figures 4(d) and Figure 2(d). Note again that the RED
mechanism itself is not intended to establish the fairness
among connections in the heterogeneous case, but it is of-
ten used as a basis of developing the new packet processing
methods at the router. See Subsection 3.2.2.

2.2.2 ECN (Explicit Congestion Notification)

An ECN (Explicit Congestion Notification) mechanism is
recently proposed in [14, 15] while the basic idea is not new
in the packet–switching network. The key idea of ECN is
to avoid throughput degradation by packet losses caused by
the RED algorithm. That is, the router markspackets when
the network is congested and the TCP sender is notified of
the network congestion by receiving marked ACK packets,
and reacts in the same way as packet loss is detected, with-
out waiting retransmit timeout or receiving duplicate ACKs.
With an ECN support, the TCP sender can quickly react
against network congestion.

Fairness among heterogeneous TCP connections can also
be improved by the ECN mechanism. A simple application

0

50

100

150

200

250

300

350

400

450

500

10 12 14 16 18 20

W
in

do
w

 S
iz

e 
[P

ac
ke

ts
]

Time [sec]

Total Window Size

Window Size of Each Connection

(a) Time dependent behavior of the window size

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(b) Fairness comparisons for the homogeneous case

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(c) Fairness comparisons for the heterogeneous case with dif-
ferent propagation delays

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(d) Fairness comparisons for the heterogeneous case with dif-
ferent link capacities

Figure 4: The case of TCP Reno applied to the RED router

of the ECN mechanism is shown in Figure 5. Cases of dif-
ferent propagation delays and link capacities are shown in
Figures 5(a) and 5(b), respectively. Those corresponds to

4



0

5

10

15

20

25

30

35

0 2 4 6 8 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(a) The heterogeneous case with different propagation delays

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(b) The heterogeneous case with different link capacities

Figure 5: The case of TCP Reno applied to the ECN–
capable router

Figures 2(c) and 2(d) for the drop–tail router. The cases of
the RED router were shown in Figures 4(c) and 4(d). The
improvement is very limited in the above case. Note that
in obtaining Figure 4(d), throughput values are expected
to be in proportion to the link capacities since we set the
different link capacities among each connections. A more
careful tuning of the window updating algorithm is neces-
sary to fully utilize the ECN capability for fairness improve-
ment. The authors in [16] proposed the algorithm on how
the router marks ECN bit to incoming packets, and how the
TCP sender reacts against the ECN–marked ACK packets,
so that unfair property among TCP connections with differ-
ent round trip times can be avoided. However, the above–
mentioned careful tuninglimits its applicability. Perhaps,
we need more router support for further fairness improve-
ment as will be described in Subsection 3.2.

3 Fairness Improvements for TCP
Connections

3.1 Fairness among TCP connections

An interesting algorithm to improve the fairness among
TCP connections without router support can be found in
the TCP Vegas version [17, 18, 19]. TCP Vegas employs
a different mechanism from the other versions of TCP in
detecting the network congestion. It controls the window
size by observing RTTs (Round Trip Times) of packets that
the connection has sent before. If observed RTTs become

large, TCP Vegas recognizes that the network begins to be
congested, and gradually throttles the window size. If RTTs
become small, on the other hand, TCP Vegas determines
that the network is relieved from the congestion, and in-
creases the window size. TCP Vegas updates its congestion
window size in congestion avoidance phase as follows;

cwnd(t+ tA) =

cwnd(t)+ 1, if diff < α

base rtt
,

cwnd(t), if α
base rtt

< diff < β
base rtt

,

cwnd(t)− 1, if β
base rtt

< diff,
(1)

where rtt is the observed round trip time, base rtt is the
smallest value of observed RTTs, and α and β are some
constant values. The quantity diff is determined by the fol-
lowing equation:

diff =
cwnd

base rtt
− cwnd

rtt
.

Note that Eq. (1) used in TCP Vegas indicates that if ob-
served RTTs of the packets are identical, the window size
remains unchanged.

