
Comparisons of Packet Scheduling Algorithms
for Fair Service among Connections on the Internet

Go Hasegawa, Takahiro Matsuo, Masayuki Murata and Hideo Miyahara
Department of Infomatics and Mathematical Science

Graduate School of Engineering Science, Osaka University
1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

Phone: +81-6-850-6616, Fax: +81-6-850-6589
E-mail: {hasegawa,t-matuo,murata,miyahara}@ics.es.osaka-u.ac.jp

February 23, 2001

Abstract

We investigate the performance of TCP under three
representatives of packet scheduling algorithms at
the router. Our main focus is to investigate how fair
service can be provided for elastic applications shar-
ing the link. Packet scheduling algorithms that we
consider are FIFO (First In First Out), RED (Ran-
dom Early Detection), and DRR (Deficit Round Robin).
Through simulation and analysis results, we discuss
the degree of achieved fairness in those scheduling
algorithms. Furthermore, we propose a new algo-
rithm which combines RED and DRR algorithms
in order to prevent the unfairness property of the
original DRR algorithm, which appears in some cir-
cumstances where we want to resolve the scalability
problem of the DRR algorithm. In addition to TCP
Reno version, we consider TCP Vegas to investi-
gate its capability of providing the fairness. The re-
sults show that the principle of TCP Vegas conforms
to DRR, but it cannot help improving the fairness
among connections in FIFO and RED cases, which
seems to be a substantial obstacle for the deploy-
ment of TCP Vegas.

keywords: Fairness, FIFO (First In First Out),
RED (Random Early Detection), DRR (Deficit Round
Robin), TCP (Transmission Control Protocol)

1 Introduction

The conventional Internet has only been providing
the best effort service, and it could not offer through-
put and/or delay guarantees. It is also lack of fair-
ness guarantees; TCP connections sometimes receive
unfair performance in terms of, e.g., throughput.
See, e.g., [1]. However, we now need to provide
commercial network services by the Internet. That
is, a new service should be available within the net-
work to support the differentiated services among
the users [2]. Along with the context of diff-serv
models, several service principles have recently been
proposed; for example, a constant throughput may
be preferred to some connections, or QoS support is
necessary for real–time applications. For example,
in [3], the authors have proposed an Explicit Capac-
ity framework for allocating the network capacity
to users in a controlled way even during congestion
periods.

Another important service that the next–generation
Internet should support is fair allocation of the band-
width, which is our main subject of this paper. It is
one of most desired features for elastic applications,
but not supported by the current Internet, and we be-
lieve that it may be more important even than net-
work efficiency. A one existing service found in the

1

literature is the USD (User Share Differentiation)
scheme described in [4], where users are provided
different service qualities from ISPs (Internet Ser-
vice Providers) based on the contracts. However,
the authors in [4] do not provide a quantitative eval-
uation of USD to show how the users are differenti-
ated. One promising way to realize the service dif-
ferentiation for the elastic applications seems to be
DRR (Deficit Round Robin) presented in [5] where
the round robin scheduling is performed among ac-
tive connections. In [5], an extensive evaluation of
the DRR algorithm is provided, but they assume
Poisson arrivals of packets from each connection.
That is, the authors do not consider the behavior of
the upper–layer protocol, i.e., TCP (Transmission
Control Protocol).

In this paper, we focus on the degree of fairness
provided to TCP connections by comparing three
packet scheduling algorithms at the router. The first
one is FIFO (First In First Out, or Drop–Tail), which
is widely used in the current Internet routers be-
cause of its simplicity. The second is RED (Random
Early Detection) [6], which drops incoming packets
at a certain probability. While the original idea of
the RED algorithm is to avoid consecutive dropping
of packets belonging to the same connection, it also
has a capability of achieving a fair service among
connections by spreading packet losses. The last
one is DRR, which is a more aggressive one in the
sense that it actively maintains per–flow queueing
for establishing fair service. For TCP, we consider
the Reno version, which has widely been used in
the current Internet. The Vegas version [7], adopt-
ing a different congestion control mechanism from
TCP Reno for larger performance gain, is also con-
sidered.

In this paper, for reference purposes, we will
first show simulation results that FIFO cannot pro-
vide fairness among connections at all because of a
bursty nature of packet losses (see Subsection 3.1).
It is next shown that RED offers better fairness than
FIFO to TCP Reno connections, but it cannot keep
a good fairness when the capacity of shared link be-
comes small compared with the total input link ca-
pacity (Subsection 3.2). In TCP Vegas, on the other

hand, RED offers less fairness than FIFO because
of the essential incompatibility of TCP Vegas to the
RED algorithm (Section 4).

The packet scheduling algorithms and TCP ver-
sions that we will use in this paper are not new. Our
main contributions in the current paper is that the
properties mentioned above are also shown through
analytical results. While the model used in the anal-
ysis is very simple, the basic features of the above
scheduling algorithms can be well explained. From
the analysis results, we further propose the enhanced
version of RED algorithm, where we set each con-
nection’s packet dropping probability dependently
on its input link capacity, to avoid the unfairness
property of the original RED algorithm. Another
enhancement method of RED can be found in [8],
where the flow state are maintained for some degree
of fairness enhancements.

The above method can be used to resolve an in-
herent problem of the DRR algorithm. DRR can
provide almost perfect fairness among connections
in both cases of TCP Reno (Subsection 3.3) and
Vegas (Subsection 4.3), but DRR requires per–flow
queueing. Since we mainly consider the ISP model,
we may not need to consider the stateless fair queue-
ing mechanism such as the one found in [9]. How-
ever, DRR has a scalability problem in that as the
number of subscribers grows, the larger number of
queues becomes necessary. One possible solution
is flow aggregation which treats several connections
as a single flow of DRR. However, it results in that
the fairness property of DRR becomes lost when
multiple TCP connections are assigned to the same
queue. Based on our analytical results, we last apply
the RED mechanism to each queue of DRR (called
DRR+) for fairness enhancement. We show that our
DRR+ can provide a reasonably good fairness even
compared with DRR through the simulation results
(Subsection 3.4).

In the above discussions, we use the network
model where the uplink of the access line of ISP
is shared by the subscribers with different capaci-
ties. In this paper, the effect of the reverse traffic
is also considered. in the model where the down-
link is shared by the subscribers. The objective of

this investigation is to confirm the applicability of
our discussions and analyses in the above are also
applicable to this reverse traffic model. The simi-
lar model is treated in in [10], but we consider RED
and DRR as the packet scheduling algorithm in ad-
dition to FIFO algorithm employed in [10]. Further,
we devote the fairness aspects of packet scheduling
algorithms which are not considered in [10].

This paper is organized as follows. In Section 2,
we describe the model treated in Section 3 and 4.
The packet scheduling algorithms is first summa-
rized in Subsection 2.1. We will also explain the
congestion control algorithm of TCP Reno and TCP
Vegas by focusing on those congestion avoidance
mechanisms in Subsection 2.2. In Subsection 2.3,
we explain the network model we will use in analy-
sis and simulation, and introduce the fairness mea-
sure considered in this paper in Subsection 2.4. In
Section 3, we evaluate the packet scheduling algo-
rithms described in Section 2.1 in the case of TCP
Reno through the simulation and the analysis, and
propose DRR+ for fairness improvement. We next
consider the case of TCP Vegas in Section 3. In Sec-
tion 5, we investigate the effect of the reverse traffic
flow. Finally, we present some concluding remarks
and future works in Section 6.

2 The Model

2.1 Packet Scheduling Algorithms

In what follows, we briefly summarize the three packet
scheduling algorithms, FIFO, RED and DRR for the
current paper to be self–contained.

A FIFO algorithm is widely used in the current
Internet routers because of its simple implementa-
tion. The incoming packets are accepted in order
of arrivals. When the buffer at the router becomes
full, arriving packets are dropped. Therefore, pack-
ets belonging to a particular connection can some-
times suffer from bursty packet losses. Then, fast
retransmit [11] implemented in TCP does not work
effectively. It is also likely to introduce bursty trans-
mission of packets [6], which often results in further
packet losses.

The problem mentioned above is solved by RED [6].
The RED algorithm is designed to cooperate with
congestion control mechanisms provided in TCP.
In RED, the router observes the avarage queue size
(buffer occupancy), and the packets arriving at the
router are dropped with a certain probability.

The DRR algorithm [5] is an extension of the
round robin algorithm to be suitable to treat the variable–
sized packets. The buffer at the router is logically
divided into multiple queues. The arriving pack-
ets of each connection are stored in the pre-assigned
queue by using a hash function, and those are served
in a round–robin fashion. A difference from the
pure round robin algorithm is that the packets with
variable length can be allowed to keep the fairness
among connections. In DRR, the bandwidth not
used in the round is preserved to be used in the next
round if the packet is too large to be served in the
current round.

2.2 Congestion Control Mechanisms of
TCP

In this paper, we consider two versions of TCP;
Reno and Vegas. TCP Reno is widely used in the
current Internet. TCP Vegas is a recently proposed
one in [7].

In TCP Reno, the window size cwnd (conges-
tion window size) is cyclically changed. cwnd con-
tinues to be increased until segment loss occurs. TCP
Reno has two phases in increasing cwnd; Slow Start
Phase and Congestion Avoidance Phase. When an
ACK segment is received by TCP at the server side
at time t + tA [sec], cwnd(t + tA) is updated from
cwnd(t) as follows (see, e.g., [11]);

cwnd(t+ tA) =

cwnd(t) + 1, if cwnd(t) < ssth;

cwnd(t) +
1

cwnd(t)
, if cwnd(t) ≥ ssth;

(1)

where ssth [segments] is the threshold value at which
TCP changes its phase from Slow Start Phase to
Congestion Avoidance Phase. When segment loss
is detected by timeout or fast retransmission algo-

rithm [11], cwnd(t) and ssth are updated as

ssth = cwnd(t)/2; cwnd(t) = ssth

In TCP Reno (and the older version Tahoe), the
window size, cwnd, continues to be increased un-
til segment loss occurs due to congestion. Then, the
window size is throttled, which leads to the through-
put degradation of the connection. However, it can-
not be avoided because of an essential nature of
the congestion control mechanism adopted in TCP
Reno. That is, it can detect network congestion only
by segment loss. However, throttling the window
size is not adequate when the TCP connection itself
causes the congestion because of its too large win-
dow size. If cwnd is appropriately controlled such
that the segment loss does not occur in the network,
the throughput degradation due to the throttled win-
dow can be avoided. This is the reason that TCP
Vegas was introduced.

TCP Vegas employs another mechanism, in which
it controls cwnd by observing changes of RTTs (Round
Trip Time) of segments that the connection has sent
before. If observed RTTs become large, TCP Ve-
gas recognizes that the network begins to be con-
gested, and throttles cwnd down. If RTTs become
small, on the other hand, TCP Vegas determines that
the network is relieved from the congestion, and in-
creases cwnd again. Then, cwnd in an ideal situ-
ation becomes converged to the appropriate value.
In Congestion Avoidance Phase, the window size is
updated as;

cwnd(t + tA) =

cwnd(t) + 1, if diff < α

base rtt

cwnd(t), if α
base rtt

≤ diff ≤ β
base rtt

cwnd(t) − 1, if β
base rtt

< diff
(2)

diff = cwnd(t)/base rtt− cwnd(t)/rtt

where rtt [sec] is an observed round trip time, base rtt [sec]
is the smallest value of observed RTTs, and α and
β are some constant values. Note that Eq. (2) used
in TCP Vegas indicates that if RTTs of the segments
are stable, the window size remains unchanged.

2.3 Network Model

Recalling that our main purpose of the current pa-
per is to investigate the fairness aspect of packet
scheduling algorithms, we will use a simple net-
work model as depicted in Figure 1.

There are the number N of connections between
N sources (SES1, SES2 , . . ., SESN) and one des-
tination (DES). N connections share the bottleneck
output link of the router. The capacity of the in-
put link between the sources and the router are de-
fined as bw1, bw2 , . . ., bwN Kbps, and that of the
output link between the router and destination is
BW Kbps. We assume bw1 ≤ bw2 ≤ . . . ≤ bwN .
By the above model, we intend to consider the up-
link of the access line of the ISP, which is shared by
the subscribers with different capacities. Note that
in Section 5, we will consider the downlink of the
access line.

In the following numerical examples throughout
the paper, the propagation delay between SESi and
DES, τ , is identically set to be 100 msec. The buffer
size of the router is 60 Kbytes. A TCP packet size
is fixed at 2 Kbytes. Every sender is assumed to
be a greedy source, that is, it has infinite packets to
transmit. We also assume that in the case of DRR,
the connection can be identified by the router so that
the packets from the connection can be appropri-
ately queued at the per–flow buffer at the router.