Figure 6(a) shows the time–dependent behavior of the
window size of TCP Vegas. To obtain the figure, we used
the simulation model in which all connections have iden-
tical propagation delays and link capacities. In TCP Ve-
gas, the window size is converged to the fixed value and
no packet loss occurs. It is different from TCP Reno in
which the packet loss is necessary to invoke the conges-
tion control, as having been shown in Figure 2(a). TCP
Vegas is then expected to achieve higher throughput than
TCP Reno. Actually, in [17], the authors show that TCP
Vegas achieves 40%-70% higher throughput, with one–fifth
to one–half the losses, as compared to TCP Reno, through
simulation and implementation experiments. The improve-
ment using our simulation model is shown in Figure 6(b).
Furthermore, TCP Vegas can slightly improve the unfair-
ness nature found in TCP Reno, even when TCP connec-
tions have different propagation delays and link capacities.
Compare Figures 6(c) and 6(d) and Figures 2(c) and 2(d). It
is because TCP Vegas tries to find the available bandwidth
for itself [8].

A difficulty for deploying TCP Vegas is the unfairness
problem when it co-exists with TCP Reno. In [20], the au-
thors pointed out that when TCP Reno connections and TCP
Vegas connections share the bottleneck link, the TCP Reno
connection occupy the link bandwidth. Then TCP Vegas
connections suffer from significant performance degrada-
tion, while TCP Vegas solely works well as shown in the
above. See Figure 7, in which five connections of Figure 1
are changed to utilize TCP Vegas while other five connec-
tions still use TCP Reno. Other parameters (propagation
delays and link capacities) are identically set. Throughput
values of TCP Vegas connections are much degraded espe-
cially when the buffer size at the router becomes large. It is
due to the difference of the congestion control mechanism
of TCP Reno and TCP Vegas. TCP Vegas increases its win-
dow size conservatively, which means that if RTT becomes

5



0

10

20

30

40

50

60

70

0 5 10 15 20

W
in

do
w

 S
iz

e 
[P

ac
ke

ts
]

Time [sec]

(a) Time dependent behavior of the window size

0
2
4
6
8

10
12
14
16

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(b) Fairness comparisons for the homogeneous case

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(c) Fairnesscomparisons for the heterogeneous case with dif-
ferent propagation delays

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(d) Fairnesscomparisons for the heterogeneouscase with dif-
ferent link capacities

Figure 6: The case of TCP Vegas applied to the drop–tail
router

large, it decreases the window size. TCP Reno, on the other
hand, increases the window size aggressivelyuntil a packet

0

50

100

150

200

250

300

10 100 1000

T
hr

ou
gh

pu
t [

K
bp

s]

Buffer Size [packets]

TCP Vegas Connections

TCP Reno Connections

Figure 7: Comparisons of throughput where TCP Reno and
Vegas share the link

is lost.

Problems of TCP have been repeatedly pointed out, and
in the early 90’s, new light–weight transport protocols were
actively discussed [21]. However, TCP is now widely de-
ployed in the operating network. Thus, it now becomes dif-
ficult for some new protocol (including the modified version
of TCP such as TCP Vegas) to take the place of TCP un-
less the protocol designer considers a migration path from
the operating TCP. Otherwise, the new protocol would not
be received. In that sense, TCP Vegas seems to be diffi-
cult to be widely accepted. However, the above–mentioned
problem may be solved to large extent if the router supports
some per–flow queueing mechanism, which will be intro-
duced in the next subsection.

Fortunately, the role of the receiver in the TCP mech-
anism is just to return ACKs (acknowledgements) as the
packet is successfully received. It indicates that we have an
opportunity to incorporate some modification at the sender
side of TCP to improve the performance and fairness. Such
an example will be presented in Subsection 3.4.

3.2 Packet Buffering and Scheduling Algo-
rithms for Improving Fairness

In the previous subsection, we have reviewed the conges-
tion control mechanism at endhosts. As long as the con-
gestion control is performed in an end-to-end fashion by
TCP, it would be impossible to achieve complete fairness
among connections. It is because TCP treats the network as
a black box, and the TCP sender cannot obtain perfect in-
formation on the network resource usage and status of other
connections sharing the bottleneck link. One–bit marking of
ECN also has a limitation. Therefore, some packet buffer-
ing and/or scheduling mechanism should be supported at the
router to further improve the fairness among connections. In
what follows, we will survey several router algorithms for
improving fairness among connections.

6



3.2.1 Per–flow Queueing

Per–flow queueing is not a new idea. The Fair Queueing
(FQ) algorithm [22] and Round Robin (RR) algorithm [23]
are a class of per–flow queueing methods. FQ and RR al-
gorithms can achieve good fairness among connections, but
have several problems. The computational complexity of
packet scheduling in FQ is O(logn) where n is the num-
ber of active flows. RR and WRR (Weighted Round Robin;
a variant of RR to support weighted fairness) also have an
order of O(logn). Furthermore, those do not consider vari-
able packet sizes.

To resolve such problems, the authors in [24] proposed
DRR (Deficit Round Robin). Each flow is assigned to
DRR sub-queuein the router buffer, using the hash func-
tion. Then, DRR serves each sub-queue by Deficit Counter,
which absorbs the difference of packet sizes. That is, each
sub-queue has a deficit counter, and the counter is incre-
mented in each round, considering the pre-defined service
rate. When an incoming packet is served in the round,
the counter is decremented by the amount corresponding
to the packet size. If the assigned service rate is not com-
pletely utilized due to no more packets arrived at the sub-
queue, the counter value is kept and will be used in the next
round. Through these mechanisms, DRR provides reason-
able fair service among connections and it works in O(1)
expected. DRR has already been implemented in a com-
mercially available product [25]. To see the effectiveness of
DRR, we show the simulation result [26]. As a simulation
setting, we used the heterogeneous cases where connections
have different propagation delays and link capacities, which
are shown in Figures 8(a) and 8(b), respectively. By setting
service rate of each DRR queue in proportion to each con-
nection’s input link bandwidth, an almost complete fairness
can be achieved.

While DRR reduces the overhead of the RR algorithm, it
is still much more complex than single–queue methods such
as the drop–tail and RED. Therefore, it might be difficult to
apply even DRR to core routers, which have to accommo-
date thousands of, and maybe tens of thousands of active
flows. Another approach is to introduce the stateless queue-
ing into the core routers, which will be described in the next
subsection.

A fundamental limit of the DRR algorithm exists in its
scalability. For realizing the DRR algorithm, the router
should know how the bandwidth is allocated to the connec-
tions. One approach is to prepare the mapping table for the
user’s IP address (and possibly port address) and the user’s
access line bandwidth. It directly implies that the DRR al-
gorithm can be applied to the edge routers, but difficult for
the core routers.

3.2.2 RED Variants

Another approach is to use per-flow information, not per–
flow queueing. One example is FRED (Fair Random Early
Detection) [27]. FRED uses single–queued buffer, but it
counts the number of arriving/departing packets of each ac-

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(a) The heterogeneous case with different propagation delays

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(b) The heterogeneous case with different link capacities

Figure 8: The case of TCP Reno applied to the DRR router

tive flow, and calculates its buffer occupancy. It is used
to differentiate RED’s packet dropping probability among
connections. The authors demonstrate through some simu-
lation experiments that FRED can improve fairness among
TCP connections. To see it, the same simulation model as
described in the previous subsection was used to obtain Fig-
ure 9. Those figures clearly show that FRED can provide the
intermediate solution between RED and DRR mechanisms
by keeping incompleteflow information.

The FRED algorithm maintains information on all active
flows, and henceforth, if there are many flows arriving at the
router, the fairness may be much degraded due to lack of
buffer space. It then fails in providing the fair service. We
note that by FRED, excessive packets from UDP connec-
tions are dropped at the router for fair share of the output
link. It must lead to much degradation of user’s perceived
QoS in real–time applications. The UDP connection should
be aware that a fair share of the link is maintained in the net-
work, and actively controls its rate according to the network
status. We will describe the rate control of UDP connections
in Subsection 3.3.