2.4 Definition of Fairness

We define the fair service by taking account of the
input link capacity. Its simplest form is that the
throughput is given in proportion to its input link
capacity under the condition that the output link ca-
pacity is smaller than total of the input link capaci-
ties. That is, we say that a good fairness is achieved
if the throughput of connection i, ρi, is given as

ρi = BW · bwi∑
j bwj

We note that other definitions of the fairness can
be considered. A more natural definition may be the
function of subscription fees, which may be deter-

mined by (but not be proportional to) the input link
capacity in the ISP model. We will not treat such
a case for simplicity of presentation, but it is not
difficult to incorporate it. For example, the weight
factor is allowed to be arbitrary in the DRR case.
The RED case can also be treated in this context by
utilizing our analysis presented later.

3 The Case of TCP Reno

In this section, we consider TCP Reno to investigate
the fairness property of three packet scheduling al-
gorithms. In addition to the simulation results, we
develop the analysis result for the RED scheduling
algorithm. The analysis results supports observa-
tions on the fairness property of the RED algorithm
obtained from the simulation results. We then inves-
tigate DRR to demonstrate its effectiveness through
simulation experiments.

In what follows, we set four TCP connections
which have different capacities of 64, 128, 256 and
512 Kbps. The output link capacity is varied from
400 Kbps to 960 Kbps to investigate the effect of
the output link capacity on fairness. In the simu-
lation results, we simulated 5,000 sec in each ex-
periment to obtain the result, which approximately
corresponds to 300,000 packet generation.

3.1 FIFO Case

We first show the FIFO case in terms of the av-
erage throughput during the simulation run (Fig-
ure 2(a)), the relative throughput (Figure 2(b)), and
packet loss rate (Figure 2(c)) for all connections as a
function of the output link capacity. Relative through-
put means the ratio of the average throughput against
the input link capacity. When all connections have
identical relative throughput, it is said that the router
perfectly provides fair service among connections
in our definition. From Figures 2(a) and 2(b), it is
clear that fairness cannot be kept at all. In some
region where the output link capacity is small, the
throughput of the connection with smaller input link
capacity is larger even than that of the connection
with larger input link capacity. It can be explained

as follows. In the FIFO algorithm, packet loss oc-
curs independently of the packet arrival rate as shown
in Figure 2(c), and the packet loss becomes bursty.
Since the connection with larger input link capacity
experiences a higher degree of burstiness of packet
losses, its performance degradation becomes larger.

3.2 RED Case

3.2.1 Simulation Results

We next investigate the RED case. Recalling that
the buffer size of the router is set to be 60 Kbyte,
we set thmin = 10 Kbytes, thmax = 30 Kbytes and
p = 0.02 in simulation. p shows the packet drop-
ping probability defined in RED, with which incom-
ing packets are dropped when the avarage queue
length is over the threshold thmin. Figure 3 shows
simulation results of the RED algorithm in that case.
From Figures 3(a) and 2(a), it can be observed that
a fairness improvement is very limited. It is espe-
cially true when the output link capacity is small;
the throughput of all connections becomes almost
identical (Figure 3(a)). Also, the packet loss rates
of all connections are almost equal as shown in Fig-
ure 3(c). Of course, this is one of key features that
the RED algorithm intends; the number of the lost
packets of each connection can be kept in propor-
tion to its input link capacity by its mechanism. The
problem is that it leads to the unfairness treatment
of connections with different capacities.

The above result is just one example. Also, it
is questionable whether simulation time of 300,000
packets generation is adequate or not for examin-
ing the fairness degree. To examine its generality,
we next show the analysis of the RED algorithm.
Through analysis, it is proven that the unfairness
observed in simulation is inherent in the RED al-
gorithm.

We assume in the following analysis that there
are N connections in the network (Figure 1) with
the input link capacities of bw1, bw2, ..., bwN [pack-
ets/sec], where bw1≤ bw2≤, ..., ≤bwN . We de-
note the packet dropping probability of the RED al-
gorithm by p, and the propagation delay between
sources and the destination by τ . We also assume

that the average queue length is always larger than
thmin, that is, all arriving packets are dropped with
probability p. For analysis, we focus on TCP’s typ-
ical cycle of the window size as shown in Figure 8;
the cycle begins at the time when the previous packet
loss occurs, and terminates when the next packet
loss occurs. We consider that the cycle begins at
time t = 0 [sec]. We do not take account of the slow
start phase [11] since the objective of the RED algo-
rithm is essentially to avoid to fall into that phase.

Since all arriving packets are dropped at the router
with probability p by our assumption, the connec-
tion can send 1/p packets in one cycle (between the
events of packet losses). We define the number of
packets transmitted during one cycle as Np, that is,

Np = 1/p. (3)

During the cycle, the window size of connection i,
cwndi(t) [packets], is increased linearly since we
only consider the congestion avoidance phase [11].
The window size is halved when packet loss de-
tected by fast retransmit, and therefore cwndi(t) is
given as

cwndi(t) =
Wmax

2
+

1

RTTi

· t, 1 ≤ i ≤ N, (4)

where RTTi [sec] is an average round trip time of
packets for connection i, and Wmax [packets] is the
value of the window size at the time when packet
loss occurs. Then, the following equation for the
total number of the packets in one cycle should be
satisfied for connection i;

∫ Ti

0
cwndi(t)dt = Np, 1 ≤ i ≤ N, (5)

where Ti is the time duration of the cycle as shown
in Figure 8. From Eqs.(4) and (5), we can obtain
W ′

max [packets], the window size at the time when
the next packet loss occurs, as

W ′
max =

√
Wmax

2 + 2Np (6)

From Eqs.(3) and (6), we can obtain Wmax [pack-
ets], the average value of Wmax by equating W ′

max

and Wmax. That is,

Wmax �
√

8

3p
(7)

As a result, we derive Wa [packets], the average
window size during the cycle as;

Wa =
3

4
Wmax (8)

See Figure 8. From the equation above, we can see
that the change of the window size does not depend
on each connection’s input link capacity, but on the
packet dropping probability of the RED algorithm.