In [28], the authors try not to use even per–flow states
for further reducing processing overhead. The authors
in [28] proposed a SRED (Stabilized RED) mechanism,
which estimates the number of active flows in the router. In
SRED, the router maintains a fixed–size table called Zombie
List, whose entries contain the information on active flows.
When the table becomes full, one of the table entries is ran-
domly overwritten by that of the arriving packet. When a
packet arrives at the router, it compares with the randomly–
selected entry. If it Hits the entry, the packet is dropped at a

7



0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(a) The heterogeneous case with different propagation delays

0

5

10

15

20

25

30

35

0 2 4 6 8 10

T
hr

ou
gh

pu
t [

M
bp

s]

Connection Number

(b) The heterogeneous case with different link capacities

Figure 9: The case of TCP Reno applied to the FRED router

higher probability than when it does not hit. A main purpose
of the SRED algorithm is to resolve the scalability problem
against the increasing number of flows, but the misbehav-
ing flows can also be detected in SRED to some extent as
noted by the authors. By the SRED mechanism, packets
from mis–behaving flows are largely dropped because the
Zombie List tends to contain more entries of such flows,
and therefore those packets are discarded at high probabil-
ity. The advantage (and disadvantage) of SRED is to keep a
limited size of the list. A further investigation is necessary
to identify the required size of the list to keep the fairness
among active flows.

Another idea is that core routers do not maintain even
per–flow information, which is described in [29]. In [29],
the authors propose a CSFQ (Core Stateless Fair Queueing)
mechanism, which classifies routers into the edge routers
and the core routers, and assigns different functions to each
kind of routers. The edge router, which does not handle
many connections, maintains per–flow state to label the in-
coming packets according to the estimation of the packet
incoming rate. If some connection sends many packets,
packets are marked, which will be first dropped at the core
routers. The core router maintains no per–flow state and
it just employs RED–based probabilistic packer discarding,
for which the packet labels (marked or not) are used. CSFQ
discriminates the marked and non–marked connections, but
the determination method of packet dropping probabilities
is still not clear. Refer to [29] for a more detailed algorithm
of CSFQ.

3.3 TCP–friendly Rate Control

It is well known that when TCP and UDP connections share
the link, UDP connections tend to occupy the link [30]. It
is because the UDP connection does not adequately react
against the congestion while the TCP connection does [30].
Example behaviors of TCP and UDP connections are shown
in Figure 10 where we again use the model shown in Fig-
ure 1 except that one connection uses UDP to transmit pack-
ets. The UDP connection starts its packet transmission at
time 0 and continues it at rate 100 Mbps. Other nine con-
nections use TCP Reno. Connection Ci starts its packet
transmission at i × 5 msec. We use the drop–tail, RED,
and FRED routers, which are shown in Figures 10(a), 10(b)
and 10(c), respectively. From the figure, it is very apparent
that active queue management such as FRED is necessary
to keep fair bandwidth allocation between TCP and UDP
connections.

In the above example, we consider that the UDP connec-
tion keeps to transmit the packets at constant rate. It is true
that most of the currently available real–time multimedia
applications are equipped with its proprietary delay and/or
rate adaptive control mechanisms. See, e.g., [31]. How-
ever, it is only for its own purpose of performing better–
quality presentation. Accordingly, a notion of TCP friendly
rate control is now proposed [32], where TCP friendliness is
defined as a non–TCP connection should receive the same
share of bandwidth as a TCP connection if they traverse the
same path.