For further analysis, we make an assumption that
each connection’s window size is fixed at the aver-
age value, Wa. We then derive ρi, the throughput
of connection i when Wa packets of its window are
served at the router. To simplify the analysis, we
consider the situation where all connections’ first
packets of the windows arrive at the router simul-
taneously as shown in Figure 9. In this figure, each
square shows the burst of connection i’s Wa seg-
ments, and its length represents the time duration
Wa

/
bwi [sec]. Since all connections have different

capacities bwi on their links, it takes different time
duration Wa/bwi for all packets of connection i to
arrive at the router as illustrated in Figure 9. As
illustrated in this figure, the segment burst of con-
nection i is not served at the same rate, and it de-
pends on the number of the connections sending
their packets simultaneously. We divide all connec-
tions’ packet burst into N ‘phases’ according to the
number of connections which send the segments si-
multaneously. For example, since the number of
connections which transmitting their segments is i
in phase i, the router processes i connections’ seg-
ments at the rate of BW [segments/sec]. We denote
the number of packets of connection i belonging to
phase j by Wi,j [packets] (1 ≤ i, j ≤ N). Since all
segements in the phase are dealt at the rate in pro-
portion to its input link bandwidth, we determine
Wi,N for phase N as follows;

WN,N = Wa

Wi,N = WN,N · bwi

bwN
, 1 ≤ i ≤ N.

In the same manner, we can obtain all of Wi,j by
solving the following equations;

Wj,j = Wa −
N∑

k=j+1

Wj,k, 1 ≤ j ≤ N − 1,

Wi,j = Wj,j · bwi

bwj
, 1 ≤ j ≤ N − 1, 1 ≤ i ≤ j − 1.

The rate at which the packets are served at the router
in the phase j, Sj [packets/sec], must depend on
the total capacity of the connections of the phase j.
Since, in the phase j, all packets belonging to from
connection 1 to connection j are served at the router,
Sj becomes as follows;

Sj =

BW, if

j∑
k=1

bwk > BW,

j∑
k=1

bwj, otherwise

(9)

Therefore, the throughput of connection i at phase j,
Ri,j , can be determined as follows;

Ri,j =
Wi,j

Wi,j∑j

k=1
Wk,j

Sj

=

∑j
k=1Wk,j

Sj

(10)

From Eqs.(9) and (10), ρi can be calculated as fol-
lows;

ρi =
N∑

k=N+1−i

(
Wi,j

Wa
Ri,j

)
(11)

Although the RED algorithm can eliminate the
bursty packet losses leading to TCP’s retransmis-
sion timeout expiration, timeout expiration cannot
be avoided perfectly [12]. Even if timeout expira-
tion rarely happens, the effect of timeout expiration
on throughput is large. Therefore, we next consider
the throughput degradation caused by retransmis-
sion timeout expiration. We denote the probability
of occurring timeout expiration in the window by
Pto. We determine Pto according to the following

simple equation;

Pto =
∞∑
i=2

(
Wa

i

)
· pi · (1 − p)Wa+1−i (12)

We assume that RTOi [sec], the timeout duration
for retransmission, becomes twiceRTTi, the Round
Trip Time for connection i. RTTi can be calculated
by considering the effect of the other connections’
traffic;

RTTi = 2τ +

∑
k �=i

Wa

BW
+
Wa

ρi
(13)

From these results, we finally have ρ′i, the through-
put of connection i, by considering the effect of
TCP’s retransmission timeouts;

ρ′i = (1− Pto) · ρi + Pto ·
Wa

ρi

Wa

ρi
+ RTOi

ρi

=
ρi ·Wa + (1 − Pto) · ρ2

i · RTOi

Wa + ρiRTOi

(14)

Eq.(14) is obtained as follows. The first term (1 −
Pto) · ρi represents the throughput without retrans-

mission timeout, and the second term
Wa
ρi

Wa
ρi

+RTOi
ρi

is that with retransmission timeout. By Eq. (14),
we can obtain the each connection’s TCP through-
put under RED algorithm with taking account of the
througput degradation caused by TCP retransmis-
sion timeouts.

Figure 10 shows the throughput results from our
analysis as a function of the output link capacity.
In the figure, points represent the simulation results
(which correspond to Figure 3(a)), and the lines show
analysis results. We can observe from this figure
that our analysis can give good agreements with sim-
ulation results, and that the unfairness property of
the RED algorithm in the case of small output link
capacity can be observed. This unfairness can be
explained from the analysis result as follows. When
the output link bandwidth becomes small, the rate at
which the packets are served at the router of phase j
becomes BW in almost all the phases. It is clearly

shown in Eq. (9). That is, packets arriving at the
router are served at rate BW , which results in that
the throughput of all connections become equiva-
lent. Furthermore, the connection whose input link
bandwidth is larger can suffer from throughput degra-
dation caused by TCP retransmission timeouts. This
is also the reason why the throughput of the con-
nection with the 512 [Kbyte/sec] input link band-
width is largely degraded, which can be explained
by Eq. (14).

We next consider the enhancement to the RED
algorithm (called enhanced RED) to avoid this un-
fairness by setting p dependently on each connec-
tion’s input link capacity, according to the analy-
sis results. We set pi, which is the packet dropping
probability of connection i, such that each connec-
tion’s throughput becomes proportional to the its in-
put link capacity. The appropriate values pi’s are
calculated for all connections as follows.

1. Initialize pi’s.

2. Calculate ρi from the current pi according to
the analysis results. See Eq.(14).

3. If ρi is proportional to the input link capacity,
set pi to the current value.

4. If not, compare ρi with the ideal value, and
adjust pi of the connection having the largest
difference between ρi and the ideal value. That
is,

• If ρi is larger than the ideal value, change
pi to a pi.

• If ρi is smaller than the ideal value, change
pi to b pi.

The typical values of control parameters a and
b are 1.1 and 0.9.

In the enhanced RED algorithm, we calculate the
pi’s for all connections from the connections’ input
link capacities according to this algorithm, and set
pi as the packet dropping probability at the RED
router in advance of starting to send the packets.

Figure 11 shows the simulation results on the
relative throughput of the enhanced RED algorithm.

Compared with Figure 3(b), it is clear that our en-
hanced version of RED algorithm gives further bet-
ter fairness than the original RED algorithm. In
simulation, however, we set the control parameter
values of a and b intuitively. It is a future research
topic to seek an appropriate method to determine
those parameters.

3.3 DRR Case

As explained in Subsection 2.1, the router buffer is
logically divided into several queues in DRR and
each connection is assigned its own queue. We first
consider the case where the large buffer is equipped
with the router so that every connection is given a
sufficient amount of buffer. In our model depicted
Figure 4, four DRR queues are formed in the router,
and DRR parameters are set such that each DRR
queue is served in proportion to the input link ca-
pacity of the assigned connection.

Figure 5(a) shows the simulation results of rel-
ative throughput. Different from the FIFO (Fig-
ure 2) and RED (Figure 3) algorithms, the DRR al-
gorithm provides very good fairness among connec-
tions even when the output link capacity is small.
When the output link is large, on the other hand,
the degree of the fairness is slightly degraded. It is
because TCP’s retransmission timeouts tends to fre-
quently occur due to bursty packet loss at the queue
since the FIFO discipline is used in each DRR queue.
Then, the retransmission timeout degrades the per-
formance more seriously. Thus the degree of per-
formance degradation depends on the bandwidth–
delay product of the connection. Furthermore, in
the DRR algorithm, the capacity not used by a cer-
tain queue due to connection’s retransmission time-
out can be used by other connections. It increases
the total throughput, but it is likely to lead to the un-
fairness among connections. This is why fairness is
degraded in the case of the large output link.

While the DRR algorithm assigns the DRR queues
to each connection, several connections should be
assigned to one DRR queue as the number of con-
nections grows. It is because the number of DRR
queues which can be prepared must be limited by

the router buffer size and processing overhead. How-
ever, the performance of the DRR algorithm in such
a case has not been known. For investigating such
an insufficient buffer case, we assume that there are
two queues and four connections, and each con-
nection is assigned to the queue as shown in Fig-
ure 6. The 64 Kbps and 128 Kbps connections are
assigned to one queue (queue 1 in the figure) and
the 256 Kbps and 512 Kbps connections to another
queue (queue 2). Each queue is assumed to be served
in proportion to the total capacity of the assigned
connections.

We show the simulation results in the insuffi-
cient buffer case in Figure 5(b) for the relative through-
put. It is clear from this figure that the two con-
nections assigned to the same queue show unfair
throughput. This is because we assumed that the
arriving packets are served according to a simple
FIFO discipline within the DRR queue. As described
in Subsection 3.1, the FIFO algorithm cannot keep
fairness among connection at all.

In this subsection, we have observed that the
DRR algorithm gives much better fairness than FIFO
and RED algorithms, but its fairness property is some-
times lost as each connection has different capacity
or when multiple connections are assigned to one
DRR queue. We henceforth consider to improve the
fairness property of the DRR algorithm in the next
subsection.

3.4 DRR+ Case

In the previous subsection, we have shown that the
DRR algorithm has some unfairness property. The
main reason was that each DRR queue serves pack-
ets by the FIFO discipline. In this subsection, we
show some simulation results of DRR+, where the
RED algorithm is applied to each DRR queue to
prevent unfairness. In simulation, we consider both
sufficient/insufficient buffer case. Note that, in the
insufficient buffer case, we apply the enhanced RED
algorithm to two DRR queues depicted in Figure 6.
That is, in each queue, we set the assigned connec-
tions’ packet dropping probabilities according to the
enhanced RED algorithm in Subsection 3.2.

Figure 7 shows the simulation results on the rel-
ative throughput. Our proposed method keeps good
fairness in the sufficient buffer case (Figure 7(a)).
Furthermore, when Figure 7(b) is compared with
Figure 5(b), the fairness is significantly improved
even in the insufficient buffer case.

4 TCP Vegas Case

In this section, we change the version of TCP to
TCP Vegas to investigate the fairness property of
three packet scheduling algorithms. TCP vegas con-
jectures the available bandwidth for the connection,
and therefore its principle is likely to be well fit to
the DRR algorithm. On the other hand, the RED
algorithm does not help improve the fairness when
TCP Vegas is employed since each connection’s win-
dow size is not dominated by the packet dropping
probability of the RED algorithm, but by the essen-
tial algorithm of TCP Vegas. The purpose of this
section is to confirm the above observations.

4.1 FIFO Case

Figure 12 plots simulation results of the FIFO case
using TCP Vegas. Note that we omit the graph show-
ing the number of packet loss since no segment loss
was observed at the FIFO buffer. Compared with
the TCP Reno case (Figure 2), it is clear that TCP
vegas provides less fairness than TCP Reno. Es-
pecially, the connection with has smaller input link
bandwidth achieve almost 100% throughput (Fig-
ure 12(b)). This unfairness property is caused by
the essential characteristic of TCP Vegas. In TCP
Vegas, no segment loss occurs at the router buffer
if the network is stable, because the window size
of all connection converges to certain values (Fig-
ure 12(c)). In Figure 12(c), it is noticeable that the
converged window size is independent on each con-
nection’s input link bandwidth because base rtt of
each connection is almost equal (See Subsection 2.2).
In the current simulation setting, the converged win-
dow size is enough large for connections having smaller
input link bandwidth to utilize its bandwidth–delay-
product, but it is too small for connections with larger

input link bandwidth. Therefore, while the result
depends on the network environment, TCP Vegas
sometimes fails to achieve fairness among connec-
tions due to the essential nature of its congestion
control mechanism.

4.2 The RED Case

We next show the simulation results of the RED
case in Figure 12. As in the case of TCP Reno
(Subsection 3.2), the fairness is slightly improved
when compared with the FIFO case (Figure 12(b)).
However, there still be significant unfairness among
connections. This can be explained by the through-
put analysis presented in the below. In the following
analysis, we use the same notations as those intro-
duced in Subsection 3.2.

At the moment, we consider the situation where
no segment loss occurs at the router, and each con-
nection’s window size converges to a certain value.
The packet dropping of the RED will be considered
later.

Let li [segments] be the number of connection i’s
segments in the router buffer, and L = l1 + · · ·+ lN .
Assume that each connection’s throughput ρi [seg-
ments/sec] is proportional to the avarage number of
its segments in the router buffer. This assumption
is reasonable when the FIFO discipline is applied at
the router buffer. Then, the following equation with
respect to ρi is satisfied;

ρi = min (bwi, (li/L)BW) (15)

According to the algorithm of TCP Vegas (Eq. (2)),
we obtain;

α

base rtti
<

Wi

base rtti
− Wi

rtti
<

β

base rtti
(16)

base rtti = 2τ + 1/BW (17)

rtti = 2τ + li/ρi (18)

Wi = 2τρi + li = rtti · ρi (19)

where rtti [sec] and Wi [segments] are the RTT
and the window size of the connection i, respec-

tively. base rtti [sec] corresponds to base rtt of
connection i, which is the minimum value of RTTs
of the connection. By substituting Eqs. (17)–(19)
into Eq. (16), we obtain the following equation;

α+ ρi/BW < li < β + ρi/BW (20)

From Eq. (20), L (= l1 + · · ·+ lN) can be calculated
as follows;

Nα +
N∑

j=1

ρi

BW
< l1 + · · ·+ lN < Nβ +

N∑
j=1

ρi

BW

Nα +
N∑

j=1

ρi

BW
< L < Nβ +

N∑
j=1

ρi

BW
(21)

Recalling that bw1 ≤ bw2 ≤ . . . ≤ bwN , Eq. (15)
yields

ρi =

{
bwi 1 ≤ i ≤M
(li/L)BW M + 1 ≤ i ≤ N

(22)

Then, from Eqs. (20)–(22), we obtain ρi for M +
1 ≤ i ≤ N as follows;

ρi =
li

L −
M∑

j=1

li

BW −

M∑
j=1

ρi

 ,M + 1 ≤ i ≤ N (23)

Therefore, Wi, which is the converged window size
of connection i, can be obtained by substituting Eq. (20)
and Eq. (23) to Eq. (19).