A key to establishing TCP–friendly congestion control is
that non–TCP flow precisely estimates throughput of TCP
connections, in order to regulate its rate. Fortunately, we
already have a good estimation method for TCP through-
put. In [33], the authors derive the following equation for
estimating the TCP throughput,λ;

λ = C × MTU

RTT
√
p

where RTT is the round trip time of the connection,MTU
is the packet size, and p is the observed packet loss proba-
bility. C is the constant value, which is set to 0.87 when the
receiver uses the delayed ACK option. Otherwise it is set to
1.22. A more detailed derivation is available in [34], where
other parameters of the buffer size at the receiver (Wmax)
and TCP’s timeouts (T0) are incorporated:

λ = max

(
Wmax

RTT
,

1

RTT
√

2bp
3 + T0 min(1, 3

√
3bp
8 )p(1 + 32p2)

)
(2)

where b is set to 2 if the receiver uses the delayed ACK
option, and 1 if not.

According to the above estimation methods, a non–TCP
flow can performs TCP–friendly rate control by observing
parameters (packet loss rate, RTT and RTO), and by setting
its packet sending rate using the above equation. Applica-
tions of TCP–friendly rate control to real–time multimedia

8



0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

UDP connection

TCP connections

(a) The case of the drop–tail router

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

UDP connection

TCP connections

(b) The case of the RED router

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

UDP connection

TCP connections

(c) The case of the FRED router

Figure 10: Fairness comparisons in the case of link sharing
by TCP and UDP connections

can be found in [35, 36, 37]. An important issue of the
TCP–friendly rate control is how to define a time scale of
the fair share, which is still not clear. It is especially im-
portant when TCP friendliness is applied to real–time mul-
timedia; a most TCP–friendly rate control is probably to use
the same AIMD used in TCP. However, the rate variation of
TCP–friendliness may be too frequent for video and audio

presentation.

3.4 Fair Resource Allocation at Endhosts

The link bandwidth has been drastically improved by new
technologies such as WDM (Wavelength Division Multi-
plexing), and the bottleneck point is now shifting from net-
work to endhosts when we expect very high–performance
communication. It is therefore important to consider fair
allocation of the resources at endhosts. Those include
socket buffer and processing power. Of course, the per-
formance improvement at the endhosts is not new. See,
e.g., [38, 39, 40]. This subsection is devoted to the fairness
aspect of protocol processing at the endhosts.

Suppose that a server host is sending TCP data to two
clients of 64Kbps dial–up (say, user A) and 100Mbps LAN
(user B). If the server host assigns an equal size of the
socket buffer to both users, it is likely that the amount of
the assigned buffer is too large for user A, and too small
for user B, because of the difference of capacities (more
strictly, bandwidth–delayproducts) of two connections. For
an effective buffer usage, fair allocation of the socket buffer
should be taken into account. In [41], the authors proposed a
buffer tuning algorithm called ABT (Automatic Buffer Tun-
ing), which dynamically adjusts the size of socket buffer at
the sender host according to the change of the TCP send-
ing window size of connections. However, since the aver-
age window size of the connection must reflect the expected
throughputof that connection, buffer allocation based on the
window size becomes too frequent.

Accordingly, SABT (Scalable ABT) is proposed in [42]
to assign the buffer according to the expectedthroughput
calculated from RTT, RTO and packet loss probability us-
ing Eq. (2). If the expected throughput is determined from
those parameters, an adequate buffer size to be allocated to
each connection can be obtained. If the total socket buffer
becomes short, the fair allocation of the socket buffer can
also be realized by taking account of the expected through-
put values of connections.

We last show simulation results of ABT and SABT al-
gorithms [42]. Figure 11 depicts the network model used
for simulation experiments. The model consists of a sender
host, seven receiver hosts, six routers, and links intercon-
necting routers and sender/receiver hosts. Seven TCP con-
nections are established at the sender host (connections C1

through C7). As shown in the figure, connection C1 oc-
cupies router R1, connection C2 and C3 share router R2,
and the rest of connectionsC4 through C7 share routerR3.
The capacities of links between routers are identically set
to be 1.5 [Mbps], and those of links between routers and
the sender host, and between routers and the receiver hosts
are set to be 155 [Mbps] and 10 [Mbps], respectively. Fur-
ther, propagation delays of links between routers, and that
between routers and sender/receiver hosts are 100 [msec]
and 1 [msec], respectively. In this simulation experiment,
connection Ci starts sending packets at time t = (i− 1) ×
500 [sec]. The simulation ends at 4,000 [sec]. Therefore,
when seven connections join the network, the ideal through-