In the above derivation, however, we do not take
account of random segment losses adopted in the
RED algorithm. We next consider the effect of through-
put degradation caused by probabilistic segment loss
of the RED algorithm. Although each connection’s
window size is controlled to be converged to a cer-
tain value in TCP Vegas, it is sometimes decreased
by segment loss by the RED algorithm. We as-
sume that the segment loss can be detected by the
fast retransmit algorithm. Then, if the segment loss
occurs after the window size reaches Wi, the win-
dow size is halved to Wi/2. That is, if Wi/2 <
2τρi, the throughput is degraded until the window
size reaches 2τρi. In Figure 14, we define ‘one cy-
cle’ to be the time duration between two segment

losses caused by RED. One cycle is divided into
three phases; phase 1, phase 2, and phase 3 as in
Figure 14. In phase 1, the window size is increas-
ing according to the TCP Vegas’s algorithm, but the
window size is less than 2τρi. That is, the through-
put is degraded by the segment loss during phase 1.
In phase 2, the window size continues to increase as
in phase 1, but the window size is larger than 2τρi

and there is no throughput degradation. In phase 3,
the window size reaches the converged value, which
is obtained from Eq. (19). It remains unchanged un-
til the packet loss occurs at the end of this phase.

Let Ti [sec] and Ai [segments] be the time dura-
tion of phase i, and the number of transmitted seg-
ments in phase i, respectively. Furthermore, we in-
troduce ρi,j [segments/sec] as the avarage through-
put of connection i during phase j.

In phase 1 and phase 2, the ratio of window
size increasing is 1/rtti [segments/sec] because the
window size is increased according to TCP Vegas’s
congestion avoidance algorithm formulated by Eq. (2).
Therefore, ρi,1 is;

ρi,1 =

(
Wi

2
+ 2τρi

2

)/(
2τ +

1

ρi

)
(24)

Because there is no throughput degradation in phase 2
and phase 3, ρi,2 and ρi,3 are identical to ρi, i.e.,

ρi,2 = ρi,3 = ρi (25)

Since the increased rate of window size is 1/rtti [seg-
ments/sec], T1 and T2 can be calculated as follows;

T1 =
(
2τρi − Wi

2

)
· rtti (26)

T2 = (Wi − 2τρi) · rtti (27)

A1 and A2 can also be calculated as follows;

A1 =
1

2

(
2τρi +

Wi

2

) (
2τρi − Wi

2

)
(28)

A2 =
1

2
(Wi + 2τρi) (Wi − 2τρi) (29)

In phase 3, the window size is converged to Wi, and
segment loss occurs at the router caused by the RED

algorithm at the end of this phase. Since the avarage
number of transmitted segments during 1 cycle is
(1/p), A3 and T3 can be obtained as;

A3 = 1/p− A1 −A2 (30)

T3 = (A3/Wi) · rtti (31)

Finally, we can obtain ρ̂i, the throughput of connec-
tion i from Eqs. (24)– (27), (31) as follows;

ρ̂i =
T1ρi,1 + T2ρi,2 + T3ρi,3

T1 + T2 + T3
(32)

Figure 15 shows the result of the analysis as a
function of the output link capacity. Compare with
Figure 10. Our analysis again gives good agree-
ments with simulation results, and it confirms the
unfairness property of TCP Vegas when applied to
the RED algorithm. In TCP Reno (Subsection 3.2),
we could improve the fairness by setting p (the packet
dropping probability) dependently on each connec-
tion’s input link capacity according to the analysis
results. In TCP Vegas, however, we cannot apply it
because the converged window size is independent
on p as shown in Eqs. (19). That is, we cannot con-
trol each connection’s throughput by p. Therefore,
if we want to remove the unfairness property in the
RED algorithm with TCP Vegas, we may have to
give some modifications to the algorithm of TCP
Vegas itself. Otherwise, we need to use the DRR al-
gorithm as will be presented in the next subsection.

4.3 The DRR Case

Figure 16 shows the case of DRR. It can be ob-
served from the figure that fairness among connec-
tions is fairly good (Figure 16), and better than TCP
Reno case (Figure 5(a)). With TCP Reno, some
connections could not utilize all amount of band-
width assigned by the DRR mechanism due to seg-
ment loss. With TCP Vegas, on the other hand, no
segment loss occurs at the router buffer, and then
each connection can completely utilize the band-
width assigned by the DRR mechanism. However,
as the number of connections becomes large, the
scalability problem is introduced as having been ex-

plained in Subsection 3.3. In Subsection 3.4, we
have succeeded to avoid the unfairness by applying
the RED mechanism to each DRR queue. In the
current case, however, we cannot apply it because
of the essential incompatibility of TCP Vegas to the
RED algorithm as explained in Subsection 4.2. We
need further investigation on this problem.

5 The Effect of Reverse Traffic

In this section, we investigate the effect of the re-
verse traffic. That is, the downlink of the access line
of the ISP is shared by the subscribers with different
capacities as opposed to the previous case where the
uplink of the access line is shared. The purpose of
this section to confirm the applicability of the dis-
cussion and analysis described in Section 3 to the
reverse traffic. We use the network model depicted
in Figure 17, where the number of connection is 4.
The input link bandwidth is BW [segments/sec],
and the output link bandwidth of connection i is
bwi [segments/sec]. As in Section 3, we consider
FIFO, RED and DRR algorithms at the bottleneck
queue. In this section, we use TCP Reno version,
and compare the results with those presented in Sec-
tion 3 to investigate the effect of the traffic direction.

5.1 The FIFO Case

Figure 18 shows the simulation results of the FIFO
case. The fairness characteristic is very similar to
the previous case shown in Figure 2. The network
model shown in Figure 17 has the same bottleneck
point as in Figure 1, which is shared by four connec-
tions having the different link bandwidths. There-
fore, the characteristics of packet loss at the bottle-
neck queue becomes similar in the case of Subsec-
tion 3.1.

5.2 The RED Case

The simulation results are shown in Figure 19, where
the RED algorithm is applied at the bottleneck queue.
The figure clearly exhibits that the RED algorithm

can not provide fairness, which is a same tendency
with the previous case in Section 3.2 (Figure 3).

In Section 3.2, we have derived the throughput
of each connection with TCP Reno and the RED
algorithm using the network model depicted in Fig-
ure 1 through analysis approach. Since the network
model in this subsection 17 has the same bottleneck
point, the analysis in Section 3.2 can also be applied
to the network model of reverse traffic. This appli-
cability can be proved by comparing Figure 19 with
Figure 3, which shows the similar characteristics in
terms of the fairness.

To explain the applicability of our analysis re-
sults more clearly, we also tested the Enhanced RED
algorithm that we described in Subsection 3.2. To
improve the fairness of the RED router, we set the
packet dropping probability of each connection ac-
cording to the algorithm in Subsection 3.2. The sim-
ulation result is depicted in Figure 20. The fairness
improvement is fairly good (Figure 20(b)), which
indicates the robustness of our proposed algorithm.

5.3 The DRR Case

Figure 21 shows the simulation results of the DRR
case. As is the case of FIFO and RED, the results
again shows the similar tendency with the previous
case in Section 3.3 (Figure 5). This also shows that
the model depicted in Figure 17 can be dealt in the
same way as that in Figure 1.

6 Concluding Remarks

In this paper, we have evaluated the performance of
the router packet scheduling algorithms for fair ser-
vice among connections through the simulation and
analysis. We have obtained the following results on
TCP Reno version; the FIFO algorithm cannot keep
fairness among connections at all. The RED algo-
rithm can improve fairness to some degree, but it
fails to keep fairness in the different capacity case.
The DRR algorithm offers better fairness than the
FIFO algorithm and the RED algorithm, but its fair-
ness property is lost when each connection has dif-
ferent capacity and/or when multiple connections

are assigned to one DRR queue. Accordingly, we
have proposed the DRR+ algorithm, where the RED
algorithm is applied to each DRR queue to prevent
unfairness, and show that it can improve fairness
among connections in the different capacity case.
We have also investigated the effect of TCP Ve-
gas, which is expected to get higher throughput than
TCP Reno, and have made clear through the simula-
tion and analysis results that TCP Vegas cannot help
improving the fairness among connections in FIFO
and RED cases.

TCP Vegas has a good feature to attain the better
performance than TCP Reno, as discussed in Sec-
tion 4, it fails to keep the good fairness among the
connections with different input (and output) line
capacities. For TCP Vegas to be introduced in the
future Internet where the RED algorithm is widely
deployed, the algorithm of TCP Vegas should be
modified in order to improve the fairness among
connections, which is a future research topic.

Acknowledgements

This work was partly supported by Research for the
Future Program of Japan Society for the Promo-
tion of Science under the Project “Integrated Net-
work Architecture for Advanced Multimedia Ap-
plication Systems,” Special Coordination Funds for
promoting Science and Technology of the Science
and Technology Agency of the Japanese Govern-
ment, Telecommunication Advancement Organiza-
tion of Japan under the Project “Global Experimen-
tal Networks for Information Society Project,” a Grant-
in-Aid for Scientific Research (A) (2) 11305030 from
The Ministry of Education, Science, Sports and Cul-
ture of Japan, and financial support on “Research
on transport-layer protocol for the future high-speed
network,” from the Telecommunications Advance-
ment Foundation.

References
[1] G. Hasegawa, M. Murata, and H. Miyahara, “Fair-

ness and stability of the congestion control mech-
anism of TCP,” in Proceedings of IEEE INFO-
COM’99, pp. 1329–1336, Mar. 1999.

[2] Diffserv Home Page, available from http://
diffserv.lcs.mit.edu/.

[3] D. D. Clark and W. Fang, “Explicit allocation
of best effort packet delivery service,” available
from http://diffserv.lcs.mit.edu/
Papers/exp-alloc-ddc-wf.ps, 1998.

[4] Z. Wang, “Toward scalable bandwidth allocation
on the Internet,” On The Internet, pp. 24–32, May
1998.

[5] M. Shreedhar and G. Varghese, “Efficient fair
queuing using deficit round robin,” IEEE/ACM
Transactions on Networking, vol. 4, pp. 375–385,
June 1996.

[6] S. Floyd and V. Jacobson, “Random early detection
gateways for congestion avoidance,” IEEE/ACM
Transactions on Networking, vol. 1, pp. 397–413,
Aug. 1993.

[7] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End
to end congestion avoidance on a global Internet,”
IEEE Journal on Selected Areas in Communica-
tions, vol. 13, pp. 1465–1480, Oct. 1995.

[8] D. Lin and R. Morris, “Dynamics of random early
detection,” in Proceedings of ACM SIGCOMM ’97,
pp. 127–137, Oct. 1997.

[9] I. Stoica, S. Schenker, and H. Zhang, “Core-
stateless fair queueing: Achieving approximately
bandwidth allocations in high speed networks,” in
Proceedings of ACM SIGCOMM’98, pp. 118–130,
Sept. 1998.

[10] D. P. Heyman, T. V. Lakshman, and L. Neidhardt,
“A new method for analyzing feedback-based pro-
tocols with applications to engineering web traf-
fic over the Internet,” in Proceedings of ACM SIG-
METRICS ’97, pp. 24–38, Feb. 1997.

[11] W. R. Stevens, TCP/IP Illustrated, Volume 1: The
Protocols. Reading, Massachusetts: Addison-
Wesley, 1994.

[12] K. Fall and S. Floyd, “Simulation-based compar-
isons of Tahoe, Reno, and SACK TCP,” ACM SIG-
COMM Computer Communication Review, vol. 26,
pp. 5–21, July 1996.