9



0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d 
B

uf
fe

r 
S

iz
e 

[p
ac

ke
t]

Time [sec]

#1 #2 #3 #4 #5 #6 #7

(a) ABT Case: Changes of Assigned Buffer Size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000

T
hr

ou
gh

pu
t [

M
bp

s]

Time [sec]

#1
#2,#3

#4,#5,#6,#7

(b) ABT Case: Changes of Throughput

0

50

100

150

200

250

300

350

0 1000 2000 3000 4000 5000

A
ss

ig
ne

d 
B

uf
fe

r 
S

iz
e 

[p
ac

ke
t]

Time [sec]

#1

#2

#3

#4

#5
#6
#7

(c) SABT Case: Changes of Assigned Buffer Size

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1000 2000 3000 4000 5000
T

hr
ou

gh
pu

t [
M

bp
s]

Time [sec]

#1

#2,#3

#4,#5,#6,#7

(d) SABT Case: Changes of Throughput

Figure 12: Comparative results of ABT and SABT

������������
�

�
�

�
�

�
�

�
�

�
�

�
�

�	
����

��������

�

����

������

������

������

��������
�

�
�

�
�

�
�

�
�

�
�

��������

��	
��

Figure 11: Network model for ABT and SABT

put becomes 1.5 [Mbps] for connection C1, 0.75 [Mbps]
for connections C2 and C3, and 0.375 [Mbps] for connec-
tions C4 through C7.

Figure 12 shows the results for the throughput and as-
signed buffer size as a function of time. We set the send
socket buffer size of a sender host B to 350 [packets]. Fig-
ures 12(a) and 12(b) clearly show that ABT tries to con-

trol the assigned buffer size according to each TCP con-
nection’s window size, but it cannot provide a stable buffer
assignment. It is because ABT assigns the buffer to each
TCP connection according to the current window size of
the connection, which oscillates dynamically due to an in-
herent nature of the TCP window mechanism. Therefore,
the assigned buffer sizes of connections which do not need
large buffer (connectionsC2 throughC7 in the current case)
are often inflated, leading to the temporary decrease of the
buffer assigned to connectionswhich need large buffer (C1).
As a result, the throughput of C1 is often degraded. On the
other hand, SABT keeps stable and fair buffer assignment
as shown in Figure 12(c), leading to fair treatment in terms
of throughput (Figure 12(d)).

Of course, the resource at the endhosts is not limited to
the socket buffer. One of future topics is then to appropri-
ately assign CPU processing power to TCP connections as
well as the socket buffer of the sender hosts, in order to pro-
vide more effective and fair service to the connections.

10



4 Concluding Remarks

In this paper, we have discussed the fairness issues in con-
gestion control mechanism of TCP. The router support is
also presented to establish the fair service among TCP con-
nections. The fairness issue arising at endhosts is also de-
scribed. One important point that we should note here is that
our simulation results shown in this paper only exhibit one
aspect of the mechanisms. The results would be changed ac-
cording to the simulation setting. An adequate method for
performance evaluation suitable to the Internet environment
is also an important research issue in the field [43].

We now summarize the fairness issues in TCP.

• Because TCP has already been used widely in the cur-
rent Internet, it is difficult for the new protocol to be
accepted if it is not downward–compatibleto the exist-
ing TCP.

• Even if a novel congestion control mechanism is
upward–compatible, a migration path from the exist-
ing mechanism should also be considered. Otherwise,
it is difficult for the new mechanism to be widely ac-
cepted. TCP Vegas is such an example as described in
this paper.

• Fair share of network resources among multiple het-
erogeneous connections is one of key issues especially
for the commercial use of the Internet.

• To improve the fairness among connections, the routers
should be equipped with some mechanism to achieve
the fairness. In that case, the scalability issue should
be carefully taken into account.

• A compromise between the fairness degree and
scheduling complexity exists. For the edge routers,
DRR or some other mechanisms to support per–flow
queueing seems to be a good choice. Stateless schedul-
ing would be necessary for the core routers.

• Fair allocation of resources of the endhost is also in-
evitable especially for the busy server, where endhost
resources is likely to be short.

Note that above statements are the authors’ opinions and
some of them may not be widely accepted.

References
[1] M. W. Garrett, “A service architecture for ATM: From ap-

plications to scheduling,” IEEE Network Magazine, vol. 10,
pp. 6–14, May/June 1996.

[2] A. S. Tanenbaum, Computer Networks. Prentice Hall, 1996.

[3] K. Fall and S. Floyd, “Simulation–based comparisons of
Tahoe, Reno, and SACK TCP,” ACM SIGCOMM Computer
Communication Review, vol. 26, pp. 5–21, July 1996.

[4] W. R. Stevens, TCP/IP Illustrated, Volume 1: The Protocols.
Reading, Massachusetts: Addison-Wesley, 1994.

[5] M. Perloff and K. Reiss, “Improvements to TCP perfor-
mance,” Communications of ACM, vol. 38, pp. 90–100,
February 1995.

[6] J. C. Hoe, “Improving the start-up behavior of a congestion
control scheme of TCP,” ACM SIGCOMM Computer Com-
munication Review, vol. 26, pp. 270–280, October 1996.

[7] N. ns (version 2) available from http://www-mash.
cs.berkeley.edu/ns/.

[8] G. Hasegawa, M. Murata, and H. Miyahara, “Fairness and
stability of the congestion control mechanism of TCP,” in
Proceedings of IEEE INFOCOM’99, pp. 1329–1336, March
1999.

[9] D.-M. Chiu and R. Jain, “Analysis of the increase and de-
crease algorithms for congestion avoidance in computer net-
works,” Journal of Computer Networks and ISDN Systems,
pp. 1–14, June 1989.

[10] P. Hurley, J.-Y. L. Boudec, and P. Thiran, “A note on the fair-
ness of additive increase and multiplicativedecrease,” in Pro-
ceedings of 16th International Teletraffic Congress, pp. 336–
350, June 1999.

[11] S. Floyd and V. Jacobson, “On traffic phase effects in packet-
switched gateways,” Internetworking: Research and Experi-
ence, vol. 3, pp. 397–413, August 1992.

[12] L. Zhang, D. D. Clark, and Scott, “Oscillating behavior of
network traffic: A case study simulation,” Intetnetworking:
Research and Experience, vol. 1, pp. 101–112, 1990.

[13] S. Floyd and V. Jacobson, “Random early detection gateways
for congestion avoidance,” IEEE/ACM Transactions on Net-
working, vol. 1, pp. 397–413, August 1993.

[14] S. Floyd, “TCP and explicit congestion notification,” ACM
Computer Communication Review, vol. 24, pp. 8–23, Octo-
ber 1994.

[15] S. Floyd, “A proposal to add explicit congestion notification
(ECN) to IP,” RFC 2481, January 1999.

[16] T. Hamann and J. Walrand, “A new fair window algorithm
for ECN capable TCP (new-ECN),” in Proceedings of IEEE
INFOCOM 2000, March 2000.

[17] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP
Vegas: New techniques for congestion detection and avoid-
ance,” in Proceedings of ACM SIGCOMM’94, pp. 24–35,
October 1994.

[18] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end
congestion avoidance on a global Internet,” IEEE Jounal on
Selected Areas in Communications, vol. 13, pp. 1465–1480,
October 1995.

[19] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas revis-
ited,” in Proceedings of IEEE INFOCOM 2000, March 2000.

[20] K. Kurata, G. Hasegawa, and M. Murata, “Fairness com-
parisons between TCP Reno and TCP Vegas for future de-
ployment of TCP Vegas,” to be presented at INET 2000, July
2000.

[21] W. Doeringer, D. Dykeman, M. Kaiserswerth, B. Meister,
H. Rudin, and R. Williamson, “A survey of light-weight
transport protocols for high-speed networks,” IEEE Commu-
nications Magazine, vol. 38, November 1990.