List of Figures

1 Network model . 16
2 FIFO case with TCP Reno . 16
3 RED case with TCP Reno . 16
4 Sufficient buffer case . 16
5 DRR case with TCP Reno . 17
6 Insufficient buffer case . 17
7 DRR+ case with TCP Reno . 17
8 TCP’s cyclically change of the window size for connection i 17
9 Analysis of the RED algorithm . 18
10 Accuracies of Analysis Result in TCP Reno . 18
11 The Effect of Enhanced RED . 18
12 FIFO case with TCP Vegas . 19
13 RED case with TCP Vegas . 19
14 Throughput degradation with

RED segment loss . 19
15 Accuracies of analysis result in

TCP Vegas . 19
16 DRR case with TCP Vegas . 19
17 Network model for reverse traffic . 19
18 FIFO case with Reverse traffic . 20
19 RED case with Reverse traffic . 20
20 Enhanced RED case with Reverse traffic . 20
21 DRR case with Reverse traffic . 20

Source 1

Source N

Source 2 FIFO/RED/DRR queue

Destination

bw1

bw2

bwN

BW

τ

Figure 1: Network model

0
50

100
150
200
250
300
350
400
450
500

400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(a) Average throughput

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

(b) Relative throughput

0

2

4

6

8

10

400 500 600 700 800 900

P
ac

ke
t L

os
s

R
at

e
(%

)

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(c) Packet loss rate

Figure 2: FIFO case with TCP Reno

0
50

100
150
200
250
300
350
400
450
500

400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(a) Average throughput

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

(b) Relative throughput

0

2

4

6

8

10

400 500 600 700 800 900

P
ac

ke
t L

os
s

R
at

e
(%

)

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(c) Packet loss rate

Figure 3: RED case with TCP Reno

64 Kbps

128 Kbps

256 Kbps

512 Kbps

queue 1

queue 2

queue 3

queue 4

Round
Robin

DRR Router

Figure 4: Sufficient buffer case

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

(a) Sufficient buffer case

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(b) Insufficient buffer case

Figure 5: DRR case with TCP Reno

64 Kbps

128 Kbps

256 Kbps

512 Kbps

queue 1

queue 2

Round
Robin

DRR Router

Figure 6: Insufficient buffer case

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(a) Sufficient buffer case

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64K
128K
256K
512K

optimal

(b) Insufficient buffer case

Figure 7: DRR+ case with TCP Reno

time

Window Size

Wmax

Wmax/2
1/RTT

0 T

1cycle

i

i

cwnd (t)i

Wa

Figure 8: TCP’s cyclically change of the window size for connection i

Connection
 ID

1

2

i

N

N−1

Input Link
Bandwidth

bw1

bw2

bwi

bwN−1

bwN

1
Wa

Wa
bw [sec][segments],

Wa
Wa
bw [sec][segments],

2

Wa
Wa
bw [sec][segments],

i

Wa
Wa
bw [sec][segments],

N

Wa
Wa
bw [sec][segments],

N−1

Phase
1 i N−1 N

WN,N

N−1,NW

1,NW

2,NW

Wi,N−1

W2,N−1

W1,N−1

W i,1

1,1W

i,NW

W1,i

W 2,i

WN−1,1

BW

Figure 9: Analysis of the RED algorithm

0
50

100
150
200
250
300
350
400
450
500

200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Output Link Bandwidth [Kbps]

Simulation results

Analysis results

512Kbps

256Kbps

128Kbps

64Kbps

Figure 10: Accuracies of Analysis Result in TCP Reno

0

0.2

0.4

0.6

0.8

1

200 300 400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth (Kbps)

64K
128K
256K
512K

optimal

Figure 11: The Effect of Enhanced RED

0
50

100
150
200
250
300
350
400
450
500

400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(a) Throughput

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

(b) Relative throughput

0

2

4

6

8

10

12

14

16

0 200000 400000 600000 800000 1e+06

W
in

do
w

 S
iz

e
[s

eg
m

en
ts

]

Time [msec]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(c) Change of window sizes

Figure 12: FIFO case with TCP Vegas

0
50

100
150
200
250
300
350
400
450
500

400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(a) Throughput

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

(b) Relative throughput

0

20

40

60

80

100

120

140

400 500 600 700 800 900

N
um

be
r

of
 S

eg
m

en
t L

os
se

s

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

(c) Number of segment losses

Figure 13: RED case with TCP Vegas

Window Size (segments)

Time (sec)

Wi

Wi/2

2τρi

Segment Loss

Throughput
 Degradation

T1 T2 T3

1 Cycle

phase
 1

phase
 2 phase 3

Figure 14: Throughput degrada-
tion with

RED segment loss

0
50

100
150
200
250
300
350
400
450
500

200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Output Link Bandwidth [Kbps]

Simulation results

Analysis results 512Kbps

256Kbps

128Kbps

64Kbps

Figure 15: Accuracies of analysis
result in

TCP Vegas

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Output Link Bandwidth [Kbps]

64 Kbps
128 Kbps
256 Kbps
512 Kbps

Optimal

Figure 16: DRR case with TCP
Vegas

Source Internet

Subscriber
 Line

Destination 1

Destination 2

Destination 4

Destination 3

ISP (Internet Service Provider)

BW

bw1

bw2

bw3

bw4

FIFO/RED/DRR
 queue

Figure 17: Network model for reverse traffic

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(a) Throughput

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

Optimal

(b) Relative throughput

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900

N
um

be
r

of
 L

os
t P

ac
ke

ts
 a

t S
w

itc
h

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(c) Number of Segment loss

Figure 18: FIFO case with Reverse traffic

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(a) Throughput

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

Optimal

(b) Relative throughput

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900

N
um

be
r

of
 L

os
t P

ac
ke

ts
 a

t S
w

itc
h

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(c) Number of Segment loss

Figure 19: RED case with Reverse traffic

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(a) Throughput

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

Optimal

(b) Relative throughput

0

20

40

60

80

100

120

140

100 200 300 400 500 600 700 800 900

N
um

be
r

of
 L

os
t P

ac
ke

ts
 a

t S
w

itc
h

Input link bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(c) Number of Segment loss

Figure 20: Enhanced RED case with Reverse traffic

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900

T
hr

ou
gh

pu
t [

K
bp

s]

Input Link Bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(a) Throughput

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500 600 700 800 900

R
el

at
iv

e
T

hr
ou

gh
pu

t

Input Link Bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

Optimal

(b) Relative throughput

0

50

100

150

200

250

300

350

400

450

500

100 200 300 400 500 600 700 800 900

N
um

be
r

of
 L

os
t P

ac
ke

ts
 a

t S
w

itc
h

Input Link Bandwidth BW [Kbps]

Connection 1
Connection 2
Connection 3
Connection 4

(c) Number of Segment loss

Figure 21: DRR case with Reverse traffic