[22] A. Demers, S. Keshav, and S. Shenker, “Analysis and simu-
lation of a fair queueing algorithm,” in Proceedings of ACM
SIGCOMM’89, vol. 19, pp. 1–12, October 1989.

11



[23] J. Nagle, “On packet switches with infinite storage,” in IEEE
Transaction on Communications, vol. 35, April 1987.

[24] M. Shreedhar and G. Varghese, “Efficient fair queuing using
deficit round robin,” IEEE/ACM Transactions on Network-
ing, vol. 4, pp. 375–385, June 1996.

[25] “Cisco 12016 Gigabit Switch Router,” available at
http://www.cisco.com/warp/public/cc/
cisco/mkt/core/12000/12016/.

[26] G. Hasegawa, T. Matsuo, M. Murata, and H. Miyahara,
“Comparisons of packet scheduling algorithms for fair ser-
vice among connections on the Internet,” in Proceedings of
IEEE INFOCOM 2000, March 2000.

[27] D. Lin and R. Morris, “Dynamics of random early detection,”
in Proceedings of ACM SIGCOMM’97, pp. 127–137, Octo-
ber 1997.

[28] T. J. Ott, T. V. Lakshman, and L. Wong, “SRED: Stabilized
RED,” in Proceedings of IEEE INFOCOM’99, March 1999.

[29] I. Stoica, S. Schenker, and H. Zhang, “Core-stateless fair
queueing: Achieving approximately bandwidth allocations
in high speed networks,” in Proceedings of ACM SIG-
COMM’98, pp. 118–130, September 1998.

[30] S. Floyd and K. Fall, “Promoting the use of end-to-end con-
gestion control in the Internet,” IEEE/ACM Transactions on
Networking, vol. 6, August 1999.

[31] “Real.com,” available at http://www.real.com/.

[32] “The TCP-friendly Website,” available at http://www.
psc.edu/networking/tcp_friendly.html.

[33] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macro-
scopic behavior of the TCP congestion avoidance algorithm,”
ACM SIGCOMM Computer CommunicationReview, vol. 27,
pp. 67–82, July 1997.

[34] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
TCP throughput: a simple model and its empirical valida-
tion,” in Proceedings of ACM SIGCOMM’98, pp. 303–314,
August 1998.

[35] W. T. Tan and A. Zakhor, “Real-time Internet video using
error resilient scalable compression ans TCP-friendly trans-
port protocol,” IEEE Transactions on Multimedia, vol. 1,
pp. 172–186, June 1999.

[36] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “A model
based TCP-friendly rate control protocol,” in Proceedings of
ACM SIGCOMM’98, September 1998.

[37] N. Wakamiya, M. Murata, and H. Miyahara, “On TCP-
friendly video transfer with consideration on application-
level QoS,” to be presented at IEEE International Conference
of Multimedia & EXPO, July 2000.

[38] D. D. Clark, V. Jacobson, J. Romkey, and H. Salwen, “An
analysis of TCP processing overhead,” IEEE Communica-
tions Magazine, pp. 23–29, June 1989.

[39] C. Partridge, “How slow is one gigabit per second?,” ACM
Computer Communications Review, vol. 20, pp. 44–53, Jan-
uary 1990.

[40] P. Druschel and L. L. Peterson, “Fbufs: a high-bandwidth
cross-domain transfer facility,” in Proceedings of the Four-
teenth ACM symposium on Operating Systems Principles,
pp. 189–202, December 1993.

[41] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP
buffer tuning,” in Proceedings of ACM SIGCOMM’98,
pp. 315–323, August 1998.

[42] T. Matsuo, G. Hasegawa, and M. Murata, “Scalable auto-
matic buffer tuning to provide high performance and fair ser-
vice for TCP connections,” to be presented at INET 2000,
July 2000.

[43] V. Paxson and S. Floyd, “Why we don’t know how to sim-
ulate the Internet,” in Proc. 1997 Winter Simulation Confer-
ence, December 1997.

12


